STV Project 2024/25

Deadline: see website.

The overall goal of this project is to learn how some ba-
sic concepts and techniques in software testing can be ap-
plied in practice. To simulate a real-life problem, you will
start by developing an application and do unit testing on its
components. In the later part of the project we will also do
system-level testing.

The software to implement is a console-based, single player
turn-based game inspired by the classic rogue RPG game.
The game is played in a dungeon in the form of a connected
graph. The goal is to survive the dungeon, and reach its exit.
Evil monsters roam the dungeon, but there are also items
which can help the player to defeat them.

The implementation language for this project is C#.

A starting implementation will be given to you, though it
leaves most of the game logic unimplemented (and there are
also some bugs left there):

https://git.science.uu.nl/prase101/STVrogue

You can clone it, and read its . s1n file into your IDE. This ini-
tial implementation prescribes the architecture of the game
logic. Please stick to this architecture and do not change the
signature of existing methods (feel free to add more methods
and classes). Keep your clone private!

The list of features to implement is kept minimum, to
let you focus on the above mentioned goal. Some degree
of complexity is deliberately introduced, to provide some
challenges.

I also need you to keep track of your testing effort
and findings (the hours you spend on testing and
the number of bugs you find).

1 Required software

You need an IDE for C# that includes a code coverage tool.
There are two options:

1. Jetbrains Rider!. This has my preference. If you use
Mac or Linux, you should use Rider. You can get free
education license for this®. You additionally need to
install the DotCover plugin.

2. Microsoft Visual Studio Enterprise Edition. You need
the Enterprise edition. It is a bit overkill, but smaller

Thttps://www.jetbrains.com/rider/
Zhttps://www.jetbrains.com/community/education

Course Software Testing & Verification,
2025.

edition does not include any code coverage tool. Unfor-
tunately, the Enterprise edition seems to be no longer
in our free university deal. So, it is not a real option.

The project is configured to use .net 8.0 and C# 12. Please
stick with this setup.

For Unit Testing we will be using NUnit Testing Frame-
work?, but your IDE should get this automatically when you
read the project’s . s1n file into the IDE.

It is also useful to have a code metrics tool.

An important metric is the McCabe/Cyclometic metric
(recall MSO, else check Wikipedia). If you use Rider you
need to install the CyclomaticComplexity plugin.

Visual Studio has a more complete Code Metrics function-
ality. Along with McCabe it can give many other metrics.
The feature is available even in the Community edition, but
only the Windows version.

We also allow you to use Github Co-Pilot.

2 Few Important Notes before You Start

Test Flakiness: Random Generator. Like in many other
games, some parts of STV Rogue are required to behave ran-
domly (e.g. when generating dungeons, or when deciding
monsters’ actions). When testing a program that behaves
non-deterministically, the same test may yied different re-
sults when re-run with exactly the same inputs and configu-
ration. Such a test is called "flaky’. Obviously we do not want
to have flaky tests.

To this end, you need to make it so that you can con-
figure your implementation of STV Rogue to switch from
using normal random generators to using pseudo random
generators when testing it*. Such a generator behaves de-
terministically when given the same seed. Check the class
Utils.STVControlledRandom to obtain such a generator.

Test Flakiness: Persistent State. Another source of flaky-
ness is dependency on ’persistent’ data, such as a database or

a static variable. For example, the aforementioned STVControlledRandom

keeps its state in a static variable. When running a set of
test methods, keep in mind that they may be executed in a
different order when the set is different, or simply because
the used unit testing framework makes no commitment on
keeping the order the same. This may cause the tests to affect
a persistent state in a different order, resulting in flakiness.

3https://nunit.org/

“Well, a ‘normal’ random generator is typically also a pseudo random
generator. It is just that its seed is not fixed, e.g. it is based on the system
time. You can make your random generators deterministic by controlling
the seed(s) they use —check the documentation of the class Random. When
deploying the game for actual users, you can supress the seeds so that they
will use random system-seeds.

https://git.science.uu.nl/prase101/STVrogue
https://www.jetbrains.com/rider/
https://www.jetbrains.com/community/education
https://nunit.org/

Course Software Testing & Verification,

| g |
1
GameRunner @
(game-loop)
{ player
Game
(game state)
Dungeon
Player
Item *
Monster *

(Entities : no 1/0O)

Figure 1. The architecture in UML-like Class Diagram.

