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Testing vs verification

Verification: here it means proving that a program will 
always behave correctly, as opposed to testing that 

only proves that some executions are correct.

} Verification is however undecidable (it cannot be generically 
automated).

} There are tools to assist us constructing proofs, or to 
automatically verify special cases (e.g. if the program has 
finite number of states) à outside our scope. 

} More on such automation in Master courses e.g. Program 
Semantics & Verification.

2



Our learning goals

} To introduce you to Hoare logic: fundamental for
imperative languages.

} To learn formulating your correctness arguments
formally.

} To introduce you to some of the more advanced
aspects such as the treatment of loops and program
calls. This is useful for your later research, e.g. if you
want to prove the correctness of your algorithm, or
when your research involves development of a
verification tool.
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Overall plan

} Revisiting Predicate Logic, also introducing the 
notation we are going to use.

} Basic Hoare Logic
} More on proving the correctness of loops.
} Reasoning about more advanced language 

constructs, e.g. program calls,  exceptions, OO.
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How formal ?

} A proof is (really) formal if can be checked by a 
computer.

} Informal proof à can’t be checked by a 
computer,  easier to read by a human, but may 
be ambiguous.

} In this course we will train with more formal 
proofs:  still human-readable, more precise than 
informal proof, but not machine formal.
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Elements of our verification approach

} A simple programming language uPL

} Specifications are written in formulas of (1st order) 
predicate logic. 

} Hoare logic to reduce program + specification to 
verification conditions (formulas in predicate logic).

} Use predicate logic to prove the verification conditions.
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Overview

} Formulas
} Quantification
} Inference rules
} Proof
} Proofs involving quantification
} Some basic proof techniques:

} Contradiction
} Equational
} Case split
} Induction
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Our Formula-language (LN Ch.2)

} Language elements:
} Variables e.g. x,y,z ...
} Constants e.g. true, false, 0, 1…
} Arrays e.g a[i]
} Operators e.g.  +,-, <, =, /\ , Þ ...
} Quantifiers " $,

} Types: bool, int, arrays of primitives. We usually leave 
types implicit in the formulas.

} Arrays are assumed to have infinite size.
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From now on write your 
formulas, incl pre/post-

condition in the predicate logic 
notation.

Don’t use in-code notation 
(to avoid confusing yourself)



Quantified formula, basic form
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(" i : :  a[i] = a[0] )

quantifier

bound variable
The formula that is 

being quantified

It means: “for all i, a[i] = a[0] holds.” Implicitly i is of type int, as it is being 
used as an index of an array.



Quantified formula with domain
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domain part : 
a formula to 
restrict the 

domain of the 
quantification

It means: “for all i such that 0≤i<n, a[i] = a[0] holds.” Again, implicitly i is an 
int, as it is being used as an index of an array.

(" i :  0≤i<n :  a[i] = a[0] )

range part : 
the formula 
that is being 
quantified



Domain part in quantified formula

} Definition of the form with domain part:

} ("x : P x : Q x)   =   ("x : : P x Þ Q x)
} ($x : P x : Q x)   =   ($x  : : P x /\ Q x)

} Notice that the def. above implies :
} ("i : true : a[i]>0)  =  ("i :: a[i]>0)   
} ($i : true : a[i]>0)  =  ($i :: a[i]>0)    
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Quantifying over “empty domain”

} Quantifying over “false” is also called quantifying over 
“empty domain” .  Their meaning:

} ("x : false : Q x)  
= ("x : : false Þ Q x) 
= ("x : : true) 
= true

} ($x : false : Q x) 
= ($x : :  false /\ Q x)   
= ($x : : false)  
=  false
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Scoping and Nesting

} A quantifier has a “scope” :

($i : i>0 : b[i])   /\ ¬b[i]

} “Bounded variable” e.g. i in the quantified formula above.
} “Free variable” e.g. b and the i on the left in the above 

example.

