- What does weak and strong mean in this context?
- When is a statement P weaker than a statement Q?
 - if Q implies P
 - set interpretation: Q is a subset of P

- 'False' corresponds to the empty set, so strongest possible statement
- 'True' to the whole universe, so weakest

- But how do operators affect this?
- E.g., is P weaker or stronger than P v Q, P A Q for an arbitrary Q?

- That's easy, but how do operators affect this?
- E.g., is P weaker or stronger than $P \vee Q$, $P \wedge Q$?

5

Ρ	\Rightarrow	Q
Ρ	\Rightarrow	Q

is weaker than

 $P v R \Rightarrow Q$

and both are stronger than

 $P \land R \Rightarrow Q$

- Hoare triples are a kind of implication:
 - {* P *} S {* Q *}:
 - if P holds before the execution of S, then Q holds after S is executed and terminates (partial correctness)
 - if P holds before the execution of S, then S terminates and Q holds after S is executed (total correctness)
- Therefore, the same rules hold wrt strengthening/weakening the conditions
 - if {* P *} S {* Q *} and
 - $R \Rightarrow P$, then {* R *} S {* Q *} (strengthen the pre-condition)
 - $Q \Rightarrow R$, then {* P *} S {* R *} (weaken the post-condition)