
Automated Testing, and
Generating Complex Input

(and other applications)

Course Software Testing & Verification
2022/23

Wishnu Prasetya & Gabriele Keller

Content

• What is “complex input”
• Regular expression and CFG/BNF to describe complex

inputs.
– Generating complex inputs
– Coverage over the structure of complex inputs

2

Note: this lecture is about describing, generating, and covering complex inputs. We will focus on
complex inputs that are described by means of grammars (regular or context free). This subject is
only partially addressed by A&O. E.g. chapter 5 (2ed. Ch 9), set up the right background, but then
they went on to focus more on mutation.

Complex Inputs

• Complex inputs are inputs (of a program) that
are required to satisfy a non-trivial constraint.

• Examples:
1. Prog(List s) where s has to be a sorted list.
2. Prog(String s) where s has to be a string

containing a valid email address.

• In this lecture we will focus on complex inputs
whose constraints can be expressed by a
”grammar”.

3

Complex Inputs

• We discussed automated testing: consider a program P(x)
with an in-code specification Q. Having an in-code spec.
allows you to automatically test P(x) by generating x à good!

• Now, suppose x has to satisfy a non-trivial constraint C (e.g. it
has to be a string representing an email address).

• Challange-1: simply randomly generating x may not be an
effective way to produce x’s.

• Challenge-2: it may also be necessary to make sure that we
cover various corner cases of C. How to define a suitable
concept of coverage over this C? (note that this is may be
orthogonal to coverage over P’s code)

4

Regular expressions as input constraints

• For example P(String s) where s is a phone
number, e.g. 030 2530011

• We can use a regular expression to express
this constraint:

PhoneNumber = 0PD Space PDDDDDD
D = 0|P
P = 1|...|9
Space = ␣ *

• 5(red symbols are terminals)

Another example: NL post codes

Note: in practice there may be additional constraints, e.g. codes above 9999 XL do not actually exists (do not
map to an existing address). This may require additional filtering which we will not go into in the lecture.

6

NLpostcode = Area Space Street
Area = PDDD
Street = Letter Letter
P = 1 | 2 ...
D = 0 | P
Letter = a | b | c ... | A | B | C ...
Space = ␣ *

Regular expression

7

rexp ::= terminal
or rexp | rexp
or rexp rexp
or rexp*
or rexp+
or (rexp)

L(terminal) = { terminal }
L(e | f) = L(e) È L(f)
L(ef) = { s++t | sÎL(e), tÎL(f) }
L(e*) = { e } È L(e+)
L(e+) = L(ee*)

Syntax:

L(e) = the set of strings/sentences
described by the rexp e, defined as
follows:

Using FSM to describe a language

• An execution of M is a path 𝜎 in M, starting in s0 and
ends the final state f.

• The sequence of labels over ∑ (so, excluding 𝜏) along
an execution 𝜎 is called the sentence of 𝜎.

• The language described by M, denoted by L(M), is
the set of the sentences of all executions of M.

8

Let M = (s0,f,V, E,∑∪{𝜏}) be an FSM.
• 𝜏 is an “empty” label (“”).
• s0∈V is the initial state, f∈V is the final state.

Equivalence between Rexp and FSM

Let R be a regular expression with ∑ as its alphabet
(its set of terminal symbols). There exists an FSM
M = (s0, f, V, E,∑∪ {𝜏}), such that L(R) = L(M).

9

fM:

a

b

c𝜏s0

s1

s2

𝜏
𝜏

Example: (a|b)*c*
can be equivalently
described by:

Converting Rexpr to FSM

10

M(a): a

M(e | f):

M(e):, suppose starting at
se and ends at fe.

se

fe

M(f):, suppose starting at
sf and ends at ff.

sf

ff𝜏

𝜏 𝜏

𝜏

An FSM describing the same language as a given regular
expression can be recursively constructed as follows:

case-1

case-2 Added transitions and
states are marked red.

