
Some heuristics for deriving invariant
LN sections 6.7 , 6.8

2

Overview

n Heuristic 1: “Replace constant with counter” heuristic
n Heuristic 2: incrementally building the invariant
n Heuristic 3: tail invariant
n Other: an example of using invariant to do data refinement

2

3

Loop Reduction rule

3

P Þ I // setting up I (Init)
{* g /\ I *} S {* I *} // invariance (IC)
I /\ ¬g Þ Q // exit cond (EC)
{* I /\ g *} C:=m; S {* m<C *} // m decreasing (TC1)
I /\ g Þ m > 0 // m bounded below (TC2)
--
{* P *} while g do S {* Q *}

4

Heuristic “replace constant with counter”

4

{* 0£n *}

i := 0 ; r := true ;
while i<n do {

r := r /\ (a[i]=0) ; i++ }

{* r = ("k : 0£k<n : a[k]=0) *}

(1) The loop iterates on the
counter up to some upper bound
or lower bound.
• Identify this upper/lower

bound. Suppose this is n.
• Identify the counter. Suppose

this is i.

(2) If the post-cond is of the form Q(n), we try Q(i) /\ “range” as the invariant,
where “range” is a formula stating the valid range of the counter i during the loop.
Notice with this choice of invariant you get Q(i) /\ i=n Þ Q(n) for free.

5

Heuristic “replace constant with counter”

5

{* 0£n *}

i := 0 ; r := true ;
while i<n do {

r := r /\ (a[i]=0) ; i++ }

{* r = ("k : 0£k<n : a[k]=0) *}

(r = ("k : 0£k<i : a[k]=0)) /\ 0£i£n

(we already did this example, now you know what inspired the choice of this
invariant)

6

Let’s take an example, now with multi vars

n Consider this well known recursive function to calculate the
nth Fibonacci number:

fib 0 = 0
fib 1 = 1
fib (n + 2) = fib (n+1) + fib n

n The definition is nice but it has bad execution time. Next, we
will consider an alternative, more efficient, implementation of
the calculation.

7

Fibonacci’s original problem

n Fibonacci’s original problem is to calculate the number of
rabbits given a certain growth model :
1. We start with the first moth with one new pair of rabbits.
2. A new pair needs 1 month to become adult
3. Each month each pair of adult rabbits produces a new

pair.
We assume no rabbit dies during the experiment.

n This model can be directly mapped to an imperative
implementation (next slide).

8

Iterative Fib, with O(n) runtime

RabitSim (n:int) : int {
nNow,nAdult,newPairs,t : int ;
t:=1 ; nAdult:=0 ; nNow:=1 ;
while t < n do {

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1

} ;
return nNow }

pre : n > 0
post : return = fib(n)

9

Reducing the spec. to the statement level

t:=1 ; nAdult:=0 ; nNow:=1 ;
while t < n do {

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1

} ;
return := nNow

{* return = fib n *}

{* n > 0 *}

10

After some wp calculation

t:=1 ; nAdult:=0 ; nNow:=1 ;
while t < n do {

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1

} ;

{* nNow = fib n *}

{* n > 0 *}

11

Applying the previous heuristic

t:=1 ; nAdult:=0 ; nNow:=1 ;
{* I *}
while t < n do {

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1 } ;

{* nNow = fib n *}

{* n > 0 *}

Inv : nNow = fib t
/\ 1 £ t £ n

term. metric : n-t

Notice that with this choice of
invariant, the exit condition “I /\ ¬g ⇒
Q” is quite trivially satisfied.

Let’s take a look at the PIC part

n “PIC” : proof of the invariance condition. That is to prove that
{* I /\ g *} S {* I *} holds, where S is the loop’s body. In other
words, to prove that I /\ g ⇒ wp S I is valid.

n Calculating wp S I gives:

n The proof structure is as follows:

12

PROOF PIC
[A1] nNow = fib t
[A2] 1£ t £ n
[A3] t < n
[G1] nNow + nAdult = fib (t+1)
[G2] 1£ t+1 £ n

nNow + nAdult = fib (t+1) /\ 1£ t+1 £ n

The proof of G1

13

PROOF EQUATIONAL
nNow + nAdult

= { A1}

fib t + nAdult

= { ?? cannot find the justification }

fib t + fib (t-1)

= { def. of fib and t≥1 (A2) }

fib (t+1)

X

The proof fails because the invariant has no information about nAdult.

