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Plan

• Data flow driven testing
• Integration testing
• Testing inter-class interactions in an OO setup
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Note: an important criticism to control-flow based testing (covered in the lecture
on graph-based testing) is that it ignores how data actually flows through the
control flows, and we cannot distinguish between which data flows might be
more critical to test. Data-flow based testing tries to address this shortcoming.
Later, it also gives us a useful instrument to handle integration level testing.

OO poses another kind of challenges for testing, in particular with respect to
error prone patterns due to inheritance and dynamic binding. We will also
discuss how to address such situations; we will build our approach based on
the previously discussed integration testing approach.



Basic idea

• Imagine the test set (leaving out the oracles):  { P(-1,-1) , P1(0,0) 
} . This two tests would give us full edge coverage.

• However, this ignores data flow between each branch of the first 
“if” to each branch of the second “if”. Each data flow triggers 
different behavior, and arguably should have been tested.

• Arguably, dataflow is what actually determines the behavior of a 
program, rather than control flow. From this perspective, 
dataflow based testing is more complete than control flow 
based. 3

P(x,y)  {  if (y<0)  y = -y       else y = 1 ;
if (x<0)  x = -x + y else x = 0  ; 
return x }



Data-flow based approach
(sec. 2.2.2/ 2nd Ed: 7.2.3)

• Data flow graph : CFG, where the nodes and edges are 
decorated with information about the variables used and 
defined by each node/edge.

• In my examples I avoid decorating on the edges.
• Some subtlety on the granularity of the nodes/edges à later.

4

P(x,y)  {  if (y<0)  y = -y  
if (x<0)  x = 0
return x+y }

n0

n2

n3

use  = Æ
def  = { x,y }

use = {y}
def  = {y}

n4

n5

use = {y}
def  = Æ

use  = {x,y}
def  = {retval}

use = Æ
def  ={x}

n1

use = {x}
def  = Æ



Terminologies

• Def/use graph: see above. In general, def/use labels are 
allowed on the edges as well.

• A path p =  [i,...,k] is def-clear wrt v iff v Ï def(j) and v Ï
def(e) for all nodes j and edges e in p between i and k.

• A du-path wrt v = a simple and def-clear path from i to k with 
vÎdef(i) and vÎuse(k).
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du-paths wrt x:
013, 0123
0134, 01234, 
0135, 01235
45

Not du-path wrt x:
01345 (not def-clear)

n0

n2

n3

use  = Æ
def  = { x,y }

use = {y}
def  = {y}

n4

n5

use = {y}
def  = Æ

use  = {x,y}
def  = {retval}

use = {x}
def  ={x}

n1

use = {x}
def  = Æ



Block’s granularity

• When a node both defines and uses the same variable x, we will 
assume that it uses x first, then assigns to it, as in 

x = ... x ... 
• If this assumption is broken (middle example) à split the node. Else 

this will conflict the intention of your definition of du-path.
• Check 2.3.2 (2nd Ed. 7.3.2) on how to map a source code to a 

def/use graph.
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x = x+1 
x = 0
y = x+1 ; 

x = 0
y = x+1 

n
use = {x}
def   = { x }

n
use = {x}
def  = { x,y }

n1
usen1 = {}
defn1 = { x}

n2
usen2 = {x}
defn2 = { y}



Data-flow based coverage
(Rapps-Weyuker 1985, Frankl-Weyuker 1988)

• Def-path set du(i,v): the set of all du-paths wrt v, that starts at i.
• Def-pair set du(i,j,v): the set of all du-paths wrt v, that starts at i, 

and ends at j.
• Same concept of touring.
• (C 2.9/2nd Ed. C7.15, All Defs Covrg, ADC) For each def-path set S = 

du(i,v), TR includes at least one member of S.
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n1 n2 n3

use = Æ
def  = { x}

use = {x}
def ={x}

n4

use = {x}
def =Æ

use  ={x}
def  = Æ



Data-flow based coverage

• (C 2.10/2nd Ed. C7.16, All Uses Covrg, AUC) For each def-pair set 
S = du(i,j,v), TR includes at least one member of S.

