
Some heuristics for deriving invariant
LN sections  6.7 , 6.8
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Overview

n Heuristic 1: “Replace constant with counter” heuristic
n Heuristic 2: incrementally building the invariant
n Heuristic 3: tail invariant
n Other: an example of using invariant to do data refinement
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Loop Reduction rule
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P Þ I // setting up I (Init)
{* g  /\ I *}    S    {*  I  *} // invariance (IC)
I  /\ ¬g  Þ Q // exit cond (EC)
{* I /\ g *}    C:=m; S   {* m<C *}    // m decreasing (TC1)
I /\ g Þ m > 0                                //  m bounded below (TC2)
----------------------------------------
{* P *}   while g  do S    {* Q *}
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Heuristic “replace constant with counter”
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{* 0£n *}   

i := 0 ; r := true ;
while i<n do {  

r := r /\ (a[i]=0)  ;  i++  }

{*  r  = ("k : 0£k<n : a[k]=0) *}

(1) The loop iterates on the 
counter up to some upper bound 
or lower bound.
• Identify this upper/lower 

bound. Suppose this is n.
• Identify the counter. Suppose 

this is i.

(2) If the post-cond is of the form  Q(n), we try Q(i) /\ “range” as  the invariant, 
where “range” is a formula stating the valid range of the counter i during the loop. 
Notice with this choice of invariant you get Q(i)  /\ i=n Þ Q(n) for free.
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Heuristic “replace constant with counter”
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{* 0£n *}   

i := 0 ; r := true ;
while i<n do {  

r := r /\ (a[i]=0)  ;  i++  }

{*  r  = ("k : 0£k<n : a[k]=0) *}

(r  = ("k : 0£k<i : a[k]=0))   /\ 0£i£n

(we already did this example, now you know what inspired the choice of this 
invariant)
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Let’s take an example, now with multi vars

n Consider this well known recursive function to calculate the 
nth Fibonacci number:

fib 0   =   0
fib 1   =   1
fib (n + 2)    =    fib (n+1)   +   fib n 

n The definition is nice but it has bad execution time. Next, we 
will consider an alternative, more efficient, implementation of 
the calculation.
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Fibonacci’s original problem

n Fibonacci’s original problem is to calculate the number of 
rabbits given a certain growth model :
1. We start with the first moth with one new pair of rabbits.
2. A new pair needs 1 month to become adult
3. Each month each pair of adult rabbits produces a new 

pair.
We assume no rabbit dies during the experiment.

n This model can be directly mapped to an imperative 
implementation (next slide).
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Iterative Fib, with O(n) runtime

RabitSim (n:int) : int {       
nNow,nAdult,newPairs,t : int ;
t:=1 ; nAdult:=0 ; nNow:=1 ; 
while t < n do { 

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1

} ;
return nNow }

pre :  n > 0
post :  return = fib(n)   
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Reducing the spec. to the statement level

t:=1 ; nAdult:=0 ; nNow:=1 ; 
while t < n do { 

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1

} ;
return := nNow

{* return = fib n  *}  

{* n > 0 *}
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After some wp calculation

t:=1 ; nAdult:=0 ; nNow:=1 ; 
while t < n do { 

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1

} ;

{* nNow = fib n  *}  

{* n > 0 *}
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Applying the previous heuristic

t:=1 ; nAdult:=0 ; nNow:=1 ; 
{* I *}
while t < n do { 

newPairs := nAdult ;
nAdult := nNow ;
nNow := nNow + newPairs ;
t := t + 1  } ;

{* nNow = fib n  *}  

{* n > 0 *}

Inv :   nNow =  fib t  
/\ 1 £ t £ n

term. metric :  n-t  

Notice that with this choice of
invariant, the exit condition “I /\ ¬g ⇒
Q” is quite trivially satisfied.



Let’s take a look at the PIC part

n “PIC” : proof of the invariance condition. That is to prove that 
{* I /\ g *} S {* I *} holds, where S is the loop’s body. In other 
words, to prove that I /\ g ⇒ wp S I is valid.

n Calculating wp S I gives:

n The proof structure is as follows:
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PROOF PIC
[A1] nNow = fib t
[A2] 1£ t £ n
[A3]  t < n
[G1] nNow + nAdult =  fib (t+1) 
[G2] 1£ t+1 £ n

nNow + nAdult =  fib (t+1)    /\ 1£ t+1 £ n



The proof of G1
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PROOF EQUATIONAL
nNow + nAdult

=  { A1}

fib t + nAdult

=  { ?? cannot find the justification } 

fib t  +  fib (t-1)

= { def. of fib and t≥1 (A2) }

fib (t+1)

X

The proof fails because the invariant has no information about nAdult. 