Converting Rexpr to FSM

11

M(ef):

M(e):, suppose starting at
se and ends at fe.

se

fe

M(f):, suppose starting at
sf and ends at ff.

sf

ff
𝜏case-3

case-4 M(e*): se

fe

𝜏

M(e):, suppose starting at
se and ends at fe.

Using FSM to generate tests

• It becomes easy to generate valid inputs, simply by following
the FSM towards its end state. In other words, the FSM is
essentially an input-generator.

• It also provides a (structural) concept of test coverage, namely
the graph-based coverage that we already discussed (e.g. edge
coverage, edge-pair coverage, or prime path coverage).

Note: node/state coverage is typically too weak for FSM.

12

fM:

a

b

c𝜏s0
𝜏
𝜏

Example

• Prime paths: 010, 101, 104, 102, 020, 202, 204, 201, 44
• A test set for P(s) that would give full PPC over the regular

expression constraint of s:

13

0 4M:

a

b

c𝜏

1

2
𝜏
𝜏

s Prime path

aa 010, 101, 104

bb 020, 202, 204

abc 102, 204, 44

bac 201, 104, 44

Consider P(String s) where s is a
string satisfying the regular
expression: (a|b)*c*.

Note that here we talk about coverage over P’s input
constraint, which may be an orthogonal concern with
respect to e.g. the coverage over P’s internal code.

Using FSM to generate negative tests

• Negative test: test a program using an invalid input. Useful to
check if the program handles such an input properly (e.g. should
not crash, or should throw the right exception)

• We can mutate M to produce mutated versions (mutants) to
systematically generate invalid inputs (note: we first reduce the
FSM to make it deterministic) for performing negative testing.

• You may want mutants that produce inputs that are “slightly”
wrong, rather than inputs that are just blatantly wrong, e.g.
because this is where the program is more likely to go wrong. 14

(deterministic variant of previous M)

M’:

c
c

b

a
XM1:

c
c

b

a

a,b

(a mutated M for generating invalid inputs)

c

Using FSM to generate negative tests

• As mutation operators you can think of:
– changing the terminal state
– adding transitions that were not possible in the original M
– by-passing a state (see example above)

• Note: some care must be taken with mutants that can produce a
valid sentence (of the original M). That is, a mutant XM where
L(XM) ∩ L(M) is not empty.

15

(original FSM)

1 3K:

c

cb

a

2

(a mutated K, bypassing state 2)

1 3XK1:

c

b

a

Example of a mutant that is not disjoint

• XM1 is obtained by bypassing state-2 in M. But notice that
L(XM1) ∩ L(M) is not empty. So, XM1 is not guaranteed to
generate an invalid input for the original program.

Not useless as long as L(XM1)/L(M) is not empty, though now it
takes more effort to get an instance of an invalid input.

16

(original FSM)

1 3M:

c

cb

a

2

(a mutated M obtained by bypassing state 2)

1 3XM1:

c

b

a

Limitation of regular expressions

• Consider P(String s) where s must be an HTML
document.

• An HTML document is a sequence of elements,
where each element E starts with <E> and ends with
</E>.

• Unfortunately, such a pattern cannot be expressed
by a regular expression, essentially because regular
expressions cannot count.

• We will look at a more expressive way to express
string constraint, namely Context Free Grammar
(CFG). 17

Context Free Grammar

A context free grammar (CFG) consists of:
• a set of symbols called terminals.
• a set of symbols called non-terminals; one of it is

special, called the “start symbol”.
• a set of production rules. Each has the form N
® Z, where N is a non-terminal and Z is a
sequence of symbols.

18

It describes a language whose sentences are built from the CFG’s
terminals.
In A&O, CFG is also called Backus-Naur Form (BNF).

Example

19

S ® Brace | Curly | e
Brace ® “(“ S “)” S
Curly ® “{“ S “}” S

• Examples of sentences allowed by this grammar are:

”()” ”{()} {}”

• Mismatched braces/curlies are rejected. E.g. “(})” is not a
sentence accepted by this grammar.

