
[Faculty of Science
Information and Computing Sciences]

Talen en Compilers

2023 - 2024

David van Balen

Department of Information and Computing Sciences
Utrecht University

2023-11-13

[Faculty of Science
Information and Computing Sciences]

1-1

1. Introduction

[Faculty of Science
Information and Computing Sciences]

1-2

Course Content Overview

[Faculty of Science
Information and Computing Sciences]

1-3

Languages . . .

A language is a set of “correct” sentences.

▶ But what does that mean?

▶ What is the difference between natural and formal
languages?

▶ Are all languages equally difficult or complicated?

▶ How can one decide whether a sentence is correct?

▶ How can one represent a correct sentence?

[Faculty of Science
Information and Computing Sciences]

1-3

Languages . . .

A language is a set of “correct” sentences.

▶ But what does that mean?

▶ What is the difference between natural and formal
languages?

▶ Are all languages equally difficult or complicated?

▶ How can one decide whether a sentence is correct?

▶ How can one represent a correct sentence?

[Faculty of Science
Information and Computing Sciences]

1-3

Languages . . .

A language is a set of “correct” sentences.

▶ But what does that mean?

▶ What is the difference between natural and formal
languages?

▶ Are all languages equally difficult or complicated?

▶ How can one decide whether a sentence is correct?

▶ How can one represent a correct sentence?

[Faculty of Science
Information and Computing Sciences]

1-3

Languages . . .

A language is a set of “correct” sentences.

▶ But what does that mean?

▶ What is the difference between natural and formal
languages?

▶ Are all languages equally difficult or complicated?

▶ How can one decide whether a sentence is correct?

▶ How can one represent a correct sentence?

[Faculty of Science
Information and Computing Sciences]

1-3

Languages . . .

A language is a set of “correct” sentences.

▶ But what does that mean?

▶ What is the difference between natural and formal
languages?

▶ Are all languages equally difficult or complicated?

▶ How can one decide whether a sentence is correct?

▶ How can one represent a correct sentence?

[Faculty of Science
Information and Computing Sciences]

1-4

. . . and compilers

A compiler translates one language into another (possibly the
same). How?

▶ get hold of the structure of the input program

▶ attach semantics to a sequence of symbols

▶ check whether a program makes sense

▶ optimize

▶ generate good machine code

[Faculty of Science
Information and Computing Sciences]

1-4

. . . and compilers

A compiler translates one language into another (possibly the
same). How?

▶ get hold of the structure of the input program

▶ attach semantics to a sequence of symbols

▶ check whether a program makes sense

▶ optimize

▶ generate good machine code

[Faculty of Science
Information and Computing Sciences]

1-4

. . . and compilers

A compiler translates one language into another (possibly the
same). How?

▶ get hold of the structure of the input program

▶ attach semantics to a sequence of symbols

▶ check whether a program makes sense

▶ optimize

▶ generate good machine code

[Faculty of Science
Information and Computing Sciences]

1-4

. . . and compilers

A compiler translates one language into another (possibly the
same). How?

▶ get hold of the structure of the input program

▶ attach semantics to a sequence of symbols

▶ check whether a program makes sense

▶ optimize

▶ generate good machine code

[Faculty of Science
Information and Computing Sciences]

1-4

. . . and compilers

A compiler translates one language into another (possibly the
same). How?

▶ get hold of the structure of the input program

▶ attach semantics to a sequence of symbols

▶ check whether a program makes sense

▶ optimize

▶ generate good machine code

[Faculty of Science
Information and Computing Sciences]

1-5

Languages, grammars, and meaning

Computer science studies information processing.

▶ We describe and transfer information by means of
language

▶ Information is obtained by assigning meaning to
sentences

▶ The meaning of a sentence is inferred from its structure

▶ The structure of a sentence is described by means of a
grammar

▶ Getting this wrong is a common source of security bugs!

[Faculty of Science
Information and Computing Sciences]

1-5

Languages, grammars, and meaning

Computer science studies information processing.

▶ We describe and transfer information by means of
language

▶ Information is obtained by assigning meaning to
sentences

▶ The meaning of a sentence is inferred from its structure

▶ The structure of a sentence is described by means of a
grammar

▶ Getting this wrong is a common source of security bugs!

[Faculty of Science
Information and Computing Sciences]

1-5

Languages, grammars, and meaning

Computer science studies information processing.

▶ We describe and transfer information by means of
language

▶ Information is obtained by assigning meaning to
sentences

▶ The meaning of a sentence is inferred from its structure

▶ The structure of a sentence is described by means of a
grammar

▶ Getting this wrong is a common source of security bugs!

[Faculty of Science
Information and Computing Sciences]

1-5

Languages, grammars, and meaning

Computer science studies information processing.

▶ We describe and transfer information by means of
language

▶ Information is obtained by assigning meaning to
sentences

▶ The meaning of a sentence is inferred from its structure

▶ The structure of a sentence is described by means of a
grammar

▶ Getting this wrong is a common source of security bugs!

[Faculty of Science
Information and Computing Sciences]

1-5

Languages, grammars, and meaning

Computer science studies information processing.

