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Content

• What is “complex input”
• Regular expression and CFG/BNF to describe complex 

inputs.
– Generating complex inputs
– Coverage over the structure of complex inputs
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Note: this lecture is about describing, generating, and covering complex inputs. We will focus on
complex inputs that are described by means of grammars (regular or context free). This subject is
only partially addressed by A&O. E.g. chapter 5 (2ed. Ch 9), set up the right background, but then
they went on to focus more on mutation.



Complex Inputs

• Complex inputs are inputs (of a program) that 
are required to satisfy a non-trivial constraint.

• Examples:
1. Prog(List s) where s has to be a sorted list.
2. Prog(String s) where s has to be a string 

containing a valid email address.

• In this lecture we will focus on complex inputs 
whose constraints can be expressed by a  
”grammar”.
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Complex Inputs

• We discussed automated testing: consider a program P(x) 
with an in-code specification Q. Having an in-code spec. 
allows you to automatically test P(x) by generating x à good!

• Now, suppose x has to satisfy a non-trivial constraint C (e.g. it 
has to be a string representing an email address). 

• Challange-1: simply randomly generating x may not be an 
effective way to produce x’s.

• Challenge-2: it may also be necessary to make sure that we 
cover various corner cases of C. How to define a suitable 
concept of coverage over this C? (note that this is may be 
orthogonal to coverage over P’s code)
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Regular expressions as input constraints

• For example P(String s) where s is a phone 
number, e.g. 030 2530011

• We can use a regular expression to express 
this constraint:

PhoneNumber = 0PD  Space  PDDDDDD
D = 0|P
P = 1|...|9
Space  =  ␣ *

• 5(red symbols are terminals)



Another example: NL post codes

Note: in practice there may be additional constraints, e.g. codes above 9999 XL do not actually exists (do not 
map to an existing address). This may require additional filtering which we will not go into in the lecture.
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NLpostcode = Area Space Street
Area   =  PDDD
Street =  Letter Letter
P  =  1 | 2 ...
D  =  0 | P
Letter  =  a | b | c ... | A | B | C ...
Space  = ␣ *



Regular expression
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rexp ::= terminal
or rexp | rexp
or rexp rexp
or rexp*
or rexp+
or ( rexp )

L(terminal)  =  { terminal }
L(e | f )  =   L(e)  È L(f)
L(ef) =  { s++t |  sÎL(e),  tÎL(f) }
L(e*)   =  { e }  È L(e+)
L(e+)   =   L(ee*)

Syntax:

L(e)  =  the set of strings/sentences 
described by the rexp e, defined as 
follows:



Using FSM to describe a language

• An execution of M is a path 𝜎 in M, starting in s0 and 
ends the final state f. 

• The sequence of labels over ∑ (so, excluding 𝜏) along 
an execution 𝜎 is called the sentence of 𝜎.

• The language described by M, denoted by L(M), is 
the set of the sentences of all executions of M.
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Let M = (s0,f,V, E,∑∪{𝜏}) be an FSM. 
• 𝜏 is an “empty” label (“”).
• s0∈V is the initial state, f∈V is the final state.



Equivalence between Rexp and FSM

Let R be a regular expression with ∑ as its alphabet
(its set of terminal symbols). There exists an FSM
M = (s0, f, V, E,∑∪ {𝜏}), such that L(R) = L(M).
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fM:

a

b

c𝜏s0

s1

s2

𝜏
𝜏

Example: (a|b)*c* 
can be equivalently 
described by:



Converting Rexpr to FSM
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M(a): a

M(e | f):

M(e):, suppose starting at 
se and ends at fe.

se

fe

M(f):, suppose starting at 
sf and ends at ff.

sf

ff𝜏

𝜏 𝜏

𝜏

An FSM describing the same language as a given regular 
expression can be recursively constructed as follows:

case-1

case-2 Added transitions and 
states are marked red.



Converting Rexpr to FSM
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M(ef):

M(e):, suppose starting at 
se and ends at fe.

se

fe

M(f):, suppose starting at 
sf and ends at ff.

sf

ff
𝜏case-3

case-4 M(e*): se

fe

𝜏

M(e):, suppose starting at 
se and ends at fe.