To avoid this, make sure that you reset relevant persistent
states before every run of a test method. See the documenta-
tion of the attribute [SetUp] of NUnit :)

Intercepting I/0. For automated system testing, we will
use a ’test-agent’. This agent can simulate keyboard com-
mands. The method ‘GetUserOrTestAgentInput()‘ in the class
GameRunner controls whether the game reads from your
actual keyboard or from the test agent. You can look into
this method to see how it works.

LINQ. Check out how to use Language Integrated Query in
C# to make your code less complicated, e.g. to count the
number of healing potions in the player bag:

(from i in player.Bag where i is HealingPotion
select i).Count()

Or alternatively, in the functional programming style:
player.BagWhere(i = i is HealingPotion).Count().

Or, in this case, simply: player.Bag.Count(i = i is Heal-
ingPotion).

3 Architecture

The initial code of STVRogue establishes the simple archi-
tecture shown in Figure 1. The class Program serves as the
usual main-class from which the game is run. Program will
simply call GameRunner; this contains the game main-loop.
In this loop, the game shows the game state to the user, and
asks the user to decide and enter his/her action. The action
is then interpreted to update the game state. This completes
a turn, and the loop starts over again.

The state of the game is maintained in the class Game.
This method also has the method Game.Update() where you
should implement how a single turn updates the game state.

The class GameRunner also holds a pointer to a GameConsole

that provides methods for printing texts to the system-console
and for reading strings from it. The class Game holds the
pointer too, in case you need to do some text-printing from
there. Do not use the system-console directly for your con-
sole I/O. Use this GameConsole instead.

linear dungeon

tree-shaped dungeon grid dungeon

Figure 2. Some examples of dungeons.

4 The Game Logic

The game logic is implemented by the classes in STVrogue.GameLogic.

A large part of these classes are left unimplemented for you.
And yes, you will also need to test them to make sure you
deliver a correct game logic.

4.1 Class GameEntity

Monsters, items, rooms, and the player are the main entities
of the game. They will have their own class, but they all
inherit from a minimalistic class called GameEntity. We will
insist that game entities (so, instances of GameEntity) should
have unique IDs; this will make it easier for you later to debug
the game from its UL

4.2 Class Dungeon

The game is played on a dungeon, which consists of rooms.
There are three types of rooms: start-room, exit-room, and
other rooms (we will call them ’ordinary’ room). A dungeon
should have one unique start-room, one unique exit-room,
and at least one ordinary room.

Rooms are connected with edges. If r is a room, all rooms
that are directly connected to r are called the neighbors of r.
Self-loop (connecting a room to itself) is not allowed as this
tends to confuse users. The player and monsters can move
from rooms to rooms by traversing edges. Technically, this
means that the rooms in the dungeon form a graph whose
edges are bi-directional. We require that all rooms in the
dungeon are reachable from the start-room. Figure 2 shows
some example of dungeons.

The constructor Dungeon(shape, N, y) creates a dungeon
consisting of N>3 rooms that meets certain requirements;
see below. It fails (throws an exception) if it cannot construct
a dungeon that meets the requirements.

1. A dungeon should satisfy the previously mentioned
constraints about its connectivity and the uniqueness
of its start and exit-rooms.

STV Project 2024/25

2. The parameter shape determines the shape of the dun-
geon. There are three types: LINEAR, TREE, and GRID.
A LINEAR dungeon forms a list with the start-room
at one of its ends, and the exit-room at the other end.
A TREE dungeon contains no cycle, and is not linear-
shaped. Furthermore, the exit-room should be a leaf of
this tree. A TREE dungeon contains at least five rooms.
A GRID dungeon forms a 2D-grid. Figure 2 shows an
example. A GRID has at least four rooms.

