
Graph-based Test Coverage
(A&O Ch. 1, 2.1 – 2.3)

(2nd Ed: 2,3,5,7.1 – 7.3)

Course Software Testing & Verification
2024/25

Wishnu Prasetya & Gabriele Keller

Plan

• The concept of “test coverage”
• Graph-based coverage

2

Note: graph-based coverage is probably the most well known concept of coverage after line coverage.
It is a good foundation towards more advanced concept of coverage.

Are we good now?

• So now you know how to write tests (at least,
unit tests).

• Next, you came up with a bunch of tests.
• Question: are these tests “enough” ?

3

Test Coverage

Doing more tests improves the completeness of our
testing, but at some point we have to stop (e.g. we run
out of money). Let’s try to provide a measure:

Test coverage: a measure to compare the relative
completeness of our testing (e.g. to say that a “test set”

T1 is relatively more complete than another set T2).

As a measure, it is quantitative.

4

Simple example: line coverage

• A test-case: another name for a “test”.
• A test-set (Def 1.18/2nd Ed 3.20): is just a set of test-cases.
• We can for example require that the test set of foo ”covers” every

line in the code of foo. (a test set covers a line, if there is one test
case whose execution visits the line)

5

foo(x,y) {
while (x>y)

x=x-y ;
if (x<y)

return -1
else

return x }

Simple example: line coverage

6

As a quantitative measure we can talk about:
• Which lines are covered
• How many lines are covered
• Percentage of the lines covered

foo(x,y) {
while (x>y)

x=x-y ;
if (x<y)

return -1
else

return x }

Is it a good measure?

7

foo(x,y) { while (x>y) x=x-y ; if (x<y) return -1 else return x }

A less trivial example: a test set with full line
coverage may miss the scenario where the loop
is immediately skipped.

A single test will give full line coverage, but this obviously misses testing
some logic of foo().

foo(x,y) {
while (x>y)

x=x-y ;
if (x<y)

return -1
else

return x }

Graph-based test coverage

• Abstractly, a program is a set of branches and branching
points. An execution flows through these branches, to form a
path through the program.

• This can be captured by a so called Control Flow Graph (CFG,
Legard 1970), such as the one above.

• AO gives you a set of graph-based coverage concepts; most
are stronger than line coverage. 8

0 2
4

3

1

foo(x,y) { while (x>y) x=x-y ; if (x<y) return -1 else return x }

0 1 2 3 4

Graph terminology

• (Sec 2.1/2nd Ed 7.1) A graph is described by
(N,N0,Nf,E). E is a subset of N×N.
– directed, for now: no labels, no multi-edges.

• A path p is a sequence of nodes [n0, n1, ... , nk]
– non-empty
– each consecutive pair is an edge in E

• length of p = #edges in p = natural length of p – 1
9

CFG and Test Path

• Control Flow Graph (CFG) is a graph representing a program in terms of how it
transitions from one statement to another. We furthermore assume:
– There is only one initial node.
– Any execution ends in a terminal node (this implies that if a program can

terminates by throwing an exception, a terminal node should be added to
model this).

• A test-path (Def. 2.31) is a path in the CFG representing the execution of a test
case. It should therefore starts at the CFG’s initial node, and ends in a
terminal node of the CFG. 10

0 2
4

3

1

foo(x,y) { while (x>y) x=x-y ; if (x<y) return -1 else return x }

0 1 2 3 4

CFG of foo:

More terminology

• O&A usually define “coverage” with respect to a “TR”
= a set of test requirements.

• For example:

TR = { “cover line k” | k is a line in P’s source }

Or simply: TR = { k | k is a line in P’s source }, and
implicitly we mean to “cover” every k.