• (C2.11/2nd Ed. C7.17, All du-paths Covrg, ADUPC) For each def-
pair set S = du(i,j,v), TR includes all members of S.

• Note: the above example only has one variable, namely x; 
consequently all TRs above only concern x. 
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ADC TR: 
12, 
234

AUC TR: 
12
23 , 232, 
234

ADUC TR:
12
23 , 232, 
234, 24

n1 n2 n3

use = Æ
def  = { x }

use = {x}
def ={x}

n4

use = {x}
def =Æ

use  ={x}
def  = Æ



Example AUC vs PPC

• 8 prime paths; we need 8 tests to cover them all
• There are at least 6 def-use-pair sets: du(0,1,x), du(1,8,x), du(2,8,x), du(0,4,y), 

du(4,8,y), du(5,8,y). You can cover them all (AUC) with 2 tests.
Note-1: covering the above def-use pairs will also cover the remaining du-pairs. 
Note-2: on the down side, you may miss covering node-7. 9
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if x>0 then x = 2x else x=0
if y>0 then y = 2y else y=0
if x*y> 0 then return x+y else return 0

def = {x,y}

use = {x}
def = {x}

def = {x} def = {y}

use = {y}
def = {y} use = {x,y}

0

use = {x} use = {y}

use = {x,y}



Overview of subsumption relations

• PPC Ê ADUPC,  because every simple path is a subpath of some 
prime path. 

• AUC Ê EC .... under the following assumptions:
– there is at least one def
– every def reaches at least one use.
– every use (of v) is preceded by a def.
– every edge uses a variable  (note: not the case in “if e then S” without else)
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complete path covrg

prime path covrg

edge-pair covrg

edge covrg

node covrg

ADUPC

AUC

ADC



Summary

• We learned another set of white-box test-coverage 
criteria, namely data-flow based coverage.

• An alternative to prime-path-based testing, if the 
latter becomes too expensive, while being more 
aware of the semantic of the program under test.
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Integration Test

• Integration test: to test if a composition of program 
units  works correctly.

• “Hidden” in Section 2.4 (2nd Ed. 7.4) about using 
design elements (e.g. your UML models) as your 
coverage criterion. 2.4.1 (2nd Ed. 7.4 p146) says: 
“testing software based on design elements is usually 
associated with integration testing”.

• 2.4.2 (2nd Ed. 7.4.2) is actually more about integration 
testing rather than design-element-based testing.

12



Integration Test, example
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Class A Server

Class A Mock 
Server

Class A Actual
Server

Design:

During unit 
test of A :

During integration 
test of A :

We can test the integration between A and the Server by re-running the unit test of 
A, but replacing the mock server with a real server. Question: what should we use 

to determine the adequacy of this test?



Data flow approach to Integration Test 
(2.4.2/2nd Ed. 7.4.2)

• Imagine a method f from module A uses a method/API g from 
module B. How to test such a composition?

• Idea 1: cover all edges à does not capture “integration”.
• Idea 2: cover all prime paths in the combined CFG of both à

blows up. 
• Idea 3: focus on the flow of the “coupling data” around the call 

point.
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f (a)  {   ...  g(e) ...         }
g(x) { ... }

module Bmodule A



Terminology

• caller, callee, actual parameters,  formal parameters
• parameter coupling, shared variable coupling, 

external device coupling
• More general concept: coupling variable  à a 

‘variable’ defined in one ‘unit’, and used in the other. 
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(1) a = ...  ;b = ...

(3)  a = ...(2)  a>b

(4) b = g(a,b)

(1) g(x,y)

(2) x<=y

(3) x==y

(4) return ...

(5) return ...

f  g



Coupling du-path
(Jin-Offutt, 1998)

• (Def 2.40/2nd Ed. 7.39) Last-def of v : set of nodes defining v, 
from which there is a def-clear path (wrt v) through the call-site, 
to a use in the other unit.

• Can be at the caller or callee! Example: b@f1, a@f3, 
g.return@g4, g.return@g5.

• (Def 2.41/2nd Ed. 7.40) First-use (of v) E.g.: b@g2, g.return@f4
• Coupling du-path of v is a path from v’s last-def to its first-use.16

(1) a = ...  ;b = ...