With S as the start symbol

Extra notation for production rule

• A rule like A ® a(B|C)d is seen as a short hand for a
set of production rules:

A ® aBd
A ® aCd

• People often use extended BNF e.g. :
Brace ® (“(“ S “)”)*

20

Deriving valid strings

21

S ® Brace | Curly | e
Brace ® “(“ S “)” S
Curly ® “{“ S “}” S

A derivation is a series of expansion of the grammar that result
in a sequence of terminal symbols. It follows that the sequence is
a valid sentence of the grammar. We can use this to generate
valid sentences. Example :

S ® Brace
® (S) S
® (e) S
® (e) e

Let’s first name the rules

22

Name Prod. rule
RSB S ® Brace
RSC S ® Curly
RSE S ® e
RB Brace ® “(“ S “)” S
RC Curly ® “{“ S “}” S

Derivation tree (instead of sequence)

23

A derivation sequence of “()”:
S ® Brace
® (S) S
® (e) S
® (e) e

S

Brace

(S) S

e e

A derivation can also be described by a
derivation tree such as above. Given such
a tree, you can reconstruct what the
derived sentence is.

RSE

RB

RSB

RSE

Name Prod. rule

RSB S ® Brace

RSC S ® Curly

RSE S ® e

RB Brace ® “(“ S “)” S

RC Curly ® “{“ S “}” S

The derivation
tree of “()”:

One more example

24

S

Brace

(S) S

e

Curly

{ S } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

Name Prod. rule

RSB S ® Brace

RSC S ® Curly

RSE S ® e

RB Brace ® “(“ S “)” S

RC Curly ® “{“ S “}” S

The derivation tree of “({ })”:

producing “({ })”

Generating valid/invalid strings through
derivation

• Imagine a program P(s) where s is a string whose format has
to satisfy a context free grammar G.

• Valid inputs can be generated by first generating derivation
trees for G, e.g. randomly or exhaustively up to a certain
depth.

• A negative/invalid input can be generated e.g. by generating a
derivation tree from a mutated G’, where we deliberately
change one of G’s production rule. Note however, that this
may produce a sentence t that turns out to be in L(G). It is
hard to know this upfront.

• Still to answer: a concept of coverage over G.

25

We can see...

• We can see which non-terminals
and terminals are produced by the
derivation.

• We can see which rules were used.

26

S

Brace

(S) S

e

Curly

{ S } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

CFG/BNF coverage

• (C5.29/2nd Ed. C9.31) TR contains each terminal
symbol from the given grammar G.

• (C5.30/2nd Ed. C9.32) TR contains each production
rule in G.

• Production rule coverage subsumes terminal
coverage; but both are usually too weak. For
example, the single test case from the previous slide
covers all production rules of its grammar.

• Pair-wise and k-wise rule coverage
• Rule-rule coverage

27

Pair-wise rule coverage

• Consider a CFG G.
• A derivation tree t of G covers

covers a pair of production rules
<R1;R2> if the pair appears as two
consecutive arrows in in t. (note the
order).

• A set T of derivation trees gives full
pair-wise rule coverage if every
feasible pair of rules <R1;R2> is
covered by some t in T.

• Analogously we can define k-wise
rule coverage.

28

S

Brace

(S) S

e

Curly

{ S } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

Example of covering rule-pairs

29

S

Brace

(S) S

e

Curly

{ S } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

covers the 1xpair <RSB;RB>

covers 2x pairs: <RB;RSC>
and <RB;RSE>

covers 1x pair: <RSC;RC>

covers 1xpair: <RC;RSE>

The rule pairs covered by this single derivation:

Feasible pairs

• Only feasible pairs count.
• Let R1 = U ® Z1 and R2 = V ® Z2, where Z1 and Z2 are sequences of

symbols that may contain a mix of terminals and non-terminals. Note that
U and V must be a single terminal.

• The pair <R1;R2> is feasible if there exists a derivation tree where R2 is
used right after R1. This is the case if and only R1 is reachable from the
start symbol, and if V appears in Z1.