• Def. 1.21/2nd Ed 5.24. A coverage criterion = a TR to
fulfill/cover. 11

CFG-based TR

• A path can be used to express a test-requirement. For
example we can specify as our TR:

TR = { [0,2], [1,2], [3] , [4] }

• But what does “covering” a path e.g. [0,2] mean? (there are
several plausible definitions btw)

12

0 2
4

3

1

Paths as test requirements
• Some plausible definitions of “test path p covers a required

path q” :
1. all nodes in q appear in p.
2. q is a subpath of p (p can be written as prefix ++ q ++

suffix, for some prefix and suffix.
3. q is a subsequence of p (there is a way to delete some

elements from p to obtain q).
• Example:

– [1,2] is a subpath of [0,1,2,3]
– [2,4] and [1,3] are not a subpath of [0,1,2,3]
– [1,3] is a subsequence of [0,1,2,3]

• OA use the term “p tours q” = q is a subpath of p = OA’s
default definition of “covering q”. 13

Some basic graph coverage criteria

• (C2.1/2nd Ed. C7.7) Node coverage: the TR is the set
of paths of length 0 in G.

• (C2.2/2nd Ed. C7.8) TR is the set of paths of length at
most 1 in G.
– So, what does this criterion tell?
– Why “at most” ?

• (C2.3/2nd Ed. C7.9) Edge-pair coverage: the TR
contains all paths of length at most 2.

14

Examples

• Consider these examples:

• What do we have to cover in C2.1, C2.2, and C2.3?
• What would be the minimal test set for each?

15

1

2

0

0

2

1

63

5

4

Subsumption

Def 1.24/2nd Ed. 5.29:

A coverage criterion C1 subsumes (stronger than)
C2 iff every test-set that satisfies C1 also satisfies

C2.

16

Examples subsumption

• C2.2 subsumes 2.1 (but not the other way around).
• C2.3 subsumes C2.2 (but not the other way around).

17

1

2

0

0

2

1

63

5

4

Few notes on TR and subsumption

• Consider a TR has N elements, and assume all are feasible:
– There exists a test set with at most N elements that fully

cover this TR.
– There may be a test set with less that N elements that fully

cover the TR.
• Consider two coverage criteria C1 and C2 and C1 does not

subsume C2.
– There exists a program P and a test set for P fulfilling C1

but not C2.
– But keep in mind that there may be a program Q, where

any test set for Q that fulfills C1 would also fulfill C2

18

What if we insists on covering ALL
paths?

19

0

2

1

63

5

4

9

7

8

• Path coverage (to cover all paths in the CFG) in the
strongest graph-based coverage.

• It is challenging: #paths in a CFG may explode.
• Additionally, if the CFG contains a cycle, #paths becomes

unbounded.

McCabe Complexity of a Program

20

The ”cyclomatic complexity” of a program is:
M = E – N + P
M = E – N + 2
🤔…. but what does this represent??

McCabe’s Original Theorem

21
Note that this CFG does not actually form a strongly connected graph

Linearly Independent Circuits

22

0

12

Circuit: a path that starts and ends in the same node, and never
repeats an edge.

Examples: [0,1,2,0] and [1,2,0,1]

A set of circuits is linearly independent if each circuit has an edge
that others do not have.

linerarly independent circuits = 1

Note that in a cycle like this #edge = #node

So, #lics = E – N + 1 ?

Some note: circuit vs simple path

23

0

12

• A circuit does not pass the same edge twice.
• A simple path does not pass the same node twice, except the start

and end node.

• [0,1,2,0] and [0,3,0] are circuits. They are also (cyclic) simple paths.

• [0,3,0,1,2,0] is also a circuit, but not a simple path.

3

Linearly Independent Circuits

24

0

12

linerarly
independent
circuits = 1

0

12

3

• Adding new nodes/edges, but we add more
edges than nodes à this introduces new
cycles.

• In the above examples:
• we add one more cycle
• # linearly independent circuits is now 2

0

12

0

12

Example

25

1

32

0

4
5

6

7

Original CFG is not a
strongly connected
component.

1

32

0

4
5

6

7

Add one fake edge to
make it strongly connected

• # linerarly independent circuits = 3
• Can you give them?
• #lics = E – N + 1 (McCabe theorem)
• E = number of edges in the

extended CFG = original E + 1

• So, #lics = Eoriginal – N + 2

Relation with test coverage

26

1

32

0

4
5

6

7

Aim to cover at least all independent “circuits” in
your program:
• [0,1,2,4,6,7,0] , [0,1,2,4,5,6,7,0], [1,2,3,1]
• You can remove the fake edge from the TR.