3. Every room in the dungeon has a capacity. It specifies
the maximum number of monsters that are allowed to
be in the room. Let ¢ be the capacity of a room r
a. For start and exit-rooms: ¢ = 0.

b. For rooms neigboring to the exit room: ¢ = y.

c. Other rooms have random capacities ¢ € [1..y].
Note that the above requirements also imply that y > 0
and that the exit-room cannot be a neighbor of the
start-room.

The constructor Dungeon is already implemented for you
(though not guaranteed to be bug-free).

4.3 Class Creature

A creature has hit point (HP), attack rating, and its location
(the room it is in) in a dungeon. Attack rating should be a
positive integer. A creature is alive if and only if its HP is >0.
There are two subclasses of Creature: Monster and Player.

Creature has two operations: move(r) to move it to a
neigboring room, subject to the room capacity, and attack(f)
to attack another creature f provided it is located in the same
room. When a creature c attacks f, the action will damage
f’s HP (that is, reducing it) by A where A is the attacker’s
attack rating. If f°s HP drops to 0, f dies.

The player has additionally ’Kill Point’ (KP) that is in-
creased by one each time it kills a monster. The player also
has a bag, that contains items it picked up.

4.4 Items

Items are dropped in the dungeon. When the player enters a
room that contains items, it can pick them. The items will
then be put in the player’s bag.

There are two types of items: Healing Potion and Rage
Potion. A healing potion has some positive healing value.
When used, it will restore the player’s HP with this value,
though the HP can never be healed beyond the player’s
HPMax.

A rage potion will turn the player into a raging barbarian.
This temporarily double the player’s attack rating. The effect
last for 5 turns (not including the turn when it is used).

Using a potion will consume it.

Course Software Testing & Verification,

4.5 Class Game

The class implements the game’s main loop, and also holds
most of the game logic®.

The constructor Game(conf) takes a configuration and
will create a populated dungeon according to the configura-
tion. The configuration conf isarecord (shape, N, y, M, H, R, dif)
of 7 parameters:

. shape the shape of the dungeon to generate.

. N the number of rooms in the dungeon.

. v specifies the maximum rooms’ capacity.

. M is the number of monsters to generate.

. H is the number of healing potion to generate.

. R is the number of rage potion to generate.

. dif is the difficulty mode of the game. There are three
modes: Newbie-mode (easy), Normal-mode, and Elite-

NN W=

mode.

The constructor will generate a dungeon satisfying the
parameters in conf. Some configurations might be hard, or,
as remarked in Section 4.2, even impossible to satisfy. The
constructor is allowed to fails (it would then throw an excep-
tion), if after some k attempts if cannot generate a populated
dungeon that satisfies the configuration.

When the dungeon is created, the player should be placed
at the start-room of the dungeon. It should be alive, and its
HP is equal to HPMax, and >0.

4.5.1 Monster and items seeding. The task to poplate/seed
the dungeon with monsters and items is delegated to a helper
method called SeedMonstersAndltems (so, your constructor
Game(conf) should call this helper method).

The method SeedMonstersAndltems(M, H, R) randomly
populates the rooms in the dungeon with monsters and
items.

The paramemer M specifies the number of monsters to be
dropped in the dungeon, H is the number of healing potions
to be dropped, and R is the number of rage potions.

Populating the dungeon are subject to the requirements
set below. Meeting these requirements are not always possi-
ble (e.g. it is impossible to populate a dungeon with N rooms
of max-capacity y with more than (N — 2)y monsters).

The method SeedMonstersAndltems returns true if it man-
ages fullfill the requirements, else it returns false. The re-
quirements are:

1. Every monster in the dungeon should be alive and
have HP and AR >0.

2. Every room cannot be populated with more monsters
than its capacity allows.

3. Let Ng be the set of neighbor-rooms of the exit-room.
Every room in Ng should be populated with at least
as many monsters in any non-Ng room. So, for any

SFor a larger game with a more complex it would make sense to introduce
more decomposition. STV Rogue is not that complex though; so, to favor
simplicity I will keep most of the logic centralized in the class Game.

Course Software Testing & Verification,

r € Ngandr’ ¢ Ng, then |[r.monsters| > |r’.monsters|
should hold.