} Quantification can also be ”nested” :

("i :: ($j :: a[j] > a[i]))
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How do we prove our claims ?

} In logic we use inference/proof rules. Such a rule is usually 
shown in this form:

} A proof is essentially a series of invocations of inference 
rules, that produces our claim from known facts and the 
given assumptions.
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premise1 ,  premise2 , …
-----------------------------------------------------------

conclusion



Some examples of inference rules

} Modus Ponens

P    ,    P Þ Q
-----------------------

Q

} " elimination (" instantiation)

P a    ,    ("x : P x : Q x)
-------------------------------------

Q a
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Proof format (LN Ch.3)

} Stick to the proof format as in the LN (so that we have 
certainty when evaluating your work).

} To improve training, we deliberately make the format more
explicit and also more verbose.

} The format will allow you to mix a deductive style and an 
equational style of reasoning in one proof.
} Deductive reasoning: one way (from assumptions to conclusion)
} Equational reasoning: bi-directional.

} Many of our example proofs will be “quite trivial”, but
remember that our goal is to train you in formal reasoning (of
the correctness of your program). So your “mental process” is
just as important.
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Basic elements of our proof format
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PROOF main
[A1:] ("i : i>0 : a[i]=i )
[A2:] x > 10
[G:  ] a[x] > 10

BEGIN

1.  { follows from A2 } x>0

2.  { "-elim on A1 using 1 } a[x]=x

3.  { rewrite A2 with 2 } a[x]>10

END

If successful this will prove the 
claim: A1 /\ A2 Þ G (note the 
implication)



Subproof and proof scope
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PROOF main
...
4.  …
5. { see subproof below }  0≤k ⇒ b[k] 

PROOF sub
[A:]  0≤k
[G:]  b[k] 
…
… k+1 > 0
...

7.   { because “sub” says  k+1>0 }  k+2>0

Using facts inferred in a subproof as an argument 
in a higher level proof is not sound!

Suppose in the 
subproof you 
manage to derive 
k+1>0. Using this 
for further inference 
within the same 
subproof is ok.
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Introducing and eliminating quant.

} Eliminating " :

P a    ,    ("x : P x : Q x)
-------------------------------------

Q a

} Introducing $ :

P a    , Q a
------------------------------

($x : P x : Q x )

} How about introducing " and eliminating $ ??
20



Introducing "
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PROOF main

[A:]    ("k: k³0 : b[k] )
[G:]    ("k: k>1: b[k] )

1.  { how ??}   ("k: k>1 : b[k] )

PROOF sub
[A:]   k > 1
[ G]  b[k]
1. { follows from A } k³0 
2. {"-elim on main.A using 1 } b[k]
Success!  (conclusion:  k>1 Þ b[k])

We then could argue that
since k is unconstrained
in the parent proof, we
can generalize the normal
conclusion of this
subproof to ("k : k>1 :
b[k] ). But this is a bit error
prone.



" Introduction through a subproof
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PROOF main

[A:]    ("k: k³0 : b[k] )
[G:]    ("k: k>1: b[k] )

1.  { see subproof }   ("k: k>1: b[k] )

PROOF sub
ANY k
[A:]   k > 1
[ G]  b[k]
1. { follows from A } k³0 
2. {"-elim on main.A using 1 } b[k]

ANY k marker at the start of a proof
introduces a scope for k, namely
limited within the proof. Within the
proof, occurrences of k refers to this
k and any previous assumption
about this k cannot be used.
From such a proof we are allowed
to conclude a generalized formula,
in this case ("k: k>1: b[k] )



Proof by Contradiction

} Let’s prove this claim:

a[i]>i   /\ ($i : 0≤i : a[i] = i)
Þ
¬("i : 0≤i : a[i] > i)

} We’ll  prove this by contradiction. Based on this rule:

¬Q  Þ false
--------------------

Q
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Top level proof
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PROOF main

[A1:] a[i]>i
[A2:] ($i : 0≤i : a[i] = i)
[G:  ] ¬("i : 0≤i : a[i] > i)

BEGIN
1. { see subproof } ("i : 0≤i : a[i] > i) Þ false
2. { rule of contradiction on 1 } ¬ ("i : 0≤i : a[i] > i) 
END



Eliminating $
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PROOF main
[A1:] a[i]>i
[A2:] ($i : 0≤i : a[i] = i)
[G:  ] ¬("i : 0≤i : a[i] > i)
BEGIN

....

