
Unit Testing

Course Software Testing & Verification
2024/25

Wishnu Prasetya & Gabriele Keller

Plan

• What is unit testing, and why we do it?
• Some essentials on unit testing:

– Unit testing in C#
– Specifying (and testing) with pre- and post-

conditions
– Mocking
– Other types of specifications: classinv, ADT, FSM.

2

Note: The subject of unit testing is only glossed over in A&O. Since unit testing plays an
important role in software engineering nowadays, in this lecture we will spend a bit more
time to discuss it.

What is “testing” ?

As such, testing is a pragmatic approach of verification (and we
have to accept that it is inherently incomplete).

3
Note: we will discuss a more complete approach in the 2nd half of the course.

Testing a program: verifying the correctness
(or other qualities) of the program by

inspecting a finite number of executions.

Example: determining triangle type

4

TriangleType TriType(Float a, Float b, Float c) { ... }

If a, b, c represent the sides of a triangle, this methods
determines the type of the triangle.

Equilateral Isosceles Scalene

An example of a test

Question: how shall we define what a “test” is?

5

Test1() {
TriangleType ty = TriType(4,4,1) ;

Assert.AreEqual(Isosceles , ty)

}

What is a “test” ?

• A “test” (also called test-case) for a program P(x) specifies an
input for P(x) and the output it expects.

• Note: the formulation of the ”expectation” part is also called
oracle.

• The definition fits nicely for a function/method-like P.
– What if P is an interactive program e.g. a web application?
– What if P is a continuously running system, e.g. a car

control system?
6

Test1() { ty = TriType(4,4,1) ; Assert.AreEqual(Isosceles,ty) }

A more general definition

A test for P(x) specifies a sequence of interactions along
with the needed parameters on P, and the expected

responses P should produce.

• Compare this with AO Def. 1.17 (both definitions try
to say the same thing).

7

Unit Test

Typical V-model testing approach

8

By users/customers (or 3rd
party hired to represent
them)

By developers

Ch. 7 provides you more background on “practical
aspect”, e.g. concrete work out of the V-model,
outlines of “test plan” à read the chapter yourself!

Requirement
Analysis

Architecture
Design

Detailed
Design

Implementation

Integration Test

System Test

Acceptance Test

Simplified version of AO Fig. 1.2.

Unit Testing

• Invest in unit testing! Debugging an error at the
system-test level is much more costly than at the unit
level.

• Note: so-called “unit testing tool” can often also be
used to facilitate integration and system testing.

9

Make sure that your units are correct!

What is a “unit” ?

• Program “units” should not be too large, that you
can still easily comprehend of its logic.

• Possibilities: functions, methods , or classes as units.

10

What is a “unit” ?

• However, different types of units may have different types of
interactions and complexity, thus requiring different
approaches to test them:
– a function’s behavior depends only on its parameters; does

not have any side effect.
– A procedure depends-on its parameters, but may

additionally have side effect on its parameters.
– A method may additionally depend on and affect instance

variables, or even class (static) variables.
– A class: is a collection of potentially interacting methods.

11

Unit testing in C#

• Unit Testing Framework: MSUnit, NUnit, xUnit. We will be using
NUnit.

• Coverage tool: both Rider and VS Enterprise have it.
• Check related tutorials/docs:

– NUnit Quick Start (older version, but will do for a tutorial):
https://nunit.org/docs/2.5.9/quickStart.html

– NUnit doc: https://github.com/nunit/docs/wiki/NUnit-Documentation
– Testing from your IDE (Rider):

• https://www.jetbrains.com/help/rider/Introduction.html, check the entry on “Get
Started with Unit Testing”.

• Obtaining test coverage information:
https://www.jetbrains.com/help/dotcover/Getting_Started_with_dotCover.html

• In this lecture we will just go through the underlying concepts.

12

https://nunit.org/docs/2.5.9/quickStart.html
https://github.com/nunit/docs/wiki/NUnit-Documentation
https://www.jetbrains.com/help/rider/Introduction.html
https://www.jetbrains.com/help/dotcover/Getting_Started_with_dotCover.html

The structure of a
solution with “test
projects”

13

A test project is a just a project in your
solution that contains your test-classes.

dependencies

the project
that we
want to
test

The structure of a “test project”

• A solution may contain multiple projects; including
multiple test projects.

• A test project is used to group related test classes.
You decide what “related” means; e.g. you may
decide to put all test-cases for package/namespace in
its own test project.

• A test class is used to group related test methods.
• A test method does the actual testing work, it usually

encodes a single test-case.

14

Test Class and Test Method (NUnit)

15

[TestFixture]
public class TriangleTest {

[SetUp]
public static void Init() ...
//[TearDown]
//public static void Cleanup() ...

[Test]
public void Test1_Triangle() ...

[Test]
public void Test2_Triangle()

}

Test1_Triangle() {
var ty = TriType(4,4,1) ;
Assert.AreEqual(Isosceles, ty)

}

Inspecting Test Result (Rider)

16

Inspecting Coverage (Rider)

17

Finding the source of an error: use a
debugger!