4. Let N be the number of rooms in the dungeon. At least
| N/2] number of rooms should have no item at all.

5. The start and exit rooms cannot have items (nor mon-
sters, since their capacity is zero).

6. If a room contains healing potion(s), none of its neigh-
bours should contain a healing potion.

7. Rage potions can only be placed in rooms which are
"leaves" in the dungeon, and are not the exit-room.
(so, how do you recognize if a room is a ’leaf’?) This
implies btw that you cannot have a rage potion in a
LINEAR dungeon (nor GRID).

4.5.2 Game-update. STV Rogue is a turn-based game. It
means that the game moves from turn to turn, starting from
turn 0, then turn 1, turn 2, etc. At a turn, every creature in
the dungeon, and is still alive, makes one single action. The
order is left to you to decide, as long as everyone gets exacly
one action.

The player wins if it manages to reach the dungeon’s
exit-node. It loses if it dies before reaching it.

The main methods of the class Game is update(e). It will
advance the game by one turn. This method iterates over all
creatures in the dungeon. A monster can choose its action
randomly; this will be explained more below. The action of
the player is as specified by a.

The player is in-combat if it is in the same room with a
monster. Likewise, a monster is in-combat if it is in the same
room with the player.

There are six possible actions that a creature can do, though
a monster can only do four of them:

1. DoNOTHING, it means as it says.

2. MOVE r: the creature moves to another room r. This
should be a neighboring room, and furthermore this
should not breach r’s capacity.

MOVE is not possible when the creature is in combat.

3. PICKUP: this will cause the player to pick up all items
in the room it is currently at. The items will the be put
in the player’s bag. A monster cannot do this action.

4. USE i: this will cause the player to use an item i. The
item should be in its bag. The effect of using different
items were explained in Section 4.4.

5. ATTACK f: the creature attacks another creature f.
This is only possible if both the attacker and defender
are alive and are in the same room. Also, a monster
cannot attack another monster.

6. FLEE: the creature flees a combat to a randomly chosen
neighboring room. Fleeing is subject to a number of
conditions listed below.

a. A monster cannot flee to a room if this would exceed
the room’s capacity.

b. The player cannot flee to the exit-room.

c. In the Newbie-mode, the player can always flee.

d. In the Normal-mode, the player cannot flee if in the
previous turn it uses a potion.

e. In the Elite-mode, in addition to the restriction in (d)
above, the player also cannot flee while it is in the
enraged state.

The logic for executing this action is to be implemented

in the method Game.Flee(c), where ¢ is the fleeing

creature.

5 The Game Loop

The game’s main-loop is to be implemented in the class
GameRunner, more precisely in the method Game.Run(¢).
The implementation is not complete :) You should complete
it. You can for now ignore the parameter ¢ —this is only
relevant for an Optional task later.

This main loop is directly called from the top level class
Program, so you can run and try this loop by running Program.

At every iteration of this main loop, the game status is
printed to the Console, and then the loop waits for the
player’s action. The player does the action by pressing a
key on the keyboard. The loop should handle invalid inputs
given by the user, or if multi-inputs are needed. If the inputs
form a valid command, then a command « is constructed
and passed to the method Game.update() to decide what
to do with the command. The loop then advances to the next
iteration. This is repeated until the game ends.

When ran, the main loop first shows a welcome-screen,
and the game begins. At each turn the game should display
at least:

1. The turn number.

2. Player information: HP and KP.

3. The id of the room the player is currently at, and those
of connected rooms.

4. Ids of monsters in the room.

5. Items in the room.

6. Items in the player’s bag.

7. Avaialable actions for the player. Some actions may not
always be possible. E.g. using a potion is not possible
when the player does not have any. Likewise, fleeing
is not always possible. When the player tries to do
an action that is actually not possible, your program
should not crash. Instead, it should print a message
notifying the player that the action is not possible.
Importantly, this does not count as his/her action for
the turn. The player can retry with another action.

STV Project 2024/25

When the player does an action, print a message to the con-
sole informing the player of the effect of this action. When
a monster in the current room does an action, also print
similar message. Actions of monsters in other rooms should
not be echoed to the console.

When the player wins or loses, print your ending message
before exiting the game.