Observations:
• The paths in McCabe TR are linearly

independent, so each has something unique.
• McCabe number is not the same as #paths in

the program. The later can be exponential or
unbounded. #McCabe TR grows much slower.

#McCabe-TR growth

27

#McCabe-TR = #independent paths = 3
#test cases needed to cover all edges = 2
#test cases needed to cover McCabe = 3

#McCabe-TR = #independent paths = 5
#test cases needed to cover all edges = 2
#test cases needed to cover McCabe = 5

Prime paths coverage

• A prime path is a simple path that is not a subpath of
another simple path.

• A simple path p is a path where every node in p
appears only once, except the first and the last which
are allowed to be the same.

28

1 2

0

3

Another example

29

1 2

0

3

Starting from prime paths

0 [0,1,0] , [0,1,3]

1 [1,0,1] , [1,0,2,3]

2 -

3 -

• (C2.4/2nd Ed. C7.10) PPC: the TR is the set of all
prime paths in G.

• Strong, but still finite.

Few notes on PPC

30

2

0

1

PPC’s TR = { 012, 010, 101 }

We can cover this with just one test path: { 01012 }

Recall: #TR may not reflect the #test cases you need. Example:

Identifying Prime Paths

• A cycle with n nodes generate n cyclic
pps.

• Not always the case that there is a
non-cyclic pp starting from the
program entrance.

• A loop may have multiple entry and
exit nodes.

• There are non-cyclic pps that end in
prev(loop-exit).

• There are non-cyclic pps that start in
next(loop-entry).

31

5

0

2

1

3 4

6

loop-enter +
loop-exit

Identifying the PPCs
AO’s Algorithm

• How long can a prime path be?
• It follows that they can be systematically calculated,

e.g. :
1. “invariant”: maintain a set S of simple but not right-

maximal paths, and T of “right”-maximal simple paths.
2. Repeat: “right-extend” the paths in S; we move them to T

if they become right-maximals.
3. (2) will terminate.
4. Remove members of T which are subpaths of other

members of T.

32

Example

33

5

0

2

1

3 4

6

[0]
[1]
[2]
[3]
[4]
[5]
[6] !

[0, 1]
[0, 2]
[1, 2]
[2, 3]
[2, 4]
[3, 6] !
[4, 6] !
[4, 5]
[5, 4]Red: T, consisting of paths

which become right-maximal.
We also mark :
* à cycle ; definitely a prime path
! à right-maximal, non cycle

[0, 1, 2]
[0, 2, 3]
[0, 2, 4]
[1, 2, 3]
[1, 2, 4]
[2, 3, 6] !
[2, 4, 6] !
[2, 4, 5] !
[4, 5, 4] *
[5, 4, 6] !
[5, 4, 5] *

S :

Example

34

5

0

2

1

3 4

6

[0, 1, 2]
[0, 2, 3]
[0, 2, 4]
[1, 2, 3]
[1, 2, 4]
[2, 3, 6] !
[2, 4, 6] !
[2, 4, 5] !
[4, 5, 4] *
[5, 4, 6] !
[5, 4, 5] *

[0, 1, 2, 3]
[0, 1, 2, 4]
[0, 2, 3, 6] !
[0, 2, 4, 6] !
[0, 2, 4, 5] !
[1, 2, 3, 6] !
[1, 2, 4, 5] !
[1, 2, 4, 6] !

[0, 1, 2, 3, 6] !
[0, 1, 2, 4, 6] !
[0, 1, 2, 4, 5] !

S is now empty;
terminate.

Prime paths =
• all the (*) paths, plus
• non-cyclic right-max simple paths
which are not a subpath of another
right-max simple path.

Unfeasible test requirement

• A test requirement is unfeasible if it turns out that
there is no real execution that can cover it

• For example, we cannot test a Kelvin thermometer
below 0o.