18

• Add break points; execution is stopped at every BP.
• You can inspect the values of every variable
• You can proceed to the next BP, or execute one step at a

time: step-into, step-over, step-out.

Test Oracle

• Check NUnit doc on Assertions:
https://github.com/nunit/docs/wiki/Assertions
– Classic way: Assert.IsTrue(x == 0) or Assert.AreEqual(0,x)
– Constraint model: Assert.That(x, Is.EqualTo(0))

19

An oracle specifies your expectation on the program’s responses.

Test1_Triangle() {
var ty = TriType(4,4,1) ;
Assert.AreEqual(Isosceles, ty)

}

https://github.com/nunit/docs/wiki/Assertions

A test needs oracles

• How do we determine what the expected responses
of the program under test?

• Ideally, there exists a specification (or you have to
elicit that, somehow).

20

Test1_Triangle() {
var ty = TriType(4,4,1) ;
Assert.AreEqual(Isosceles, ty)

}

Informal or formal specification?

21

TriType(Float a, Float b, Float c) { ... }

Informal: “If a, b , c represent the sides of a triangle,
this methods determines the type of the triangle.”

Formal specification, pros and cons

• Pros:
– Precise
– Can be turned to “executable” specifications.
– When the program is changed, only its specification needs

to be adapted; we don’t have to re-program the test cases.
– Allow you to “generate” the test sequences/inputs rather

than writing them manually.
• Cons:

– Capturing the intended specification is not always easy.
– Additional work.

22

Example

• Formalize the specification of TriType(a,b,c).

23

Informal: “If a, b , c represent the sides of a
triangle, this methods determines the type of the

triangle.”

Formalizing specification with a pre- and
post-conditions

24

{ a>0 ∧ b>0 ∧ c>0 ∧ a+b>c ∧ a+c>b ∧ b+c>a }

TriType(a,b,c)

{ (a=b ∧ b=c ∧ a=c) ⟺ retval=Equilateral
∧

(a≠b ∧ b≠c ∧ a≠c) ⟺ retval=Scalene
∧

... ⟺ retval=Isosceles }

Pre-condition

Post-condition

• Formal, but not yet “executable”. We can’t invoke it from our test cases.
• “…” above means “information not shown” (it does not mean “else”)

Turning it to an in-code specification
(here, encoded as a parameterized NUnit-test)

25

void MethodSpec(x) {

if (...pre-cond...) {

var retval = Method(x)

Assert.IsTrue(...post cond...)
}
else Assert.Throws<expected exception>(() => Method(x));

}

Pre-condition

Post-condition

In-code specifications are specifications expressed in a programming
language. It is less clean, but it is executable, so you can invoke them

from your tests.

Check that the method throws
the right exception when the

pre-cond is violated.

26

bool TriTypeSpec(float a, float b, float c) {

if (a>0 && b>0 && c>0 && ...) {

var retval = TriType(a,b,c)

Assert.True((retval == Equilateral) == (a==b && b==c && a==c))
Assert.True((retval == Scalene) == (a!=b && b!=c && a!=c))
Assert.True((retval == Isosceles) == ...)

}
else Assert.Throws<ArgumentException>(() => TriType(a,b,c))

}

Pre-condition

Post-condition

In-code Spec of TriType
(encoded as a parameterized NUnit-test)

Now you can write your tests like this
(NUnit, parameterized test)

27

[TestCase(4,4,1)]
[TestCase(4,4,4)]
[TestCase(1,2,4)]
[TestCase(0,4,1)]
[TestCase(0,0,0)]
...
bool TriTypeSpec(float a, float b, float c) { ... }

Important observation: this approach also opens a way for you to
“generate” the tests, e.g. using a QuickCheck-like tool.

Note: “TestCase” Nunit attribute can only handle simple types. See
also the doc. for ‘TestCaseSource” Nunit attribute.

Example specifications for methods on
arrays or collections

28

Informal: given a non-empty integer array a, and assume x
occurs in a, the method returns an index k in a of an x.

int GetIndex(x, int[] a) { ... }

Formal spec: now we also need “quantifiers”

• Informal: given a non-empty integer array a, and assume x
occurs in a, the method returns an index k in a of an x.

29

{ a ≠ null ∧ (∃k: 0≤k<a.length : a[k]=x) }

GetIndex(x, int[] a)

{ 0≤ retval<a.length /\ a[retval] = x }

Providing quantifiers as in-code

• Define (static):

• Exists(a,P) = there exists a valid index i of a, such that P(i) is
true.

• Similarly you can define Forall(a,P).
• Similarly you can define quantifiers for collections.
• Already provided in STVRogue project. 30

Exists<T> (T [] a, Predicate<int> P) {
for (int k=0; k<a.Length; k++) if (P(k)) return true ;
return false ;

}

Specifying properties of arrays
(and similarly collections)

• Now we can write in-code properties, e.g. : the array a
contains only positive integers:

• Or, the array a has at least one positive integers:

• Alternatively using built-in a.Any(..) and a.All(..)