6 The Class Program

The class STVrogue.Program is the main class (the class with
the Main method) from where the game will be configured,
created, and run. When you start the application, it reads the
game configuration from a file (configuration is explained in
Section 4.5). It then creates an instance of Game according
to this configuration, and run it.

By default the configuration file is:

root/STVrogue/saved/rogueconfig. txt

where root is the directory where you put the STVrogue git
(the directory where you find the readme.md of the project).

7 Your Tasks

Your tasks are listed below. All are mandatory, except the
optional-variant of Task 7. You should divide the work among
your team members such that everyone has her/his fair share
of testing. In fact, the author of a functionality should not
be the only person to test the functionality due to her/his
obvious bias.

1. The method Move(r) (of Monster and Player) and the
method Creature.Attack(f) (0.5 pt).

. The constructor Dungeon(shape, N, y) (1.5 pt).

. The constructor Game(con figuration) (1.5 pt).

. The method Game.Flee(c) (1.5 pt).

. Finishing the implementation of STV Rogue (2 pt).

. Test the rest of the game logic (1.2 pt).

. System-level testing (0.5 - 1.5 pt). Basic form: 0.5 pt.
Optionally you can do a stronger system-level testing
and its reporting for 1.5 pt.

8. Report (0.3 pt).

Test coverage requirement. For 7.1 - 7.4 and 7.6, all
produced tests should deliver 100% code coverage® on their
test target and all its worker methods (e.g., your tests on
Flee(c) should give 100% coverage on this method, and other
workers it invokes). For 7.7 we have a separate requirement
explained later.

Delegated logic/worker. You may decide to delegate
some of the logic of the above listed targets to another class.

NN U W

Visual Studio tracks both line coverage and block coverage. The concept
of "block’ coverage is explained in one of the lectures. Rider uses a different
concept, namely statement coverage. What "statement" means typically
depends on the tool you use. For Rider this generally refers to simple state-
ments such as an assignment or a return statement. A whole if-then would
count as several statements. E.g. Rider would see if (p||q) {x++;return x}
as three 'statements’: the guard p||q, the assignment x++, and return x.

Course Software Testing & Verification,

E.g. in the implementation of Game.Flee(c) you might dele-
gate some of the logic to Player.Flee(). Keep in mind that
this delegated logic/worker should then also be fully covered
by your tests.

Please document your test methods and in-code
specifications/parameterized-tests. Write a comment
describing what each test method tries to check. In-
side the body of each in-code specification/parame-
terized test, write a comment explaining what cor-
rectness properties different parts of the specification
try to capture.

The McCabe/Cyclometic metric of your method should
gives a rough estimation on the minimum number of test
cases you would need to test it (but keep in mind that it
won’t take delegated logic into accout). The metric gives
the number of ’linearly independent’ control paths in the
method.

7.1 Test Move(r) of Monster and Player. Test
Creature.Attack(f) too. (0.5 pt)

To get you started in learning to do basic unit testing, test
the above mentioned two methods to verify their correct-
ness. The methods are already implemented, so you only
need to test them (and to fix them if you find bugs). Note
that Move(r) of Monster and Player also call Move(r) of the
superclass Creature; don’t forget that the move of Creature
has two branches.
Use NUnit Framework to write your tests.

7.2 Test the constructor Dungeon(shape, N,y) (1.5 pt)

The constructor is already implemented for you. The in-
tended behavior of this constructor is informally specified
in Section 4.2. Formalize its informal specification as an in-
code specification and then use NUnit parameterized test
to test the method. Figure 3 shows an example.

The implementation may have some bugs for you to fix.

The class Utils.HelperPredicates contains some help pred-
icates you might find useful. E.g. it contains a predicate to
check if a dungeon is linear-shaped. You may also want to
play with CoPilot a bit to see if it can generate some asser-
tions for you. You can e.g. first type what you want in a plain
language, in a comment, and see what CoPilot then generate
out of it. Here is an example of what it produced (in my case):

// each room has a capacity between @ and capacity:

Assert.That(Forall(D.Rooms, r => r.Capacity >= 0 && r.Capacity <= capacity));

Note that CoPilot might help saving some typing work, but
you cannot blindly trust it. Ultimately, you are responsible
for the correctness of your solution and that your tests are
sensical.