Let’s extend it then, with the proper information. The new invariant:

In general, for every variable involved in a loop, that contributes to its post-

condition, we will need to capture its property in the invariant.

nNow =  fib t  /\ nAdult = fib (t-1) /\ 1£ t £ n



The new PIC

n Since you change the invariant, you will have to rework your 
proofs to reflect the change. For PIC, since you change the 
invariant by strengthening it with a new conjunct, this means 
that we can now assume more, though you also have to 
prove more.

n Re-calculating wp S I gives:
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nNow + nAdult =  fib (t+1)  
/\ nNow = fib t  
/\ 1£ t+1 £ n



The new PIC
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PROOF PIC
[A1] nNow = fib t
[A1b] nAdult = fib (t-1)
[A2] 1£ t £ n
[A3]  t < n
[G1] nNow + nAdult =  fib (t+1)
[G1b] nNow = fib t 
[G2] 1£ t+1 £ n
BEGIN
1. { see the subproof below } G1

2. { A1 } G1b
3. { follows from A2 and A3 } G2
END

PROOF EQUATIONAL
nNow + nAdult

=  { A1}
fib t + nAdult

=  { A1b } 
fib t  +  fib (t-1)

= { def. of fib and t≥1 (A2) }
fib (t+1)



Tail invariant

n Consider again this previous example:

n We proved this with this as the invariant:
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r = ("k : 0£k<i : a[k]=0)   /\ 0£i£n

i := 0 ; r := true ;
while i<n do {  

r := r /\ (a[i]=0)  ;  i++  }

{* 0£n *}

{*  r  = ("k : 0£k<n : a[k]=0) *}



Tail invariant

n The invariant we used:

n An alternative invariant :
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r = ("k : 0£k<i : a[k]=0)   /\ 0£i£n

r /\ ("k : i£k<n : a[k]=0)   =   ("k : 0£k<n : a[k]=0)  

/\ 0£i£n

capturing the work that has been done

capturing the work that still to be done

A “tail invariant” expresses the invariant in terms of the remaining work that

is still to be done. The loop works on shrinking this to-be-done part until it

disappears, or become small enough it can be computed directly without a

loop.



Example: iterative impl. of tail recursion

n Example of “typical recursion” :

g x = if x≤0 then x else 1+g(x-1)

n A tail recursive function does not combine the result of its 
recursion:

f x  = if x≤0 then x else f(x-1)
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Examples

n Get the last element of a list:

n Summing the elements of a list:

n Reversing a list (more efficient in Haskell) :

last [x]        =  x
last (x:y:s)  =  last (y:s)

lsum a [ ]       =  a
lsum a (x:s)  =  lsum (x+a) s

rv t [ ]       =  t
rv t (x:s)   =  rv (x:t) s
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Tail Recursion, general form

n A tail recursive function F:A→B has this general form:

n Such a function can be optimized by implementing the 
recursion as loop-iterations, as the latter does not use stack 
space to pass around parameters.

n Termination. F terminates if we can find a function m:A→Int
such that:

20

1. ¬ g x     Þ m (D x) < m x
2. ¬ g x     Þ m x  > 0

F x   =    g  x    ® base x // base case
|     F (D x) // recursion



To prove that this works, we will 
use the following tail invariant:

For termination we use m x as
the termination metric where m is
the function you used to prove
the termination of F (prev. slide)
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Iterative implementation

n Problem: given a, calculate F a. Recall the def. of F:

n Consider this simple loop to calculate F a :
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F x   =    g  x    ® base x
|     F (D x)

F x  =  F a

{*  true  *}

{*   r  =  F a *}

x := a ;
while ¬ g x  do x := D x ;
r := base x



Proof sketch

n When the loop terminates, g x holds. So by its definition F x 
= base x. Then the invariant implies that base x = F a.

n For the proof of invariance: wp (x := D x) inv gives F (Dx)  =  
F a. But since ¬ g x holds, F (Dx) is also equal to F x, by the 
def. of F. So the wp can be reduced to F x = F a, which is 
exactly the invariant itself.
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{*  true  *}

{*   r  =  F a *}

x := a ;
while ¬ g x  do x := D x ;
r := base x

Invariant:  F x  =  F a



Corollary

If a problem can be expressed as computing the result 
of a tail recursive function, the previous 

implementation scheme, using the previously given 
invariant, provides a correct iterative program to 

compute the solution of the problem.
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Example : GCD

n Given X,Y > 0, compute gcd  X  Y.