31

Forall(a, k => a[k] > 0)

Exists(a, k => a[k] > 0)

Example: in-code spec of GetIndex

32

GetIndexSpec(int x, params int[] a) {

if (a!=null && Exists(a, k => a[k]==x)) {

var retval = GetIndex(x,a)

Assert.IsTrue(a[retval]) == x) }

else Assert.Throws<ArgumentException>(() => GetIndex(x,a))

}

Informal: given a non-empty integer array a, and assume x
occurs in a, the method returns an index k in a of an x.

Pre-condition

Post-condition

Using GetIndexSpec for parameterized test

33

[TestCase(0)]
[TestCase(0,1)]
[TestCase(0,0,0)]
[TestCase(0,1,1,1,0)]
...
GetIndexSpec(int x, params int[] a) { ... }

Mock
• Consider testing a class C that uses a class D.
• In a larger project, it is possible that D is developed by

a separate team, and by the time you want to test C, D
is not ready/stable yet. Solution: we ”mock” D.

• A mock of a program P:
– has the same interface as P
– may only implement a very small subset of P’s behavior
– fully under your control

• You would want a way to conveniently create mocks.
• Mentioned in Ch. 6.2.1 A&O (12.2.1 2nd Ed).

34

Example: Heater

35

test1() {
thermometer = // get some thermometer
Heater heater = new Heater(thermometer)
Assume.That(thermometer.Value() >= heater.limit+0.001)
heater.AutoOff()
Assert.IsFalse(heater.active)

}

class Thermometer
double Value()
…

class Heater
double limit
bool active
Thermometer thermometer
public AutoOff() {

// if thermometer.value()
// exceeds the limit,
// deactivate the heater }

Notice that for this
test you need a

working Thermometer
class.

You need to restructure a bit

36

class Thermometer

class Heater
double limit
bool active
IThermometer thermometer
Heater(Ithermometer t) // contr
autoOff() {

// if thermometer.value()
// exceeds the limit,
// deactivate the haeter

}

interface IThermometer
double Value()
…

To facilitate mocking usually you need to replace your dependency so that
your class of interest depends on interfaces instead.

Creating mocks dynamically using NSubstitute

• Create an instance of an Interface, by calling the method “For”
from the class ” NSubstitute.Substitute” :

thermometer = Substitute.For<IThermometer>()

• You can program the behavior of the interface’s methods on-
demand. General form: mock.<method>(x1,x2,...).Returns(y),
e.g.:

thermometer.Value ().Returns(100)

Now whenever you do thermometer.Value() this will return 100.
37

Test with a mock

38

test1() {
thermometer = Substitute.For<IThermometer>()
Heater H = new Heater(thermometer)
thermometer.Value().Returns(heater.limit + 0.001)
H.autoOff()
Assert.IsFalse(H.active)

}

class Heater
double limit
bool active
IThermometer thermometer
Heater(Ithermometer t)
autoOff()

interface IThermometer
double Value()
…

Now we can write test1() like this:

Creating a
mock
thermometer
and
programming
its behavior.

Specifying a “class”

• Many classes have methods that interact with each
other (e.g. as in Stack). How to specify (and test)
these interactions?

• Option-1: specify every method with pre- and post-
conditions (we discussed this).
This is expressive enough, but pre- and post-
conditions do not naturally capture inter-method
interactions.

39

Specifying a “class”

• Other options, which can be user either as
alternatives or in conjunction with pre/post-
conditions:
– class invariant
– Abstract Data Type (ADT)
– Finite State Machine (FSM)

40

Specifying with class invariant

• A class invariant of a class C specifies valid states of instances of
C. When an instance is created, it must have a valid state. All
operations/methods of C are expected to restore the state of
their target instance to a valid state.

• Example, for Thermometer, its class inv could be: temperature
≥ -273.15

41

class Thermometer {
double temperature // in Celcius
Value()
Incr(t)
Decr(t)

}

Specifying a class as an ADT

An Abstract Data Type (ADT) is a model of a
(stateful) data structure. The data structure is
modeled abstractly by only describing a set of
operations (without exposing underlying data
structure implementing the state).

The semantic is described in terms of “logical
properties” (also called the ADT’s axioms) over

those operations.
42

Do these look
familiar?

Example : specifying my ItemStore

43

class ItemStore<T> {
Store(T x)
T Get()
int Size()

}

Axioms :
1. The Size of a new ItemStore is 0.
2. After s.Store(x), Size is 1 + the Size before.
3. If Size>0, after S.Get(), Size is one less than the Size

before.
4. After S.Store(x), s.Get() gives x.

Testing ADT

44

Axiom4(ItemStore s, T x) {
s.Store(x) ; assertEqual(x, s.Get()) ; }

For example, to test Ax-4:

We can imagine these test cases :
1. empty s
2. a non-empty s that does not contain x
3. an s that already contains x

Testing an ADT amounts to verifying each of
its axioms, each can be formulated as a

parameterized test.