30

Name Prod. rule Feasible rule-pairs

RSB S ® Brace <RSB;RB>

RSC S ® Curly <RSC;RC>

RSE S ® e

RB Brace ® “(“ S “)” S <RB;RSB>, <RB;RSC>, <RB;RSE>

RC Curly ® “{“ S “}” S <RC;RSB>, <RC;RSC>, <RC,RSE>

Example

31

Name Prod. rule Feasible rule-
pairs

RSB S ® Brace <RSB;RB>

RSC S ® Curly <RSC;RC>

RSE S ® e

RB Brace ®
“(“ S “)” S

<RB;RSB>,
<RB;RSC>,
<RB;RSE>

RC Curly ®
“{“ S “}” S

<RC;RSB>,
<RC;RSC>,
<RC,RSE>

S

Brace

(S) S

e

Curly

{ S } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

S

Brace

(S) S

e

Brace

(S) S

e

e

RSE

RSERSE

RB

RB

RSB

RSB

These two derivations cover all rule-
pairs, except <RC;RSB> and
<RC;RSC>. Exercise: add few more
derivations to get full pair-wise rule
coverage.

Position dependent expansion

• Note that there are two non-terminals in the rule RB (two S’)
which can be expanded in different ways, e.g. the first S can
be expanded with RSB while the second with RSC.

• Pair-wise rule coverage cannot differentiate in which position
the second component of the pair is applied.

32

Name Prod. rule Feasible rule-pairs
RB Brace ® “(“ S “)” S <RB;RSB>, <RB;RSC>, <RB;RSE>

RSB S ® Brace <RSB;RB>

RSC S ® Curly <RSC;RC>

RSE S ® e

Rule-position-rule combination

• Let N be a non-terminal. Define: alts(N) = the set of N’s
production rules. E.g. alts(S) = { RSB, RSC, RSE }. alts(Brace) = {
RB }.

• Let R1 and R2 be production rules of a grammar G, R1 = A ➝ z
and and N is the kth symbol in z. The tuple <R1;k;R2> is a Rule-
position-rule combination of G if R2 ∊ alts(N).

33

Name Prod. rule rule-pos-rule combs.
RB Brace ® “(“ S “)” S <RB;1;RSB> <RB;1;RSC> <RB;1;RSE>

<RB;3;RSB> <RB;3;RSC> <RB;3;RSE>
RSB S ® Brace <RSB;0;RB>

RSC S ® Curly <RSC;0;RC>

RSE S ® e -

Covering RPR

34

S

Brace

(S) S

e

Curly

{ S } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

Name Prod. rule RPRs

RB Brace
®

“(“ S “)” S

<RB;1;RSB> <RB;1;RSC>
<RB;1;RSE>

<RB;3;RSB> <RB;3;RSC>
<RB;3;RSE>

RSB S ® Brace <RSB;0;RB>

RSC S ® Curly <RSC;0;RC>

RSE S ® e -
A derivation tree t covers an RPR <R1 ; k ; R2> if (1) an
arrow labelled by R1 appears in t, and (2): let V be the
target node of this arrow; R2 appears as the outgoing
arrow of the k-th symbol of V.
As an example, the RPRs covered by the tree to the
left are marked blue (those for <RC;k;..> are not
shown).

Each rule-rule coverage

Each Rule-Rule Coverage (ERRC) over a grammar G:
the TR consists of all RPRs in G.

