Some heuristics for deriving invariant LN sections 6.7, 6.8

Overview

- Heuristic 1: "Replace constant with counter" heuristic
- Heuristic 2: incrementally building the invariant
- Heuristic 3: tail invariant
- Other: an example of using invariant to do data refinement

Loop Reduction rule

$$P \Rightarrow I$$

$$\{ * g \land I * \} \quad S \quad \{ * I * \}$$

$$I \land \neg g \Rightarrow Q$$

$$\{ * I \land g * \} \quad C:=m; S \quad \{ * m < C * \}$$

$$I \land g \Rightarrow m > 0$$

$$\{ * P * \} \text{ while } g \text{ do } S \quad \{ * Q * \}$$

// setting up I (Init)
// invariance (IC)
// exit cond (EC)
// m decreasing (TC1)
// m bounded below (TC2)

Heuristic "replace constant with counter"

{* 0≤n *}

i := 0 ; r := **true** ; **while i<n do** { r := r ∧ (a[i]=0) ; i++ }

(1) The loop iterates on the counter up to some upper bound or lower bound.

- Identify this upper/lower bound. Suppose this is n.
- Identify the counter. Suppose this is i.

(2) If the post-cond is of the form Q(n), we try $Q(i) \wedge$ "range" as the invariant, where "range" is a formula stating the valid range of the counter i during the loop. Notice with this choice of invariant you get $Q(i) \wedge i=n \Rightarrow Q(n)$ for free.

Heuristic "replace constant with counter"

(we already did this example, now you know what inspired the choice of this invariant)

Let's take an example, now with multi vars

 Consider this well known recursive function to calculate the nth Fibonacci number:

fib 0 = 0
fib 1 = 1
fib
$$(n + 2)$$
 = **fib** $(n+1)$ + **fib** n

The definition is nice but it has bad execution time. Next, we will consider an alternative, more efficient, implementation of the calculation.

Fibonacci's original problem

- Fibonacci's original problem is to calculate the number of rabbits given a certain growth model :
 - 1. We start with the first moth with one new pair of rabbits.
 - 2. A new pair needs 1 month to become adult
 - 3. Each month each pair of adult rabbits produces a new pair.
 - We assume no rabbit dies during the experiment.
 - This model can be directly mapped to an imperative implementation (next slide).

```
RabitSim (n:int) : int {
   nNow,nAdult,newPairs,t : int ;
   t:=1 ; nAdult:=0 ; nNow:=1 ;
   while t < n do {
     newPairs := nAdult ;
     nAdult := nNow ;
     nNow := nNow + newPairs ;
     t := t + 1
    };
 return nNow }
pre : n > 0
```

post : return = fib(n)

Reducing the spec. to the statement level

{* n > 0 *}

```
t:=1; nAdult:=0; nNow:=1;
while t < n do {
  newPairs := nAdult ;
  nAdult := nNow ;
  nNow := nNow + newPairs ;
  t := t + 1
 };
return := nNow
      {* return = fib n *}
```

t:=1 ; nAdult:=0 ; nNow:=1 ; **while** t < n **do** { newPairs := nAdult ; nAdult := nNow ; nNow := nNow + newPairs ; t := t + 1 }; {* nNow = fib n *}

Applying the previous heuristic

{* n > 0 *}

{* nNow = fib n *}

Inv : nNow = fib t $\land 1 \le t \le n$ term. metric : n-t

Notice that with this choice of invariant, the exit condition "I $\land \neg g \Rightarrow$ Q" is quite trivially satisfied.

Let's take a look at the PIC part

- "PIC": proof of the invariance condition. That is to prove that
 {* I ∧ g *} S {* I *} holds, where S is the loop's body. In other
 words, to prove that I ∧ g ⇒ wp S I is valid.
- Calculating wp S I gives:

nNow + nAdult = fib (t+1) / $1 \le t+1 \le n$

The proof structure is as follows:

```
PROOF PIC

[A1] nNow = fib t

[A2] 1 \le t \le n

[A3] t < n

[G1] nNow + nAdult = fib (t+1)

[G2] 1 \le t+1 \le n
```

The proof of G1

PROOF EQUATIONAL
 nNow + nAdult
= { A1}
 fib t + nAdult
 { ?? cannot find the justification }
 fib t + fib (t-1)
= { def. of fib and t≥1 (A2) }
 fib (t+1)

The proof fails because the invariant has no information about nAdult. Let's extend it then, with the proper information. The new invariant:

nNow = fib t \land nAdult = fib (t-1) \land 1 \leq t \leq n

In general, for every variable involved in a loop, that contributes to its postcondition, we will need to capture its property in the invariant.