Using FSM to generate tests

• It becomes easy to generate valid inputs, simply by following 
the FSM towards its end state. In other words, the FSM is 
essentially an input-generator.

• It also provides a (structural) concept of test coverage, namely 
the graph-based coverage that we already discussed (e.g. edge 
coverage, edge-pair coverage, or prime path coverage).

Note: node/state coverage is typically too weak for FSM.
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fM:

a

b

c𝜏s0
𝜏
𝜏



Example

• Prime paths: 010, 101, 104, 102, 020, 202, 204, 201, 44
• A test set for P(s) that would give full PPC over the regular 

expression constraint of s:
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0 4M:

a

b

c𝜏

1

2
𝜏
𝜏

s Prime path

aa 010, 101, 104

bb 020, 202, 204

abc 102, 204, 44

bac 201, 104, 44

Consider P(String s) where s is a 
string satisfying the regular 
expression: (a|b)*c*.  

Note that here we talk about coverage over P’s input 
constraint, which may be an orthogonal concern with 
respect to e.g. the coverage over P’s internal code.



Using FSM to generate negative tests

• Negative test: test a program using an invalid input. Useful to 
check if the program handles such an input properly (e.g. should 
not crash, or should throw the right exception)

• We can mutate M to produce mutated versions (mutants) to 
systematically generate invalid inputs (note: we first reduce the 
FSM to make it deterministic) for performing negative testing.

• You may want mutants that produce inputs that are “slightly” 
wrong, rather than inputs that are just blatantly wrong, e.g.
because this is where the program is more likely to go wrong. 14

(deterministic variant of previous M)

M’:

c
c

b

a
XM1:

c
c

b

a

a,b

(a mutated M for generating invalid inputs)

c



Using FSM to generate negative tests

• As mutation operators you can think of:
– changing the terminal state
– adding transitions that were not possible in the original M
– by-passing a state (see example above)

• Note: some care must be taken with mutants that can produce a 
valid sentence (of the original M). That is, a mutant XM where 
L(XM) ∩ L(M) is not empty.
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(original FSM)

1 3K:

c

cb

a

2

(a mutated K, bypassing state 2)

1 3XK1:

c

b

a



Example of a mutant that is not disjoint

• XM1 is obtained by bypassing state-2 in M. But notice that 
L(XM1) ∩ L(M) is not empty. So, XM1 is not guaranteed to 
generate an invalid input for the original program.

Not useless as long as L(XM1)/L(M) is not empty, though now it 
takes more effort to get an instance of an invalid input.
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(original FSM)

1 3M:

c

cb

a

2

(a mutated M obtained by bypassing state 2)

1 3XM1:

c

b

a



Limitation of regular expressions

• Consider P(String s) where s must be an HTML 
document.

• An HTML document is a sequence of elements, 
where each element E starts with <E> and ends with 
</E>.

• Unfortunately, such a pattern cannot be expressed 
by a regular expression, essentially because regular 
expressions cannot count.

• We will look at a more expressive way to express 
string constraint, namely Context Free Grammar 
(CFG). 17



Context Free Grammar

A context free grammar (CFG) consists of:
• a set of symbols called terminals.
• a set of symbols called non-terminals; one of it is 

special, called the “start symbol”.
• a set of production rules. Each has the form  N 
® Z, where N is a non-terminal and Z is a 
sequence of symbols.
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It describes a language whose sentences are built from the CFG’s
terminals.
In A&O, CFG is also called Backus-Naur Form (BNF).



Example
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S ® Brace | Curly  |  e
Brace  ® “(“ S “)” S
Curly   ® “{“ S “}” S

• Examples of sentences allowed by this grammar are: 

”()”     ”{()} {}”

• Mismatched braces/curlies are rejected. E.g. “( } )” is not a 
sentence accepted by this grammar. 