Course Software Testing & Verification,

[TestFixture]

public class Test_Remainder {
// the tests:
[TestCase (5,0)]
[TestCase (5,3)]
[TestCase(5,-3)]
[TestCase(-5,-3)]

// the in-code spec. for % :
public void Spec_Remainder(int x, int y) {
// check the method-under-test's pre-condition:

if(y 1= 0)
// calling the method-under-test:
int r = x %
// (a) check the method's post-condition: r is a correct
// reminder if it is equal to x - d+y, where d is the
// result of dividing x with y:
Asssert. Istrue(r == x - (x / y) »y) ;

// Note: using AreEqual is here better. Check its doc.
}
else {
// (b) the method should throw this exception when its
// pre-condition is not satisfied:
Assert.Throws<DivideByZeroException >(x % y) ;

}

Figure 3. An example of how to write an NUnit test through
an in-code specification. Let’s imagine we want to test C#
remainder operator (%).

7.3 Implement and test the constructor Game(conf)
(1.5 pt)

The intended behavior of this constructor is informally spec-
ified in Section 4.5. Implement the constructor and write
in-code specification for this method. Formulate it as a pa-
rameterized test. This time, use NUnit combinatoric testing
feature to generate tests for the constructor. Be mindful that
full combinatoric test may blow up to thousands of test cases.
You may want to consider pair-wise testing instead.

Check the entries on ’Combinatorial’ and "Pairwise’ in
NUnit documentation. There are also examples of these in
the STV Rogue project itself.

Your tests should give full coverage on the constructor
and its worker methods as well.

7.4 Implement and test the method Game.Flee(c) (1.5
pY)

The intended behavior of this method is informally speci-

fied in Section 4.5. The logic of this method is not trivial.

Implement and test it (1pt).

For 0.5 pt, use NUnit "Theory" to verify your flee-logic
on the player in the Elite difficulty. Check that the logic is
correct regardless the player HP, the number of monsters in
the room, and how long the player has been engared (0..5
turns). Obviously checking this on e.g. all possible values
of HP might blow up the number of test cases. So you can
instead introduce a domain partitioning.

Check NUnit Documentation: https://docs.nunit.org/articles/

nunit/intro.html The entry about Theory should be listed
under the category ’Attributes’. There is also an example of
using Theory in the STV Rogue project itself.

7.5 Finish the Implementation of STV Rogue (2 pt)

Finish the implementation of STV Rogue to get a working
game. Among other things, you will have to implement the
method Game.Update(cmd) and finish the class GameRunner.
The resulting game should be able to run without crashing
and has all the asked features. It does not have to be beautiful.

7.6 Test the rest of the game logic (1.2 pt)

Finish the testing of the game logic (that is, of all classes
in the STVrogue.Gamelogic namespace). We aim for 90%
coverage on the classes under GameLogic. If you have less,
give the reason in your report (e.g. unreachable code).

7.7 System Testing (0.5 - 1.5 pt)

System-level testing of computer games is typically hard
to automate. STVRogue is no exception. You will have to
manually play-test the game to make sure that it works
properly.

Having said that, STVRogue has been designed to allow
automated testing using a ’test-agent’. You can use this to do
automated system-level testing to complement your manual
play-testing. To define a test-agent you write a subclass of
the class TestAgent and implement the method NextAction().
When used, the game will call this method whenever it would
otherwise read the keyboard for the user’s input. So, in this
method you can program how the agent would drive the
game. E.g. it could be to just randomly play the game. See
the project Coba_TestAgent to see an example how to hook
an agent to the game.

In this task, you will do automated system-level testing
using such an agent. You have two options:

e Basic system-testing (0.5 pt). Implement a random agent
that just randomly interacts with the game (simulating
legal and illegal keys). Use this agent to verify that the
game is robust (does not crash) on all types of dun-
geons and on all difficulty modes. Use dungeons with
at least 15 rooms. Have your tests to run N times on
each game instance, to compensate for the randomness
of the agent. You should get at least 70% code coverage
on the class GamerRunner.

o Stronger system-testing (1.5 pt). Implement a random
agent (as above) and a smart agent. I leave it to you to
come up with your own algorithm for the smart agent.
1. (0.5) Use both agents to verify that the game is robust

(does not crash) on all types of dungeons and on
all difficulty modes. Use dungeons with at least 25
rooms.