(3)  a = ...(2)  a>b

(4) b = g(a,b)

(1) g(x,y)

(2) x<=y

(3) x==y

(4) return ...

(5) return ...

f  
g



Note on the first use at the callee

• When you just pass a variable as a in g(a,b), it makes 
sense to define g’s first use to be the first time g uses 
the parameter (location g.2 in the previous example).

• But when you pass a complex expression like 
g(a+b,0), things become more obscure. We will 
define g’s first uses of a and b to be the first node of 
g that uses, in this example, its first formal 
parameter. So, in this example it is g.2.

17



Integration Test-Requirement

• (ACDC)  All Coupling Defs Cov. :  for every last-def d of each 
coupling var v, TR includes one coupling du-path starting from d.

• (ACUC) All Coupling Uses Cov. : for every last-def d and first-use u 
of v, TR includes one couple du-path from d to u.
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Coupling vars:  
a, b, g.return

Coupling du-paths :  
a:  [f1,f2,f4,g1,g2] 

[f3,f4,g1,g2]
b: [f1,f2,f4,g1,g2] 

[f1,f2,f3,f4,g1,g2]
g.return: [g4,f4]

[g5,f4]

(1) a = ...  ;b = ...

(3)  a = ...(2)  a>b

(4) b = g(a,b)

(1) g(x,y)

(2) x<=y

(3) x==y

(4) return ...

(5) return ...

f  g



The next slides are based on A&O Ch 7.1. 
Unfortunately, this chapter does not appear 

in the 2nd Ed.
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OO is powerful, but also comes new 
sources of concerns

• A function behaves “cleanly”. In contrast, a procedure 
may have side effects.

• An OO program is more complicated:
– access control  (priv, pub, default, protected, ...)
– side effects on instance variables and static 

variables
– inheritance:
• dynamic binding  
• interaction through inheritance
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Inheritance-related error prone 
programming patterns

• A&O call them inheritance-related “anomalies”: use 
of error prone programming patterns. AO list 9 
anomalies related to inheritance and dynamic 
binding:
– Inconsistent Type Use (ITU)
– State definition anomaly (SDA) ,   ...  7 more

• A&O also implicitly discuss two more: deep yoyo and 
data-flow anomaly.
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Inconsistent Type Use (ITU) anomaly
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List                            
+insertAt(i,x)
+removeAt(i)

Stack        
+push(x)
+pop()

This is a quite common subclassing pattern. However note that in OO a Stack s can also
be used as a List, which leads to an error prone situation, since a stack should not allow
elements to be inserted at or removed from an arbitrary position. But a user method
may not be aware that s is actually a stack, and call insertAt and removeAt! The class
Stack should have overridden the methods, and e.g. make them throw an illegal
operation exception.



State Definition Anomaly (SDA)

ScalableItem directly manipulates the part of its state which it inherits from UnitItem
(the assignment “scale=s”), rather than doing so through UnitItem’s method. This
error prone as it may unwittingly break UnitItem’s class invariant.
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ScalableItem
+setScale(s) { scale  = s }

UnitItem
scale = 1
+price() { return p*scale } 

The class maintains the class 
invariant: scale >= 1 



State definition inconsistency due to 
state variable hiding (SDIH)

The class OnSaleItem declares it own “price” field, which then shadows the original
“price” field inherited from the class Item. Notice that OnSaleItem does not override
setPrice, which uses “price” in its calculation. This leads to an error prone situation.
When we have an instance o of OnSaleItem, and we call o.price(), in Java the method
price() would use the old price rather than the newly declared price.
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Item
price
tax
+price() { return price * (1 + tax) }
+setPrice(p) { price = p }

OnSaleItem
price
+sale(p) { price = 0.8 p }



State Visibility Anomaly (SVA)
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A            
- x
+ incr()

B            C              
+ incr2()

C’s needs a method incr2 that would increase x by 2. However it can’t get to x,
because it is private to A. It can however calls incr() twice. So far it is ok. Now imagine
someone else changes B by overriding incr. This suddenly changes the behavior of C;
as it now calls B’s incr instead.