With S as the start symbol



Extra notation for production rule

• A rule like A ® a(B|C)d  is seen as a short hand for a 
set of production rules:

A ® aBd
A ® aCd

• People often use extended BNF  e.g. : 
Brace  ® ( “(“ S “)”  )*

20



Deriving valid strings
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S ® Brace | Curly  |  e
Brace  ® “(“ S “)” S
Curly   ® “{“ S “}” S

A derivation is a series of expansion of the grammar that result 
in a sequence of terminal symbols. It follows that the sequence is 
a valid sentence of the grammar. We can use this to generate 
valid sentences. Example :

S ® Brace
® ( S ) S
® (  e )  S
® (  e ) e



Let’s first name the rules
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Name Prod. rule
RSB S   ® Brace 
RSC S   ® Curly 
RSE S  ® e
RB Brace  ® “(“ S “)” S 
RC Curly   ® “{“ S “}” S 



Derivation tree (instead of sequence)
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A derivation sequence of “( )”:
S ® Brace
® ( S ) S
® (  e )  S
® (  e ) e

S

Brace

( S ) S

e e

A derivation can also be described by a
derivation tree such as above. Given such
a tree, you can reconstruct what the
derived sentence is.

RSE

RB

RSB

RSE

Name Prod. rule

RSB S   ® Brace 

RSC S   ® Curly 

RSE S  ® e

RB Brace  ® “(“ S “)” S 

RC Curly   ® “{“ S “}” S 

The derivation 
tree of “( )”:



One more example
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S

Brace

( S     ) S

e

Curly

{ S     } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

Name Prod. rule

RSB S   ® Brace 

RSC S   ® Curly 

RSE S  ® e

RB Brace  ® “(“ S “)” S 

RC Curly   ® “{“ S “}” S 

The derivation tree of “( {  } )”:

producing “( {  } )”



Generating valid/invalid strings through 
derivation

• Imagine a program P(s) where s is a string whose format has 
to satisfy a context free grammar G.

• Valid inputs can be generated by first generating derivation 
trees for G, e.g. randomly or exhaustively up to a certain 
depth.

• A negative/invalid input can be generated e.g. by generating a 
derivation tree from a mutated G’, where we deliberately 
change one of G’s production rule. Note however, that this 
may produce a sentence t that turns out to be in L(G). It is 
hard to know this upfront.

• Still to answer: a concept of coverage over G.

25



We can see...

• We can see which non-terminals 
and terminals are produced by the 
derivation.

• We can see which rules were used.
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S

Brace

( S     ) S

e

Curly

{ S     } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC



CFG/BNF coverage

• (C5.29/2nd Ed. C9.31) TR contains each terminal 
symbol from the given grammar G.

• (C5.30/2nd Ed. C9.32) TR contains each production 
rule in G.

• Production rule coverage subsumes terminal 
coverage; but both are usually too weak. For 
example, the single test case from the previous slide 
covers all production rules of its grammar.

• Pair-wise and k-wise rule coverage
• Rule-rule coverage

27



Pair-wise rule coverage

• Consider a CFG G.
• A derivation tree t of G covers  

covers a pair of production rules 
<R1;R2> if the pair appears as two 
consecutive arrows in in t. (note the 
order).

• A set T of derivation trees gives full 
pair-wise rule coverage if every 
feasible pair of rules <R1;R2> is 
covered by some t in T.

• Analogously we can define k-wise 
rule coverage.
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S

Brace

( S     ) S

e

Curly

{ S     } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC



Example of covering rule-pairs
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S

Brace

( S     ) S

e

Curly

{ S     } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

covers the 1xpair <RSB;RB>

covers 2x pairs: <RB;RSC> 
and <RB;RSE>

covers 1x pair: <RSC;RC>

covers 1xpair: <RC;RSE>

The rule pairs covered by this single derivation:



Feasible pairs

• Only feasible pairs count. 
• Let R1 = U ® Z1 and R2 = V ® Z2, where Z1 and Z2 are sequences of 

symbols that may contain a mix of terminals and non-terminals. Note that 
U and V must be a single terminal.

