Some heuristics for deriving invariant

LN sections 6.7, 6.8

Overview

Heuristic 1: “Replace constant with counter” heuristic
Heuristic 2: incrementally building the invariant

Heuristic 3: tail invariant

Other: an example of using invariant to do data refinement

Loop Reduction rule

P=I

{fghl* S {F 17}

| N—g = Q

INg Ci=m;S {*m<C*}
INg= m>0

{*P*} while gdo S {¥Q*

Heuristic “replace constant with counter”

/¢ 0<n ") I

(1) The loop iterates on the
counter up to some upper bound

| :=_O) I’ .= true ; or lower bound.
while i<n do { « Identify this upper/lower
r=r/\ (a[i]=0) © } bound. Suppose this is n.

« Identify the counter. Suppose
this is i.

\{* r = (Vk:0<k<n: a[k]=0)y

(2) If the post-cond is of the form Q(n), we try Q(i) /\ “range” as the invariant,
where “range” is a formula stating the valid range of the counter i during the loop.
Notice with this choice of invariant you get Q(i) /\ i=n = Q(n) for free.

Heuristic “replace constant with counter”

/¢ 0<n) N

1:=0;r:=true;
while i<n do {
r:=rA\(afi]=0) ; i++ }

\{* r = (Vk:0<k<n: a[k]=0)y
4

(r = (Vk : 0<k<i : a[k]=0)) A 0<i<n

(we already did this example, now you know what inspired the choice of this
invariant)

Let’s take an example, now with mult1 vars

Consider this well known recursive function to calculate the
nth Fibonacci number:

fibo = 0
fib1 = 1
fib(n+2) = fib(n+1) + fibn

The definition is nice but it has bad execution time. Next, we
will consider an alternative, more efficient, implementation of
the calculation.

Fibonacct’s original problem

Fibonacci’s original problem is to calculate the number of
rabbits given a certain growth model :

1. We start with the first moth with one new pair of rabbits.
2. A new pair needs 1 month to become adult

3. Each month each pair of adult rabbits produces a new
pair.
We assume no rabbit dies during the experiment.

This model can be directly mapped to an imperative
implementation (next slide).

I[terative Fib, with O(n) runtime

/RabitSim (n:int) : int { \

nNow,nAdult,newPairs.t : int ;
t:=1 : nAdult:=0 ;: nNow:=1 ;
whilet < ndo {

newPairs := nAdult ;

nAdult = nNow ;
nNow := nNow + newPairs ;

t:=t+ 1
}s

Qeturn nNow } j

pre : n>0
post : return = fib(n)

‘ Reducing the spec. to the statement level

(¢n>0%)

K[:=1 : NAdult:=0 ; nNow:=1 ; \
whilet<ndo {
newPairs := nAdult ;

nAdult = nNow ;
nNow := nNow + newPairs ;

t:=t+ 1
s

\return = nNow /
({* return =fib n *})

‘ After some wp calculation

((n>07)
/t:=1 : NAdult:=0 ;: nNow:=1 ; A
whilet<ndo {
newPairs := nAdult ;
nAdult = nNow ;
nNow := nNow + newPairs ;
t=t+ 1
_} J

[{* nNow =fib n *}

)

10

Applying the previous heuristic

(* > O * \
_ i } y,
/t:=1 : NAdult:=0 ; nNow:=1 ; \
{*1*} :
while t < n do { Inv: nNow = fibt
newPairs := nAdult : AN 1<t<n
NAdult = nNow ; | term. metric : n-t
nNow = nNow + newPairs ;
t=t+1 }; / Notice that with this choice of

\ invariant, the exit condition “I \ 7g =
(*nNow =fib n *} Q" is quite trivially satisfied.

Let’s take a look at the PIC part

“PIC” : proof of the invariance condition. That is to prove that

{*I Ng*} S{*I|*} holds, where S is the loop’s body. In other
words, to prove that | A g = wp S | is valid.

Calculating wp S | gives:

NnNow + nAdult = fib (t+1) A 1<t+1<n

The proof structure is as follows:

PROOF PIC

'A1] nNow = fib t

A2] 1<t<n

A3] t<n

G1] nNow + nAdult = fib (t+1)
G2] 1<t+1<n

The proot ot G1

PROOF EQUATIONAL
nNow + nAdult
= {Al}
fib t + nAdult
X { ?? cannot find the justification }
fibt + fib (t-1)
= { def. of fib and t=21 (A2) }
fib (t+1)

The proof fails because the invariant has no information about nAdult.
Let’s extend it then, with the proper information. The new invariant:

NNow = fibt A nAdult=fib t-1) A 1<t<n

In general, for every variable involved in a loop, that contributes to its post-
condition, we will need to capture its property in the invariant.