Anomalous Construction Behavior 1 (ACB1)

In the above design, Item’s constructor calls reset(). ExpensiveItem overrides reset().
So far so good. But then, ExpensiveItem’s constructor calls Item’s constructor. This
leads to an error prone situation. The latter would then call reset(). In Java, it will call
the new reset() rather than the old one (which may or may not be the intended
behavior).
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Item
price
tax 
Item() { reset() ; tax=0 }
reset() { price = 1 }

ExpensiveItem
baseprice
ExpensiveItem() { super() ; baseprice=10 }
reset() { price = baseprice }



Check the remaining anomalies 
yourself

• State Defined Incorrectly (SDI)
• Indirect Inconsistent State Definition (IISD)
• Anomalous Construction Behavior 2 (ACB2)
• Incomplete Construction (IC)
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Error prone situations due to 
inheritance

• In previous examples we have seen how inheritance 
can change the behavior of a class, and can create 
error prone situations. 

• These are not necessarily errors (could be the 
intended behavior), but there are definitely needs to 
verify them.

• Also notice that methods from subclasses and 
superclasses can implicitly call each other, called 
“yoyo” effect. 
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The call graph of d() in A,B,C
yoyo graph, Alexander-Offut 2000
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C      
+j () { k() }

B      
+h () { i() ...} 
+ i() { super.i() ...}
+k() { }

A       
+d () { g() }
+g () { h() }
+h () { i() }
+i () { j() }
+j () {}

C j()

B h() i()

A d() j()g() h() i()

A d() j()g() h() i()

B h() i() k()

A d() j()g() h() i()



Testing OO programs 

• Of course: every method/class should be unit-tested.
• However, previously mentioned inheritance-related error 

prone situations happen at the integration level when a 
module uses a class C, but it might get a subclass of C at the 
runtime.

• We can test this through the previously discussed integration 
test approach, and enhance it to cover for inheritance as well.

30



Inter-class testing 1

Testing the usage of class A by class E : treat this as an
integration testing problem à we already have a
solution (data-flow based integration test), but
additionally now we need to quantify over the
subclasses of A, due to dynamic binding (the exact m
called in f depends on the type of actual type of o ).
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class E {
f(x) {  A o = Factory(x ) ;     

...
y = o.m(...)    
….} }

class A 
+ m(...)

class B 
+ m(...)



Inter-class testing 2

A class E2 that call methods of A multiple times within the same
method (f). This may create additional dynamic: the behavior of
o.m() may affect o.k() through side effect on o’s fields. Some of
this behavior could be critical. We will extend the previous
approach of integration testing to also cover this kind of cross-
method interactions through objects’ state.

class E2 {
f(x) {   A o = Factory(x ) ;   

…  
y = o.m(...)                         
...
z = o.k(...)   …}

class A 
+ m(...)
+ k(..)

class B 
+ m(...)



Terminology

• f itself  is here called the coupling method.
• The field o.x is “indirectly” defined (i-def) if the field is 

updated in some o.method() called by f.
Analogously, we define i-use. 

• Focus on coupling within f due to fields o.x indirectly defined 
by o.m(), and used by o.k(); o.m() is then called antecedent of 
this coupling and o.k() the consequent. 
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f(x) {   (1)  A o = Factory(x ) ; 
(2)  y = o.m(..) ;                  
...
(3)  z = o.k(..)  }



Terminology

• Coupling sequence c: a pair of antecedent m, and
consequence n, such that there is at least 1x coupling path: a
def-clear path from m to k with respect to some field o.x
defined in m and used in k.

• o is called the context var of the coupling sequence c
• o.x is called a coupling var (of c)
• The set of all coupling vars of c à coupling set.
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f(x) {  (1)  A o = Factory(x ) ; 
(2)  y= o.m(..) ;                  
...
(3)  z = o.k(..)                     }



Coupling Sequence, example
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f(x) {  (1)  A o = Factory(x ) ;
… 
(2)  y= o.m(..) ;                  
...
(3)  z = o.k(..)                     

}

class A {
int  x

m(i) {
if (i==0)  this.x  =  0
else this.x = 2*i
return this.x   }

k(i) { 
if (this.x == 0) …

}  
}

• Dashed-blue line: a coupling path 𝜎 over o.x from a yellow in m() to the blue in n(), 
assuming the path is def-clear on o.x in between.