• The pair <R1;R2> is feasible if there exists a derivation tree where R2 is 
used right after R1. This is the case if and only R1 is reachable from the 
start symbol, and if V appears in Z1.
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Name Prod. rule Feasible rule-pairs

RSB S   ® Brace <RSB;RB>

RSC S   ® Curly <RSC;RC> 

RSE S  ® e

RB Brace  ® “(“ S “)” S <RB;RSB>, <RB;RSC>, <RB;RSE>

RC Curly   ® “{“ S “}” S <RC;RSB>, <RC;RSC>, <RC,RSE>



Example
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Name Prod. rule Feasible rule-
pairs

RSB S   ® Brace <RSB;RB>

RSC S   ® Curly <RSC;RC> 

RSE S  ® e

RB Brace  ®
“(“ S “)” S 

<RB;RSB>, 
<RB;RSC>, 
<RB;RSE>

RC Curly   ®
“{“ S “}” S 

<RC;RSB>, 
<RC;RSC>, 
<RC,RSE>

S

Brace

( S     ) S

e

Curly

{ S     } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

S

Brace

( S     ) S

e

Brace

( S     ) S

e

e

RSE

RSERSE

RB

RB

RSB

RSB

These two derivations cover all rule-
pairs, except <RC;RSB> and 
<RC;RSC>. Exercise: add few more 
derivations to get full pair-wise rule 
coverage. 



Position dependent expansion

• Note that there are two non-terminals in the rule RB (two S’) 
which can be expanded in different ways, e.g. the first S can 
be expanded with RSB while the second with RSC.

• Pair-wise rule coverage cannot differentiate in which position 
the second component of the pair is applied.

32

Name Prod. rule Feasible rule-pairs
RB Brace  ® “(“ S “)” S <RB;RSB>, <RB;RSC>, <RB;RSE>

RSB S   ® Brace <RSB;RB>

RSC S   ® Curly <RSC;RC> 

RSE S  ® e



Rule-position-rule combination

• Let N be a non-terminal. Define: alts(N) = the set of N’s 
production rules. E.g. alts(S) = { RSB, RSC, RSE }. alts(Brace) = { 
RB }.

• Let R1 and R2 be production rules of a grammar G, R1 = A ➝ z
and and N is the kth symbol in z. The tuple <R1;k;R2> is a Rule-
position-rule combination of G if R2 ∊ alts(N).
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Name Prod. rule rule-pos-rule combs.
RB Brace  ® “(“ S “)” S <RB;1;RSB> <RB;1;RSC>  <RB;1;RSE>

<RB;3;RSB> <RB;3;RSC>  <RB;3;RSE>
RSB S   ® Brace <RSB;0;RB>

RSC S   ® Curly <RSC;0;RC>

RSE S  ® e -



Covering RPR
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S

Brace

( S     ) S

e

Curly

{ S     } S

e

e

RSE

RSERSE

RB

RC

RSB

RSC

Name Prod. rule RPRs

RB Brace  
®

“(“ S “)” S 

<RB;1;RSB> <RB;1;RSC>  
<RB;1;RSE>

<RB;3;RSB> <RB;3;RSC>  
<RB;3;RSE>

RSB S   ® Brace <RSB;0;RB>

RSC S   ® Curly <RSC;0;RC>

RSE S  ® e -
A derivation tree t covers an RPR <R1 ; k ; R2> if (1) an 
arrow labelled by R1 appears in t, and (2): let V be the 
target node of this arrow; R2 appears as the outgoing 
arrow of the k-th symbol of V.
As an example, the RPRs covered by the tree to the 
left are marked blue (those for <RC;k;..> are not 
shown).



Each rule-rule coverage

Each Rule-Rule Coverage (ERRC) over a grammar G: 
the TR consists of  all RPRs in G.
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Name Prod. rule RPRs
RB Brace  ® “(“ S “)” S <RB;1;RSB> <RB;1;RSC>  <RB;1;RSE>