The new PIC

- Since you change the invariant, you will have to rework your proofs to reflect the change. For PIC, since you change the invariant by strengthening it with a new conjunct, this means that we can now assume more, though you also have to prove more.
- Re-calculating wp S I gives:

nNow + nAdult = fib (t+1) \land nNow = fib t \land 1 \leq t+1 \leq n

The new PIC

```
PROOF PIC
[A1] nNow = fib t
[A1b] nAdult = fib (t-1)
[A2] 1≤ t ≤ n
[A3] t < n
[G1] nNow + nAdult = fib (t+1)
[G1b] nNow = fib t
[G2] 1≤ t+1 ≤ n
BEGIN
1. { see the subproof below } G1
2. { A1 } G1b
3. { follows from A2 and A3 } G2
END
```

PROOF EQUATIONAL nNow + nAdult= {A1} fib t + nAdult = {A1b } fib t + fib (t-1) = { def. of fib and t \geq 1 (A2) } fib (t+1)

Tail invariant

Consider again this previous example:

We proved this with this as the invariant:

r = (∀k : 0≤k<i : a[k]=0) /\ 0≤i≤n

Tail invariant

• The invariant we used:

A "tail invariant" expresses the invariant in terms of the remaining work that is still to be done. The loop works on shrinking this to-be-done part until it disappears, or become small enough it can be computed directly without a loop.

Example: iterative impl. of tail recursion

Example of "typical recursion" :

 $g x = if x \le 0$ then x else 1+g(x-1)

A tail recursive function does not combine the result of its recursion:

 $f x = if x \le 0$ then x else f(x-1)

• Get the last element of a list:

last [x] = xlast (x:y:s) = last (y:s)

Summing the elements of a list:

 $\begin{array}{ll} |sum a[] &= a \\ |sum a(x:s) &= |sum (x+a) s \end{array}$

Reversing a list (more efficient in Haskell) :

rv t [] = t
rv t (x:s) = rv (x:t) s

Tail Recursion, general form

• A tail recursive function $F:A \rightarrow B$ has this general form:

// base case
// recursion

- Such a function can be optimized by implementing the recursion as loop-iterations, as the latter does not use stack space to pass around parameters.
- Termination. F terminates if we can find a function m:A→Int such that:

Iterative implementation

Problem: given α , calculate F α . Recall the def. of F:

$$F x = g x \rightarrow base x$$
$$| F (\Delta x)$$

• Consider this simple loop to calculate F α :

$$\{ * \text{ true } * \}$$
x := α ;
while \neg g x do x := Δ x;
r := base x
$$\{ * r = F \alpha \ * \}$$

To prove that this works, we will use the following tail invariant:

$$Fx = F\alpha$$

For termination we use m x as the termination metric where m is the function you used to prove the termination of F (prev. slide)

Proof sketch

- When the loop terminates, g x holds. So by its definition F x = base x. Then the invariant implies that base x = F α.
- For the proof of invariance: wp (x := Δ x) inv gives F (Δx) = F α. But since ¬ g x holds, F (Δx) is also equal to F x, by the def. of F. So the wp can be reduced to F x = F α, which is exactly the invariant itself.

Corollary

If a problem can be expressed as computing the result of a tail recursive function, the previous implementation scheme, using the previously given invariant, provides a correct iterative program to compute the solution of the problem.

Example : GCD

- Given X,Y > 0, compute gcd X Y.
- Straight forward solution: O(X min Y).
- We can do better than that (Euclides, 320 BC)
- Approach: try to cast the problem into tail recursion.
- We will need to explore some properties of common divisors.