• 2 à 3 in f(x) forms a coupling sequence if there is such a coupling path.



Example with multiple coupling 
sequences
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f2(x) {  (1)  A o = Factory(x ) ; 
(2)  o.m(..)     
....                
(3)  o.k(..)
...
(4)  o.n(..)  ...                }

idef = { o.x , o.y }

iuse = { o.x, o.y }   idef = { o.x }

iuse = { o.x , o.y }   idef = { o.x }

Coupling 
sequence

Coupling 
vars

note

2 ➝ 3 o.x , o.y Assuming there are def. clear paths between the 
idef of o.x , o.y in 2 and their iuse in 3

3 ➝ 4 o.x Assuming there is a def. clear path between the 
idef of o.x in 3 and its iuse in 4

2 ➝ 4 o.y Assuming there is no def. clear path between the 
idef of o.x in 2 and its iuse in 4 
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With polymorphism the situation will now 
look like this...

Notice how different types of the context o may give different coupling variables 
as well as coupling paths.



Binding triple

Each coupling sequence c induces one or more binding
“triples”; each specifying the coupling variables for
various types of the context-var o. For example, these
could be the binding triples of the coupling sequence
cs1 = o.m()@2® o.k()@3 ;
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A

B1

B2

coupling 
seq

type of o coupling
vars

cs1
A { o.v }

B1 { o.u }

B2 { o.u , o.v }

binding triples of cs1

f2(x) {  (1)  A o = Factory(x ) ; 
(2)  o.m(..)     
....                
(3)  o.k(..)
...
(4)  o.n(..)  ...                }



Inter-class coverage test criteria

(Def 7.53) All-Coupling-Sequences (ACS): for every coupling
sequence cs in the coupling method f , TR includes at least one
coupling path of cs. à ignore polymorphism.
In the above example, the TR would consist of two paths, one for
cs1 and one for cs2. 39

A

B1

B2

coupling 
seq. in f

type(o) coupling
vars

coupling paths

cs1
A { o.v } o.v :  { 𝜎1 }

B1 { o.u } o.u : {𝜏1, 𝜏2 }

B2 { o.u , o.v } o.u : { 𝜋1 } , o.v :{𝜋2 , 𝜋3}

cs2 B2 { o.u , o.v } o.u : { 𝜌1 } , o.v :{𝜌2}

binding 
triples of c 
= o.m()®
o.n() , 
extended 
with infos
over 
coupling 
paths.

Imagine the following coupling sequences within some method f :



Inter-class coverage test criteria

(Def 7.54) All-Poly-Classes (APC): for every coupling sequence cs,
and every binding triple t of cs, TR includes at least one coupling
path of t. à ignore that cs may have multiple coupling vars.
In the above example, the TR would consist of 3 paths for cs1, and 1
for cs2.
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A

B1

B2

coupling 
seq. in f

type(o) coupling vars coupling paths

cs1
A { o.v } o.v :  { 𝜎1 }

B1 { o.u } o.u : {𝜏1, 𝜏2 }

B2 { o.u , o.v } o.u : { 𝜋1 } , o.v :{𝜋2, 𝜋3 }

cs2 B2 { o.u , o.v } o.u : { 𝜌1 } , o.v :{𝜌2}



Inter-class coverage test criteria

• (Def 7.55) All-Coupling-Defs-Uses (ACDU): for every coupling 
sequence cs and every coupling var v of cs, TR includes at 
least one of v’s coupling path.

• (Def 7.56) All-Poly-Coupling-Defs-Uses (APCDU): for every 
coupling sequence cs and every coupling var v of every 
binding triple of cs, TR includes at least one of v’s coupling 
path. 41

A

B1

B2

coupling 
seq. in f

type(o) coupling
vars

coupling paths

cs1
A { o.v } o.v :  { 𝜎1 }

B1 { o.u } o.u : {𝜏1, 𝜏2 }

B2 { o.u , o.v } o.u : { 𝜋1 } , o.v :{𝜋2 , 𝜋3}

cs2 B2 { o.u , o.v } o.u : { 𝜌1 } , o.v :{𝜌2}