2. (0.5) Also verify that the following sanity properties
hold through out the plays: (1) the player’s HP never
exceeds its HPMax; (2) no creature can remain in
the dungeon if its HP has become zero or negative;
and (3) the player’s KP never decreases. Use the

https://docs.nunit.org/articles/nunit/intro.html
https://docs.nunit.org/articles/nunit/intro.html

STV Project 2024/25

parameter ¢ in the GameRunner for checking such
properties.

3. (0.5) Benchmark the code-coverage performance of

your smart agent versus the random agent, over
increasing room numbers. You would need to rerun
the agents N-times to get an average performance
value. Include the result of this benchmarking as a
graph in your Report. Also provide a description of
how the algorithm of your smart agent works.

7.8 Report (0.3 pt, mandatory)

Make a report containing the items listed below.

1.
2.
3.

7.

. Statistics of your unit-testing effort:

Team-id and members’ names.

Mention the location of your tests.

Some short instructions how to play the game, so we
can check that it works.

. The general statistics of your implementation:

N = total #classes

M = total #methods

locs = total #lines of codes(*) F—
locsaug = average #lines of codes() : locs/N
(*) exclude comments

Global Statistics
N’ = #classes targeted by your unit-tests
total coverage over GameLogic
T = #test cases (*)
Tlocs = total #lines of codes (locs) of your unit-tests

Tlocsaug = average #unit-tests’ locs per target class : Tlocs/N’
E = total time spent on writing tests HE
Eavg = average effort per target class . E/N’

total #bugs found by testing
Statistics of some selected targets
Dungeon(shape, N, y)
mcCabe metric (*)
test-cases (**)
coverage
Game(conf)
mcCabe metric
test-cases (*)
coverage
Dungeon.SeedMonstersAndltems (M, H, R)
mcCabe metric
coverage
Game.Flee(c)
mcCabe metric
test-cases (*)
coverage
Game.Update(cmd)
mcCabe metric
test-cases (*)
coverage
(*) Also known as the Cyclometic metric.

(**) We will define the 'number of test-cases’ as the number of tests that NUnit

reports, **excluding™ the inconclusive tests.

. Explanation: if your coverage for the targets listed

above is below 100%, mention why you failed to get it
to 100.

If you do the optional "Stronger System Testing" Task,
describe the algorithm of your smart test-agent. Present
the result of your benchmarking of the smart agent.

Course Software Testing & Verification,

8. Specify how the work is distributed among your team
members, in terms of who is doing what, and the per-
centage of the total team effort that each person shoul-
ders.

8 Submitting

A Blackboard assignment will be created to submit your
project.

1. State in the **readme.md** where your unit tests are
located. We will run your Program-main and all your
NUnit tests. Make sure they do not crash.

2. Upload a zip to the Blackboard, containing of the whole
project and the pdf of your report. The name of the zip-
file should begin with TEAM_N where N is your team-
id number. Only one person from each team needs to
submit the zip.

	1 Required software
	2 Few Important Notes before You Start
	3 Architecture
	4 The Game Logic
	4.1 blueClass GameEntity
	4.2 blueClass Dungeon
	4.3 blueClass Creature
	4.4 blueItems
	4.5 blueClass Game

	5 The Game Loop
	6 The Class Program
	7 redYour Tasks
	7.1 Test Move(r) of Monster and Player. Test Creature.Attack(f) too. (0.5 pt)
	7.2 Test the constructor Dungeon(shape,N,) (1.5 pt)
	7.3 Implement and test the constructor Game(conf) (1.5 pt)
	7.4 Implement and test the method Game.Flee(c) (1.5 pt)
	7.5 Finish the Implementation of STV Rogue (2 pt)
	7.6 Test the rest of the game logic (1.2 pt)
	7.7 System Testing (0.5 - 1.5 pt)
	7.8 Report (0.3 pt, mandatory)

	8 Submitting