PROOF sub
[A:] ("i : 0≤i : a[i] > i) 
[G:]  false
1. {$ elimination on main.A2} [SOME k] 0≤k /\ a[k]=k
2.  {" elimination on A using 1st conjunct of 1 } a[k] > k
3. { contradiction of 1 and 2 } false 
END

Eliminating $ introduces a [SOME k]
marker which imposes a scope.
From this point on, occurrences of k
refers to this k and any previous
assumption about this k cannot be
used.



Equational proof
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EQUATIONAL PROOF 
[A:]  0 ≤ n
[D:]  found n = ($i : 0≤i<n : b[i])

found (n + 1)
=  { def. found }

($i : 0 ≤ i < n+1 : b[i])
=  { Domain Merge Thm A.4.16 justified by A }

($i : 0 ≤ i < n  \/ i=n : b[i])
=  { Domain Split Thm A.4.12 }

($i : 0 ≤ i < n : b[i])  \/ ($i : i=n : b[i]) 
=  { Quantification over Singleton Thm A.4.10 }

($i : 0 ≤ i < n : b[i])  \/ b[n]
=  { def. found }

found n  \/  b[n]
END

This equational proof proves
0 ≤n ⇒ (found (n+1) = found n /\ b[n]),
with the given definition of “found n”.



Proof with case split

} Suppose that to prove Q, we identify N-cases, and we want to 
prove Q separately for each case.

} Based on this inference rule:

} Example, prove this:
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P1 \/  P2 ,     P1Þ Q  ,  P2Þ Q
-------------------------------------------------------

Q

b[n]  /\ ("i : i<n : b[i])   Þ ("i : i<n+1 : b[i])



Top level proof of the example
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PROOF main
[A1:] b[n] 
[A2:] ("i : i < n : b[i])
[G:] ("i : i<n+1 : b[i])
BEGIN
1. { see the proof below }   G

END

PROOF sub
ANY i
[A:] i < n+1
[G:] b[i]
BEGIN
1 { follows from A } i<n   \/   i=n
2 { see subproof sub1 } i<n  Þ b[i] 
3 { see subproof sub2 } i=n  Þ b[i] 
4 { Case Split on 1,2,3 } b[i]
END



One more example of "-intro and $-elimination 

29

PROOF
[G:] ("n: n mod 4 = 0  :  n mod 2 = 0)
BEGIN
1. { see the proof below }

END

PROOF
ANY n
[A1:] n mod 4 = 0
[G:]        n mod 2 = 0
BEGIN
1.  {def. of mod on A1}  ($k:: n = 4*k)
2. {$-elim on 1}. [SOME k]  n = 4*k
3. {arith. on 2} n = 2*2k
4. {$-intro on 3} ($m:: n = 2*m)
5. {def. mod on 4} n mod 2 = 0
END

for a>0:

p mod a = 0   ⇔ (∃k:: p = a*k)



Proof with induction

} Induction over “natural numbers” is based on this rule:

P 0      ,      ("n: 0≤n : P n  Þ P (n+1))
----------------------------------------------------------

("n: 0≤n : P n)
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(n is implicitly assumed to be of type int)



Example of a proof with induction
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PROOF
[G:]    (∀n: 0≤n:  (n3 + 2n) mod 3 = 0)
BEGIN
1.   { trivial }           (03 + 2*0) mod 3 = 0
2.  { see below } (∀n: 0≤n:   (n3 + 2n) mod 3 = 0 ⇒ ((n+1)3 + 2(n+1)) mod 3 = 0)