Let’s extend it then, with the proper information. The new invariant:

In general, for every variable involved in a loop, that contributes to its post-

condition, we will need to capture its property in the invariant.

nNow = fib t /\ nAdult = fib (t-1) /\ 1£ t £ n

The new PIC

n Since you change the invariant, you will have to rework your
proofs to reflect the change. For PIC, since you change the
invariant by strengthening it with a new conjunct, this means
that we can now assume more, though you also have to
prove more.

n Re-calculating wp S I gives:

14

nNow + nAdult = fib (t+1)
/\ nNow = fib t
/\ 1£ t+1 £ n

The new PIC

15

PROOF PIC
[A1] nNow = fib t
[A1b] nAdult = fib (t-1)
[A2] 1£ t £ n
[A3] t < n
[G1] nNow + nAdult = fib (t+1)
[G1b] nNow = fib t
[G2] 1£ t+1 £ n
BEGIN
1. { see the subproof below } G1

2. { A1 } G1b
3. { follows from A2 and A3 } G2
END

PROOF EQUATIONAL
nNow + nAdult

= { A1}
fib t + nAdult

= { A1b }
fib t + fib (t-1)

= { def. of fib and t≥1 (A2) }
fib (t+1)

Tail invariant

n Consider again this previous example:

n We proved this with this as the invariant:

16

r = ("k : 0£k<i : a[k]=0) /\ 0£i£n

i := 0 ; r := true ;
while i<n do {

r := r /\ (a[i]=0) ; i++ }

{* 0£n *}

{* r = ("k : 0£k<n : a[k]=0) *}

Tail invariant

n The invariant we used:

n An alternative invariant :

17

r = ("k : 0£k<i : a[k]=0) /\ 0£i£n

r /\ ("k : i£k<n : a[k]=0) = ("k : 0£k<n : a[k]=0)

/\ 0£i£n

capturing the work that has been done

capturing the work that still to be done

A “tail invariant” expresses the invariant in terms of the remaining work that

is still to be done. The loop works on shrinking this to-be-done part until it

disappears, or become small enough it can be computed directly without a

loop.

Example: iterative impl. of tail recursion

n Example of “typical recursion” :

g x = if x≤0 then x else 1+g(x-1)

n A tail recursive function does not combine the result of its
recursion:

f x = if x≤0 then x else f(x-1)

18

19

Examples

n Get the last element of a list:

n Summing the elements of a list:

n Reversing a list (more efficient in Haskell) :

last [x] = x
last (x:y:s) = last (y:s)

lsum a [] = a
lsum a (x:s) = lsum (x+a) s

rv t [] = t
rv t (x:s) = rv (x:t) s

20

Tail Recursion, general form

n A tail recursive function F:A→B has this general form:

n Such a function can be optimized by implementing the
recursion as loop-iterations, as the latter does not use stack
space to pass around parameters.

n Termination. F terminates if we can find a function m:A→Int
such that:

20

1. ¬ g x Þ m (D x) < m x
2. ¬ g x Þ m x > 0

F x = g x ® base x // base case
| F (D x) // recursion

To prove that this works, we will
use the following tail invariant:

For termination we use m x as
the termination metric where m is
the function you used to prove
the termination of F (prev. slide)

21

Iterative implementation

n Problem: given a, calculate F a. Recall the def. of F:

n Consider this simple loop to calculate F a :

21

F x = g x ® base x
| F (D x)

F x = F a

{* true *}

{* r = F a *}

x := a ;
while ¬ g x do x := D x ;
r := base x

Proof sketch

n When the loop terminates, g x holds. So by its definition F x
= base x. Then the invariant implies that base x = F a.

n For the proof of invariance: wp (x := D x) inv gives F (Dx) =
F a. But since ¬ g x holds, F (Dx) is also equal to F x, by the
def. of F. So the wp can be reduced to F x = F a, which is
exactly the invariant itself.

22

{* true *}

{* r = F a *}

x := a ;
while ¬ g x do x := D x ;
r := base x

Invariant: F x = F a

Corollary

If a problem can be expressed as computing the result
of a tail recursive function, the previous

implementation scheme, using the previously given
invariant, provides a correct iterative program to

compute the solution of the problem.

23

24

Example : GCD

n Given X,Y > 0, compute gcd X Y.

n Straight forward solution: O(X min Y).
n We can do better than that (Euclides, 320 BC)

n Approach: try to cast the problem into tail recursion.
n We will need to explore some properties of common

divisors.