35

Name Prod. rule RPRs
RB Brace ® “(“ S “)” S <RB;1;RSB> <RB;1;RSC> <RB;1;RSE>

<RB;3;RSB> <RB;3;RSC> <RB;3;RSE>

RC Curly ® “{“ S “}” S <RC;1;RSB> <RC;1;RSC> <RC;1;RSE>
<RC;3;RSB> <RC;3;RSC> <RC;3;RSE>

RSB S ® Brace <RSB;0;RB>

RSC S ® Curly <RSC;0;RC>

RSE S ® e -

Example

36

Nam
e

Prod.
rule

rule-pairs RPRs

RSB S ®
Brace

<RSB;RB> <RSB;0;RB>

RSC S ®
Curly

<RSC;RC> <RSC;0;RC>

RSE S ® e

RB Brace
®

“(“ S “)” S

<RB;RSB>
<RB;RSC>
<RB;RSE>

<RB;1;RSB>
<RB;1;RSC>
<RB;1;RSE>
<RB;3;RSB>
<RB;3;RSC>
<RB;3;RSE>

RC Curly
®

“{“ S “}” S

<RC;RSB>
<RC;RSC>
<RC,RSE>

<RC;1;RSB>
<RC;1;RSC>
<RC;1;RSE>
<RC;3;RSB>
<RC;3;RSC>
<RC;3;RSE

S

Brace

(S) S

e

Curly

{ S } S

e

e
RSE

RSERSE

RB

RC

RSB

RSC

S

Brace

(S) S

e

Brace

(S) S

e

e
RSE

RSERSE

RB

RB

RSB

RSB

(blue are covered by the two test cases
on the left)

Test Case size

In the previous example, due to the recursion in the grammar it
is actually possible to cover all rule-pairs, and even to cover all
RPRs with just a single test case; but you will end up with a one
relatively large and complex test case.

37

The size of your test set (# test cases) matters, but so
does the size of each test case. “Smaller” test cases
are easier to understand, and if a bug is revealed,

they are easier to debug.

Rule vector combination

Let R = A ➝ z be a rule of a grammar G. A vector <R;k1;R1, ...
,kn;Rn> is a rule vector combination of G, if 0≤ki<#z and Ri ∈
alts(𝑧"!). We assume k1... kn to be increasing in their order.

38

Name Prod. rule rule vector combs.
RB Brace ®

“(“ S “)” S
<RB;1;RSB;3;RSB>
<RB;1;RSB;3;RSC>
<RB;1;RSB;3;RSE>

<RB;1;RSC;3;RSB>
<RB;1;RSC;3;RSC>
<RB;1;RSC;3;RSE>

<RB;1;RSE;3;RSB>
<RB;1;RSE;3;RSC>
<RB;1;RSE;3;RSE>

RSB S ®
Brace

<RSB;0;RB>

RSC S ® Curly <RSC;0;RC>

RSE S ® e -

Covering a rule vector

39

S

Brace

(S) S

e

Curly

{ S } S

e

e
RSE

RSERSE

RB

RC

RSB

RSC

A derivation tree t covers a rule vector <R;k1;R1,
... ,kn;Rn> if R appears as an arrow in the tree,
pointing to a node V whose outgoing arrows are
R1 ... Rn (in the same order).

Example: the tree to the left covers the rule
vector <RB; 1 ; RSC ; 3 ; RSE>

And also: <RC; 1 ; RSE ; 3 ; RSE>

All-rule-rule coverage

All Rule-Rule Coverage (ARRC) over a grammar G: for
every rule R TR includes every rule vector combinations

of R.
40

Name Prod. rule rule vector combs.

RB Brace ®
“(“ S “)” S

<RB;1;RSB;3;RSB>
<RB;1;RSB;3;RSC>
<RB;1;RSB;3;RSE>

<RB;1;RSC;3;RSB>
<RB;1;RSC;3;RSC>
<RB;1;RSC;3;RSE>

<RB;1;RSE;3;RSB>
<RB;1;REC;3;RSC>
<RB;1;RSE;3;RSE>

RC Curly ®
“{“ S “}” S

Analogous as RB, RC also has 9 rule vector combinations.

RSB S ® Brace <RSB;0;RB>

RSC S ® Curly <RSC;0;RC>

RSE S ® e -

Subsumption

41

ARRC

ERRC

pair-wise rule coverage

production coverage

terminal coverage

3-wise rule coverage

Assuming CF grammars where derivations
all have length at least two.