• We'll assume **positive integers**! Define :

d divides $x = \exists k : k > 0 : x = k^*d$

d <u>comdiv</u> x,y = d <u>divides</u> x \land d <u>divides</u> y

Theorem. If x>y we have:

d <u>comdiv</u> x,y \Leftrightarrow d <u>comdiv</u> (x-y),y

\\ hmm ... looks like a "split"

Some properties of gcd

• We can characterize **gcd** via this equation :

$$\alpha = \mathbf{gcd} \times \mathbf{y} = \alpha \underline{\text{comdiv}} \times, \mathbf{y}$$

$$\wedge$$

$$(\forall \mathbf{e} : \mathbf{e} \underline{\text{comdiv}} \times, \mathbf{y} : \mathbf{e} \le \alpha)$$

Theorem-1. for positive integers x and y, if x>y we have: gcd x y = gcd (x-y) y

• Theorem-2. for positive integer x: gcd x x = x

Gcd in tail recursion

Those properties of gcd leads to the following recursive relation for gcd. Notice that the function is tail recursive:

$$\begin{array}{rcl} \mathbf{gcd} & \mathbf{x} & \mathbf{y} &= & \mathbf{x} = \mathbf{y} & \rightarrow & \mathbf{x} \\ & & & | & \mathbf{x} > \mathbf{y} & \rightarrow & \mathbf{gcd} (\mathbf{x} - \mathbf{y}) & \mathbf{y} \\ & & | & /^* & \mathbf{x} < \mathbf{y} & */ & \mathbf{gcd} & \mathbf{x} & (\mathbf{y} - \mathbf{x}) \end{array}$$

Consider the problem of calculating gcd X Y, given some positive integers X and Y. The previous implementation scheme gives us a solution for this.

Iterative implementation of Gcd

Recall the recursive definition:

$$\begin{array}{rcl} \mathbf{gcd} & \mathbf{x} & \mathbf{y} &= & \mathbf{x} = \mathbf{y} & \rightarrow & \mathbf{x} \\ & & & | & \mathbf{x} > \mathbf{y} & \rightarrow & \mathbf{gcd} (\mathbf{x} - \mathbf{y}) & \mathbf{y} \\ & & | & /^{*} & \mathbf{x} < \mathbf{y} & */ & \mathbf{gcd} & \mathbf{x} & (\mathbf{y} - \mathbf{x}) \end{array}$$

Problem: given positive integers X,Y calculate gcd X Y.
 Implemented by this loop:

{* x = gcd X Y *}

inv: gcd xy = gcd XY

term. metric : x+y

Note: to prove that this termination metric has a lower bound 0, we need to extend the invariant with $x+y \ge 0$

Another example

Consider a list of non-negative integers representing a number.

Write a program that computes the "value" of the number represented by the list.

• A recursive solution:

val x s = s=[]
$$\rightarrow$$
 x
| val (10*x + hd s) (tail s)

The value of a list s can be calculated by val 0 s.

Iterative implementation

Recall again the tail recursive function val:

```
val x s = s=[] \rightarrow x
| val (10*x + hd s) (tail s)
```

Problem: given an S, calculate val 0 S. Iterative impl.:

{* true *}

inv: val xs = val 0S

term. metric: #s

{* x = val 0 S *}

Data refinement, an example

Consider again the previous program:

What if the input list "S" is actually an array a[0..n)? You might foresee that hd s and tail s can then be implemented more efficiently by simply shifting a cursor/counter into the array. How to justify the correctness of such a transformation? The same program, but with "S" instantiated to a[0..n):

{* 0≤n *} x,s := 0,a[0..n) i := 0 while $s \neq []$ do { $x := 10^{*}x + hd s$ s := tail s i := i+1 ${* x = val 0 (a[0..n)] *}$

 inv_1 : val x s = val 0 (a[0..n))

We will introduce a new variable i and program it so that we can maintain the following "data invariant" that captures the relation between the two data structures (the array a and the list s):

inv₂ : s = a[i..n) ∧ 0≤i≤n

Notice that the new code does not change the behavior of the base program. So it does not break its correctness argument. This is also called "superposition" of a new variable (in this example: i).

Transformation 2

inv₁: **val** x s = **val** 0 (a[0..n))

 inv_2 : s = a[i..n) $\land 0 \le i \le n$

The data invariant implies that $s\neq []$ in the original program is equivalent to $i\neq n$, and can thus be replaced by the latter. Similarly, hd s can be replaced with a[i].

Transformation 3

Finally, notice that we don't actually need s anymore (it has no influence towards the result x), so we can just as well drop it.