35

Typical unfeasibility in loops

• Some loops always iterate at least once. E.g. above if
a is never empty à prime path 125 is unfeasible.

• (Def 2.37/2nd Ed. 7.36) A test-path p tours q with
sidetrips if all edges in q appear in p, and they appear
in the same order.

36

i = a.length-1 ;
while (i³0) {

if (a[i]==0) break ;
i--

}

21

3

5

123425 does not tour 125, but with
sidetrips it does.

4

Generalizing Graph-based Coverage
Criterion (CC)

• Obviously, sidetrip is weaker that strict touring.
• Every CC we have so far (C2.1, 2.2, 2.3, 2.4, 2.7) can

be thought to be parameterized by the used concept
of “tour”. We can opt to use a weaker “tour”,
suggesting this strategy:
– First try to meet your CC with the strongest

concept of tour.
– If you still have some paths uncovered which you

suspect to be unfeasible, try again with a weaker
touring.

37

Oh, another scenario...

• Often, loops always break in the middle. E.g. above if a always
contain a 0, then 125 is infeasible.

• Notice: e.g. 1235 does not tour 125, not even with sidetrip!
• (Def 2.38/2nd Ed. 7.37) A test-path p tours q with detours if all

nodes in q appear in p, and they appear in the same order (q
is a subsequence of p).

• Weaker than sidetrip.
38

21

3

5

4

i = a.length-1 ;
while (i³0) {

if (a[i]==0) break ;
i--

}

Mapping your program to its CFG
various ways, depending on the purpose

• See Sec. 2.3.1. AO (2nd Ed. 7.3.1) use left; I usually use middle.
• (Sec 2.3.1/2nd Ed. 7.3.1) Define a block a maximum sequence of

“instructions” so that if one instruction is executed, all the others
are always executed as well. Note that this implies:
– a block does not contain a jump or branching instruction, except if it is the

last one
– no instruction except the first one, can be the target of a jump/branching

instruction in the program.
39

P1(x) { if (x==0) { x++ ; return 0 } else return x }

x++ ;
return 0

dummy

return x

x==0 x!=0
x++ ;

return 0

(x==0)

return x
x++

(x==0)

return xreturn 0

Mapping your program to its CFG

40

P2(a) {

for (int i=0; i<a.length ; i++) {

if (a[i]==0) break ;

if (odd a[i]) continue ;

b[i] = a[i] ; a[i] = 0

}

}

Add “end-of-program” as a
virtual node.

3

2

4

1

0

6

5

Discussion: exception

41

P3(...) {
try { File f = openFile(“input”)

x = f.readInt()
y = (Double) 1/x }

catch (Exception e) { y = -1 }
return y

}

Every instruction can potentially throw an exception. Yet representing each instruction
as its own node in our CFG will increase the size of the graph, and thus also the size of
the TR. We can decide to abstract over this, as in the CFG above. But you should be
aware of the loss of information. E.g. when a test set manages to cover the exception
edge 0à1, we are still unsure if we have tested all sources of this exception.

1

10

More discussion

• What to do with dynamic binding ?

• What to do with recursion?

42

f(x) {
if (x£0) return 0
else return f(x-1)

}

register(Course c, Student s) {
if (! c.full()) c.add(s) ;

}

You don’t know ahead which “add”
will be called; it depends on the run-
time type of c. E.g. it may refuse to
add certain type of students. Graph-
based coverage is not strong enough
to express this aspect.

g(x) {
if (x£0) return 0
else { x = g(x-1) ; return x+1 }

}

CFG of recursive programs

43

f(x) {
if (x£0) return 0
else {
r = f(x-1)
return r+1

} <end>

0
x£0

2
return 0

1
call f(x-1)

4
r = retval

return r+1

Constrain: both cycles should be
iterated in equal number of times

3
<end>

Constructing the CFG of a recursive program is more complicated.
Let’s look at two simple examples.

One more example

44

h(x) {
if (x£0) return 0
if (odd(x)) { x = h(x-1) ; return x+1 }
else { x = h(x-2) ; return x+2 }

}

How about this one?