3. { induction, using 1,2}   (∀n: 0≤n:(n3 + 2n) mod 3 = 0)
END

PROOF Ind
ANY n
[A1:]      0≤n
[A2:]     (n3 + 2n) mod 3 = 0
[G:]       ((n+1)3 + 2(n+1)) mod 3 = 0
BEGIN
1. { def. mod on A2 } (∃k :  n3 + 2n = 3*k)
2. { ∃-elim } [SOME k] n3 + 2n = 3*k
3. { see subproof} 

(n+1)3 + 2(n+1) =  3(k + n2 + n + 1)

4. {2, ∃-intro}  (∃m :  ((n+1)3 + 2(n+1)) = 3*m)
5. {def. mod } ((n+1)3 + 2(n+1)) mod 3 = 0
END

p mod 3 = 0    ⇔ (∃k :: p = 3*k)

EQUATIONAL PROOF
(n+1)3 + 2(n+1) 

=  {arithm.}  (n3 + 3n2 + 3n + 1 )+ (2n +2)
=   {arithm.} (n3+2n) + 3n2 + 3n + 3 
=   { Ind.2 }     3*k +  3*(n2 + n + 1)
=  {arithm.}  3(k + n2 + n + 1)



Lists

(LN Ch.4)



Why lists ?

} Our arrays are infinite.  On the other hand, we 
sometimes need to specify aggregate properties of finite 
segments of an array à we will use a list.
} So, we add list to one Formula-language.
} For convenience, we’ll use Haskell like notations to 

express properties of lists.
} Proving equivalence between different implementations of 

list functions (to extend what you learned in the course 
Functional Programming)
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Some list notation

} [ ],   [1, 2, 3]
} x:s,   s ++ t
} Enumeration: (a and be below are integers)

} [a .. b]
} [a .. b)

} List comprehension, e.g.:  [ 2*i |  i from s , isOdd i ]
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List functions

} On lists we can define functions like SUM, MAX, COUNT 
etc:

SUM [ ]      =   0
SUM (x:s)   =   x + SUM s

} We can map array over finite domain to list, and thus can 
define notions like SUM, MAX over a finite array-segment 
by defining them over the corresponding list.
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Converting array to list

} Let a be an array (infinite), and s be a list of integers. We 
define:

a s  =  [ a[i] |  i from s ]

} So now formulas like these are well defined:
} a[0..n) : the segment of the array a, starting from index 0 up to 

but not including n.
} SUM (a[0..n)) : the sum of the elements of the segment-array 

a[0..n).
} Similarly: COUNT (a[0..n)) ,  MAX (a[0..n)) , ...



37

Domain split

} For ",$ (Thm A.4.12) :

("i : P1 i \/ P2 i : Q i)   =   ("i : P1 i : Q i)   /\ ("i : P2 i : Q i)

($i : P1 i \/ P2 i : Q i)   =   ($i : P1 i : Q i)    \/ ($i : P2 i : Q i)

P1

P2"i P2

"i P1 "i
Inspire solutions for the problem of computing " over P1+P2 by dividing it 
into smaller problems.
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Domain Split for other “quantifiers”

} Analogous, e.g. :

(Si : P1 i \/ P2 i : i)   =   (Si : P1 i : i)    + ($i : P2 i : i)

But only if  P1 and P2 are disjoint!