13

The new PIC

Since you change the invariant, you will have to rework your
proofs to reflect the change. For PIC, since you change the
iInvariant by strengthening it with a new conjunct, this means
that we can now assume more, though you also have to
prove more.

Re-calculating wp S | gives:

nNow + nAdult = fib (t+1)
/A nNow = fib t
N 1<t+1<n

14

The

new PIC

A1
A2
A3
(G1]

PROOF PIC

nNow = fib t

A1b] nAdult = fib (t-1)

1<t<n
t<n
NnNow + nAdult = fib (t+1)

'G1b] nNow = fib t

G2]

1.

1<t+1 <n

BEGIN

{ see the subproof below } G1

G
<

2.{A1}G1b
3. { follows from A2 and A3 } G2
END

PROOF EQUATIONAL
nNow + nAdult

= {A1}
fib t + nAdult

= {A1b}
fibt + fib (t-1)

= { def. of fib and t=1 (A2) }
fib (t+1)

15

Tail invariant

Consider again this previous example:

i {* 0<n *} |

(i:=0;r:=true; A
while i<n do {

g r:=rA(a[fi]=0) ; i++ })

[{* r =(vk:0<k<n:a[k]=0)*} |

We proved this with this as the invariant:

r= (vk : 0<k<i: a[k]=0) A 0<i<n

Tail invariant

The invariant we used:

r = (vk : O<k<i:alk]=0) A 0<i<n
\ /

capturing the work that has been done

An alternative invariant :

A capturing the work that still to be done
f)
r A\ (vk : i<k<n : a[k]=0) = (Vvk: 0<k<n : a[k]=0)

A\ 0<i<n

A “tail invariant” expresses the invariant in terms of the remaining work that
Is still to be done. The loop works on shrinking this to-be-done part until it

disappears, or become small enough it can be computed directly without a
loop.

17

Example: iterative impl. of tail recursion

Example of “typical recursion” :

g x = if x<0 then x else 1+g(x-1)

A tail recursive function does not combine the result of its
recursion:

fx =if x<0 then x else f(x-1)

18

Examples

Get the last element of a list:

last [X]

last (X:y:s)

X

last (y:s)

Summing the elements of a list:

Isumal]

Isum a (x:s)

a
Isum (x+a) s

Reversing a list (more efficient in Haskell) :

rvil]
rvt(x:s)

t

rv (x:t) s

19

Tail Recursion, general form

A tail recursive function F:A—B has this general form:

FX = gx — basex
| F (AX)

Such a function can be optimized by implementing the
recursion as loop-iterations, as the latter does not use stack
space to pass around parameters.

Termination. F terminates if we can find a function m:A—Int
such that:

1.wgx = m(AX)<mx
2.-gx = mx >0

20

Iterative implementation

Problem: given a, calculate F a. Recall the def. of F:

FX = gx — basex
| F (AX)

Consider this simple loop to calculate F o :

[{* true *} J To prove that this works, we will
— . use the following tail invariant:
X:=a;
while —gx do x:=AX; Fx = Fa
r .= base x

{ * r=Fa* J For terrr_1inaltion we use m X as
the termination metric where m is

the function you used to prove

the termination of F (prev. slide)

21

Proof sketch

({* true *) J

X =a;
while —gx do x:=AX; Invariant: Fx = F a
r .= base x

[{* r=Fa ¥}]

When the loop terminates, g x holds. So by its definition F x
= base x. Then the invariant implies that base x = F a.

For the proof of invariance: wp (x := A xX) inv gives F (Ax) =

F o. But since — g x holds, F (Ax) is also equal to F x, by the
def. of F. So the wp can be reduced to F x = F o, which is

exactly the invariant itself.

22

Corollary

If a problem can be expressed as computing the result
of a tail recursive function, the previous
Implementation scheme, using the previously given
Invariant, provides a correct iterative program to
compute the solution of the problem.

23

Example : GCD

Given XY > 0, compute gcd X Y.

Straight forward solution: O(X min Y).
We can do better than that (Euclides, 320 BC)

Approach: try to cast the problem into tail recursion.

We will need to explore some properties of common
divisors.