<RB;3;RSB> <RB;3;RSC>  <RB;3;RSE>

RC Curly  ® “{“ S “}” S <RC;1;RSB> <RC;1;RSC>  <RC;1;RSE>
<RC;3;RSB> <RC;3;RSC>  <RC;3;RSE>

RSB S   ® Brace <RSB;0;RB>

RSC S   ® Curly <RSC;0;RC>

RSE S  ® e -



Example
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Nam
e

Prod. 
rule

rule-pairs RPRs

RSB S   ®
Brace 

<RSB;RB> <RSB;0;RB>

RSC S   ®
Curly 

<RSC;RC> <RSC;0;RC>

RSE S  ® e

RB Brace  
®

“(“ S “)” S 

<RB;RSB>
<RB;RSC> 
<RB;RSE>

<RB;1;RSB> 
<RB;1;RSC>  
<RB;1;RSE>
<RB;3;RSB> 
<RB;3;RSC>  
<RB;3;RSE>

RC Curly   
®

“{“ S “}” S 

<RC;RSB> 
<RC;RSC> 
<RC,RSE>

<RC;1;RSB> 
<RC;1;RSC>  
<RC;1;RSE>
<RC;3;RSB> 
<RC;3;RSC>  
<RC;3;RSE

S

Brace

( S     ) S

e

Curly

{ S     } S

e

e
RSE

RSERSE

RB

RC

RSB

RSC

S

Brace

( S     ) S

e

Brace

( S     ) S

e

e
RSE

RSERSE

RB

RB

RSB

RSB

(blue are covered by the two test cases 
on the left)



Test Case size

In the previous example, due to the recursion in the grammar it 
is actually possible to cover all rule-pairs, and even to cover all 
RPRs with just a single test case; but you will end up with a one 
relatively large and complex test case.
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The size of your test set (# test cases) matters, but so 
does the size of each test case. “Smaller” test cases 
are easier to understand, and if a bug is revealed, 

they are easier to debug.



Rule vector combination

Let R = A ➝ z be a rule of a grammar G. A vector <R;k1;R1, ... 
,kn;Rn> is a rule vector combination of G, if 0≤ki<#z and Ri ∈
alts(𝑧"!). We assume k1... kn to be increasing in their order.
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Name Prod. rule rule vector combs.
RB Brace  ®

“(“ S “)” S 
<RB;1;RSB;3;RSB>
<RB;1;RSB;3;RSC>
<RB;1;RSB;3;RSE>

<RB;1;RSC;3;RSB>
<RB;1;RSC;3;RSC>
<RB;1;RSC;3;RSE>

<RB;1;RSE;3;RSB>
<RB;1;RSE;3;RSC>
<RB;1;RSE;3;RSE>

RSB S   ®
Brace 

<RSB;0;RB>

RSC S   ® Curly <RSC;0;RC>

RSE S  ® e -



Covering a rule vector

39

S

Brace

( S     ) S

e

Curly

{ S     } S

e

e
RSE

RSERSE

RB

RC

RSB

RSC

A derivation tree t covers a rule vector <R;k1;R1, 
... ,kn;Rn> if R appears as an arrow in the tree, 
pointing to a node V whose outgoing arrows are 
R1 ... Rn  (in the same order).

Example: the tree to the left covers the rule 
vector <RB; 1 ; RSC ; 3 ; RSE>

And also: <RC; 1 ; RSE ; 3 ; RSE>



All-rule-rule coverage

All Rule-Rule Coverage (ARRC) over a grammar G: for 
every rule R TR includes every rule vector combinations  

of R. 
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Name Prod. rule rule vector combs.

RB Brace  ®
“(“ S “)” S 

<RB;1;RSB;3;RSB>
<RB;1;RSB;3;RSC>
<RB;1;RSB;3;RSE>

<RB;1;RSC;3;RSB>
<RB;1;RSC;3;RSC>
<RB;1;RSC;3;RSE>

<RB;1;RSE;3;RSB>
<RB;1;REC;3;RSC>
<RB;1;RSE;3;RSE>

RC Curly  ®
“{“ S “}” S 

Analogous as RB, RC also has 9 rule vector combinations.

RSB S   ® Brace <RSB;0;RB>

RSC S   ® Curly <RSC;0;RC>

RSE S  ® e -



Subsumption
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ARRC

ERRC

pair-wise rule coverage

production coverage

terminal coverage

3-wise rule coverage

Assuming CF grammars where derivations 
all have length at least two.