} On the other hand: 

SUM (s ++ t)   =   SUM s  +  SUM t
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Now we can do SUM-split on array

EQUATIONAL PROOF 
[A:]  k≥0

SUM  (a[0 .. k+1)) 
=  {  enumeration split, Thm A.5.8, justified by A }
SUM  (a(   [0..k)  ++ [k]   ))
= {  comprehension split Thm A.5.12 }
SUM  (a[0..k) ++   [a[k]])
= {domain split of SUM  (prev. slide ... see also Thm A.5.16) }
SUM (a[0..k))   +    SUM [a[k]]
=  { def. SUM }
SUM (a[0..k))   +    a[k]

END
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Some standard ‘splitting’ thms

} SUM (s ++ t)   =   SUM s  +   SUM t

} COUNT (s  ++  t)   =   COUNT s  +  COUNT t

} MAX (s  ++  t)    =    MAX s    max   MAX t

// provided s,t are non-empty  
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Induction

} Some standard thms in your Appendix for convenience.
} Some properties may require induction to prove. We’ll 

use this list-induction rule:

P []
("x,s::  P s  Þ P(x:s))

---------------------------------------
("s::  P s)

} Simple example, prove:

COUNT s  ³ 0 , for all s
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Top level proof
PROOF main
[G:] ("s :: COUNT s  ³ 0)
BEGIN
1 { from def. COUNT }  COUNT [ ]  ³ 0
2 { subproof } ("x,s :: COUNT s ³ 0   Þ COUNT (x:s) ³ 0 )

3 { list-induction on 1 and 2 }  ("s :: COUNT s  ³ 0)
END

PROOF Pinduct
ANY x,s
[A:] COUNT s ³ 0
[G:] COUNT (x:s) ³ 0
...
...
END
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Reasoning about functional programs

} This is also covered in the course Functional Programming. 
We will illustrate it with an example.

} Example, two functional programs to do reverse a list :

rev [ ]       =   [ ]
rev (x : s)   =   rev s ++ [x]

rv t [ ]        =   t
rv t (x : s)   =   rv (x : t) s

The first one is intuitive, the 2nd is much faster. Prove that 
they are equivalent. More precisely, prove : rev s  =  rv [ ] s, 
for all s.
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Top level proof

PROOF main
[G:] ("s :: rev s  =  rv [ ] s)
BEGIN
1 { def. of rev and rv }  rev [ ] = rv [ ]  [ ]

2 { subproof } ("x,s :: (rev s = rv [] s) Þ (rev (x:s) = rv [] (x:s)))

3 { list-induction on 1 and 2 } G
END
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Attemp-1
PROOF main
[G:] ("s :: rev s  =  rv [ ] s)
BEGIN
1 { def. of rev and rv }  rev [ ] = rv [ ]  [ ]
2 { subproof below } ("x,s :: (rev s = rv [] s) Þ (rev (x:s) = rv [] (x:s)))

3 { list-induction on 1 and 2 } G
END

Essentially: 
rev (x:s)

=  { def. rev }    rev s ++ [x]
=  { IH }   rv [ ] s  ++  [x]
=  { ??  cannot find a justification for this! }  rv [x] s
=  { def. rev } rv [ ] (x : s)

We need more information to 
progress.  Basically a way to turn 
rev s ++ t  to rv t s.   

Induction hypothesis (IH)



46

Attemp-2: let’s prove this first
PROOF main
[G:] ("s :: ("t :: rev s ++ t  =  rv t s) )
BEGIN
1 { subproof-1 }  ("t :: rev [ ] ++ t  =  rv t [ ])
2 { subproof-2  below } 

("x,s :: ("t :: rev s ++ t  =  rv t s) Þ ("t :: rev (x:s) ++ t  =  rv t (x:s)))

3 { list-induction on 1 and 2 } G
END

Essentially: 
rev (x:s) ++ t

=  { def. rev }    (rev s ++ [x]) ++ t
=  { associativity of ++ and def. “:” }  rev s ++ (x : t)
=  { IH }   rv (x : t) s
=  { def. rev } rv t (x : s)

Induction hypothesis (IH)



Back to the original problem

} The main claim to prove was ("s :: rev s  =  rv [ ] s)
} Along the way, we proved a lemma:

("s :: ("t :: rev s ++ t  =  rv t s) )

} But notice that this lemma directly implies the
original claim (without having to do prove the latter
through induction)., namely by instantiating t to [ ]. I
leave the formal proof of this to you.
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