25

Some properties of gcd

n We’ll assume positive integers! Define :

d divides x = $k : k>0 : x = k*d

d comdiv x,y = d divides x /\ d divides y

n Theorem. If x>y we have:

d comdiv x,y Û d comdiv (x-y),y

\\ hmm … looks like a “split”

25

26

Some properties of gcd

n We can characterize gcd via this equation :

a = gcd x y = a comdiv x,y
/\
("e : e comdiv x,y : e £ a)

n Theorem-1. for positive integers x and y, if x>y we have:
gcd x y = gcd (x-y) y

n Theorem-2. for positive integer x: gcd x x = x

26

27

Gcd in tail recursion

n Those properties of gcd leads to the following recursive
relation for gcd . Notice that the function is tail recursive:

n Consider the problem of calculating gcd X Y, given some
positive integers X and Y. The previous implementation
scheme gives us a solution for this.

27

gcd x y = x = y ® x
| x > y ® gcd (x-y) y
| /* x < y */ gcd x (y – x)

28

Iterative implementation of Gcd

n Recall the recursive definition:

n Problem: given positive integers X,Y calculate gcd X Y.

Implemented by this loop:

28

inv : gcd x y = gcd X Y

term. metric : x+y

gcd x y = x = y ® x

| x > y ® gcd (x-y) y

| /* x < y */ gcd x (y – x)

{* X>0 /\ Y>0 *}

{* x = gcd X Y *}

x,y := X,Y ;

while x ¹ y do
if x>y then x:=x-y

else y:=y-x
Note: to prove that this termination
metric has a lower bound 0, we need to

extend the invariant with x+y ≥ 0

29

Another example

n Consider a list of non-negative integers representing a
number.

Write a program that computes the “value” of the number
represented by the list.

n A recursive solution:

The value of a list s can be calculated by val 0 s.

3 1 2

a [0..3)

value a 3 = 312

val x s = s=[] ® x
| val (10*x + hd s) (tail s)

Iterative implementation

n Recall again the tail recursive function val:

n Problem: given an S, calculate val 0 S. Iterative impl.:

30

val x s = s=[] ® x
| val (10*x + hd s) (tail s)

x , s := 0 , S ;
while s¹[] do {

x := 10*x + hd s ;
s := tail s }

{* true *}

{* x = val 0 S *}

inv : val x s = val 0 S

term. metric : #s

Data refinement, an example

n Consider again the previous program:

n What if the input list “S” is actually an array a[0..n) ? You
might foresee that hd s and tail s can then be implemented
more efficiently by simply shifting a cursor/counter into the
array. How to justify the correctness of such a
transformation?

31

x , s := 0 , S ;
while s¹[] do {

x := 10*x + hd s ;
s := tail s }

{* true *}

{* x = val 0 S *}

Transformation 1

32

x , s := 0 , a[0..n)
i := 0
while s¹[] do {

x := 10*x + hd s
s := tail s
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

inv1 : val x s = val 0 (a[0..n))

inv2 : s = a[i..n) /\ 0≤i≤n

The same program, but with “S” instantiated to a[0..n):

We will introduce a new variable i and
program it so that we can maintain the
following “data invariant” that captures
the relation between the two data
structures (the array a and the list s):

Notice that the new code does not change
the behavior of the base program. So it
does not break its correctness argument.
This is also called “superposition” of a new
variable (in this example: i).

Transformation 2

33

x , s := 0 , a[0..n)
i := 0
while s¹[] do {

x := 10*x + hd s
s := tail s
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

inv1: val x s = val 0 (a[0..n))

inv2 : s = a[i..n) /\ 0≤i≤n

x , s := 0 , a[0..n)
i := 0
while i ¹ n do {

x := 10*x + a[i]
s := tail s
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

The data invariant implies that
s¹[] in the original program is equivalent to
i¹n, and can thus be replaced by the latter.
Similarly, hd s can be replaced with a[i].

Transformation 3

34

x , s := 0 , a[0..n)
i := 0
while i ¹ n do {

x := 10*x + a[i]
s := tail s
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

x := 0
i := 0
while i ¹ n do {

x := 10*x + a[i]
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

Finally, notice that we don’t actually need s anymore (it has no
influence towards the result x), so we can just as well drop it.