24

Some properties ot gcd

We'll assume positive integers! Define :

d divides x = Jk: k>0 :x=k*d

d comdiv x,y = d divides x /\ d divides y

Theorem. If x>y we have:

d comdiv X,y < dcomdiv (x-y),y

25

Some properties ot gcd

We can characterize gcd via this equation :

a=gcdxy = ocomdiv Xy
A
(Ve:e comdiv x,y: e<a)

Theorem-1. for positive integers x and vy, if x>y we have:
gedxy = ged (x-y)y

Theorem-2. for positive integer x: gecd xx = X

26

Gcd 1n tail recursion

Those properties of gcd leads to the following recursive
relation for gcd . Notice that the function is tail recursive:

gecd Xy = X=y —> X

| x>y — gecd(xy)y
| /"x<y * gecdx (y—Xx)

Consider the problem of calculating gcd XY, given some
positive integers X and Y. The previous implementation
scheme gives us a solution for this.

27

I[terative implementation of Ged

Recall the recursive definition:
gcd Xy = X=y — X
| x>y — gcd(xy)y
| /" x<y*/ gecdx (y—Xx)

Problem: given positive integers X,Y calculate gcd X Y.
Implemented by this loop:

 {*X>0 A Y>0 *} |

X,y =X, Y; —— .
while x =y do inv: gcd xy = ged XY
if x>y then x:=x-y term. metric : x+y
else y:=y-x

Note: to prove that this termination
* — * metric has a lower bound 0, we need to
[{ X = ng XY }] extend the invariant with x+y = 0

28

Another example

Consider a list of non-negative integers representing a
number. a[0..3)

A
4 A
value a3 = 312

Write a program that computes the “value” of the number
represented by the list.

A recursive solution:

val xs = s=[] > x
| val (10*x + hds) (tail s)

The value of a list s can be calculated by val 0 s.

29

Iterative implementation

Recall again the tail recursive function val:

val xs = s=[] »> X
| val (10*x + hds) (tail s)

Problem: given an S, calculate val 0 S. Iterative impl.:

[{* true *}]
x,s =0,S;

inv: val xs = val0 S

while s#[] do {

x == 10 +hds ; term. metric : #s

s :=tail s }

[{*x=val0S ™} J

30

Data refinement, an example

Consider again the previous program:

[{* true *} J
x,s =0,S;
while s#[] do {
X = 10*x+hds ;
s :=tail s }

{ {*x=val0S 7}]

What if the input list “S” is actually an array a[0..n) ? You
might foresee that hd s and tail s can then be implemented
more efficiently by simply shifting a cursor/counter into the
array. How to justify the correctness of such a
transformation?

31

Transformation 1

The same program, but with “S” instantiated to a[0..n):

[{* O=n 7} J inv,: val xs = val 0 (a[0..n))
?(_’_S = 0,2[0..n) We will introduce a new variable i and
| '__O program it so that we can maintain the
while s=[]| do { following “data invariant” that captures
X = 10*x+ hd s the relation between the two data
s '=tail s structures (the array a and the list s):
=1+ inv, : s=a[i..n) \ 0<i<n

} Notice that the new code does not change
[{* x=val 0 (a[0..n)] *} } the behavior of the base program. So it
does not break its correctness argument.
This is also called “superposition” of a new
variable (in this example: i).

32

Transformation 2

. {*0sn*% |
x,s = 0, a[0..n)
1:=0

{*x=val 0 (a[0..n)] *} |

inv,: val x s = val 0 (a[0..n))

‘ inv, : s = afi..n) \ 0<isn

. {*0sn%
x,s = 0,al0..n)
1:=0

while s#[] do { while i#n do {
X = 10*x + hd s X = 10"x + &[]
s :=tail s s ;= tail s
| :=] |

= j+1
!
{*x=val 0 (a[0..n)] %} |

The data invariant implies that

s#[] in the original program is equivalent to
I=n, and can thus be replaced by the latter.
Similarly, hd s can be replaced with ali].

33

Transformation 3

| * 0=n *}) { * 0<n *))
X ,s== 0 afé=m x:=0
1:=0 1:=0
while i=#n do { while i=#n do {

X = 10*x + a[i] X = 10*x + a[i]

—g==—tari-3 | = i+1

i = i+1)

}

{*x=val 0 (a[0..n)] *} |

{*x=val 0 (a[0..n)] *} |

Finally, notice that we don’t actually need s anymore (it has no
influence towards the result x), so we can just as well drop it.

34