n Straight forward solution:  O(X min Y).
n We can do better than that (Euclides, 320 BC)

n Approach: try to cast the problem into tail recursion.
n We will need to explore some properties of common 

divisors.
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Some properties of gcd

n We’ll assume positive integers! Define :

d  divides x       =   $k : k>0 : x = k*d

d  comdiv x,y =    d  divides x  /\ d  divides y

n Theorem. If  x>y  we have: 

d  comdiv x,y Û d comdiv (x-y),y 

\\ hmm … looks like a “split”
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Some properties of gcd

n We can characterize gcd via this equation :

a = gcd x y   =   a comdiv x,y
/\
("e : e  comdiv x,y :  e £ a )

n Theorem-1. for positive integers x and y, if x>y we have: 
gcd x y  =  gcd (x-y) y 

n Theorem-2. for positive integer x: gcd x x   =    x
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Gcd in tail recursion

n Those properties of gcd leads to the following recursive 
relation for gcd . Notice that the function is tail recursive:

n Consider the problem of calculating gcd X Y, given some 
positive integers X and Y. The previous implementation 
scheme gives us a solution for this.
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gcd x  y    =     x = y    ® x
| x > y    ® gcd (x-y)  y  
|   /* x < y  */   gcd x  (y – x)
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Iterative implementation of Gcd

n Recall the recursive definition:

n Problem: given positive integers X,Y calculate gcd X Y. 

Implemented by this loop:
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inv :  gcd x y  =  gcd X Y

term. metric :  x+y

gcd x  y    =     x = y    ® x

| x > y    ® gcd (x-y)  y  

|   /*  x < y */   gcd x  (y – x)

{*  X>0  /\ Y>0  *}

{*  x =  gcd X Y  *}

x,y := X,Y ;

while x ¹ y  do
if x>y  then x:=x-y  

else y:=y-x
Note: to prove that this termination 
metric has a lower bound 0, we need to 

extend the invariant with x+y ≥ 0
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Another example

n Consider a list of non-negative integers representing a 
number. 

Write a program that computes the “value” of the number 
represented by the list.

n A recursive solution:

The value of a list s can be calculated by val 0 s.

3 1 2

a [0..3) 

value  a 3   =   312

val x s   =   s=[ ]  ® x   
|  val (10*x  +  hd s)   (tail s)  



Iterative implementation

n Recall again the tail recursive function val:

n Problem: given an S, calculate val 0 S. Iterative impl.:
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val x s   =   s=[ ]  ® x   
|  val (10*x  +  hd s)   (tail s)  

x , s  :=  0 , S ;
while s¹[ ]  do { 

x  :=  10*x + hd s   ;  
s := tail s  }

{* true *}

{* x = val 0 S *}

inv :  val x s  =  val 0 S

term. metric :  #s



Data refinement, an example

n Consider again the previous program:

n What if the input list “S” is actually an array a[0..n) ? You 
might foresee that hd s and tail s can then be implemented 
more efficiently by simply shifting a cursor/counter into the 
array. How to justify the correctness of such a 
transformation?
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x , s  :=  0 , S ;
while s¹[ ]  do { 

x  :=  10*x + hd s   ;  
s := tail s  }

{* true *}

{* x = val 0 S *}



Transformation 1
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x , s  :=  0 , a[0..n) 
i := 0 
while s¹[ ]  do { 

x  :=  10*x + hd s     
s := tail s  
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

inv1 :  val x s  =  val 0 (a[0..n))

inv2 :  s = a[i..n)  /\ 0≤i≤n

The same program, but with “S” instantiated to a[0..n):

We will introduce a new variable i and 
program it so that we can maintain the 
following “data invariant” that captures 
the relation between the two data 
structures (the array a and the list s):

Notice that the new code does not change 
the behavior of the base program. So it 
does not break its correctness argument. 
This is also called “superposition” of a new 
variable (in this example: i).



Transformation 2
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x , s  :=  0 , a[0..n) 
i := 0 
while s¹[ ]  do { 

x  :=  10*x + hd s
s := tail s  
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

inv1: val x s = val 0 (a[0..n))

inv2 : s = a[i..n)  /\ 0≤i≤n

x , s  :=  0 , a[0..n) 
i := 0 
while i ¹ n  do { 

x  :=  10*x + a[i]
s := tail s  
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

The data invariant implies that 
s¹[ ] in the original program is equivalent to
i¹n, and can thus be replaced by the latter. 
Similarly, hd s can be replaced with a[i].



Transformation 3
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x , s  :=  0 , a[0..n) 
i := 0 
while i ¹ n  do { 

x  :=  10*x + a[i]
s := tail s  
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

x :=  0
i := 0 
while i ¹ n  do { 

x  :=  10*x + a[i]
i := i+1

}

{* 0≤n *}

{* x = val 0 (a[0..n)] *}

Finally, notice that we don’t actually need s anymore (it has no 
influence towards the result x), so we can just as well drop it.