▶ We describe and transfer information by means of
language

▶ Information is obtained by assigning meaning to
sentences

▶ The meaning of a sentence is inferred from its structure

▶ The structure of a sentence is described by means of a
grammar

▶ Getting this wrong is a common source of security bugs!

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages

▶ context-free languages
▶ regular languages

▶ Describing languages formally, using

▶ grammars
▶ finite state automata

▶ Grammar transformations

▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages

▶ regular languages

▶ Describing languages formally, using

▶ grammars
▶ finite state automata

▶ Grammar transformations

▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using

▶ grammars
▶ finite state automata

▶ Grammar transformations

▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using

▶ grammars
▶ finite state automata

▶ Grammar transformations

▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars

▶ finite state automata

▶ Grammar transformations

▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations

▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations

▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations
▶ for simplification

▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations
▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations
▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using

▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations
▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using
▶ parser combinators

▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations
▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using
▶ parser combinators
▶ parser generators

▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations
▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using
▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-6

In this course

▶ Classes (“difficulty levels”) of languages
▶ context-free languages
▶ regular languages

▶ Describing languages formally, using
▶ grammars
▶ finite state automata

▶ Grammar transformations
▶ for simplification
▶ for obtaining more efficient parsers

▶ Parsing context-free and regular languages, using
▶ parser combinators
▶ parser generators
▶ finite state automata

▶ How to go from syntax to semantics

[Faculty of Science
Information and Computing Sciences]

1-7

Learning goals

▶ To describe structures (i.e., “formulas”) using grammars;

▶ To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

▶ To analyse grammars to see whether or not specific
properties hold;

▶ To compose components such as parsers, analysers, and
code generators;

▶ To apply these techniques in the construction of all kinds
of programs;

▶ To explain and prove why certain problems can or cannot
be described by means of formalisms such as context-free
grammars or finite-state automata.

[Faculty of Science
Information and Computing Sciences]

1-7

Learning goals

▶ To describe structures (i.e., “formulas”) using grammars;

▶ To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

▶ To analyse grammars to see whether or not specific
properties hold;

▶ To compose components such as parsers, analysers, and
code generators;

▶ To apply these techniques in the construction of all kinds
of programs;

▶ To explain and prove why certain problems can or cannot
be described by means of formalisms such as context-free
grammars or finite-state automata.

[Faculty of Science
Information and Computing Sciences]

1-7

Learning goals

▶ To describe structures (i.e., “formulas”) using grammars;

▶ To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

▶ To analyse grammars to see whether or not specific
properties hold;

▶ To compose components such as parsers, analysers, and
code generators;

▶ To apply these techniques in the construction of all kinds
of programs;

▶ To explain and prove why certain problems can or cannot
be described by means of formalisms such as context-free
grammars or finite-state automata.

[Faculty of Science
Information and Computing Sciences]

1-7

Learning goals

▶ To describe structures (i.e., “formulas”) using grammars;

▶ To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

▶ To analyse grammars to see whether or not specific
properties hold;

▶ To compose components such as parsers, analysers, and
code generators;

▶ To apply these techniques in the construction of all kinds
of programs;

▶ To explain and prove why certain problems can or cannot
be described by means of formalisms such as context-free
grammars or finite-state automata.

[Faculty of Science
Information and Computing Sciences]

1-7

Learning goals

▶ To describe structures (i.e., “formulas”) using grammars;

▶ To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

▶ To analyse grammars to see whether or not specific
properties hold;

▶ To compose components such as parsers, analysers, and
code generators;

▶ To apply these techniques in the construction of all kinds
of programs;

▶ To explain and prove why certain problems can or cannot
be described by means of formalisms such as context-free
grammars or finite-state automata.

[Faculty of Science
Information and Computing Sciences]

1-7

Learning goals

▶ To describe structures (i.e., “formulas”) using grammars;

▶ To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

▶ To analyse grammars to see whether or not specific
properties hold;

▶ To compose components such as parsers, analysers, and
code generators;

▶ To apply these techniques in the construction of all kinds
of programs;

▶ To explain and prove why certain problems can or cannot
be described by means of formalisms such as context-free
grammars or finite-state automata.

[Faculty of Science
Information and Computing Sciences]

1-8

1.2 Course Organization

[Faculty of Science
Information and Computing Sciences]

1-9

Course website

ics.uu.nl/docs/vakken/b3tc

ics.uu.nl/docs/vakken/b3tc

[Faculty of Science
Information and Computing Sciences]

1-10

Assignments

Three practicals:

▶ P0: refresh your FP, doesn’t count for the final grade

▶ P1–P3: theoretical and practical aspects

▶ Work in groups of two, self organize

[Faculty of Science
Information and Computing Sciences]

1-11

Exams

Two exams: T1, T2

▶ Contents for each is specified in the schedule

▶ You cannot use lecture notes or other material for the
exams.

Resit (aanvullende toets) exam: T3

▶ You will receive an e-mail that tells you if you qualify for
resit/relab, and telling you what you should in fact do. See
the Osiris website for the rules.

[Faculty of Science
Information and Computing Sciences]

1-12

Haskell

We use Haskell because many concepts from formal language
theory have a direct correspondence in Haskell.

Formal languages Haskell

alphabet datatype

sequence list type

sentence/word a concrete list

abstract syntax datatype

grammar parser

grammar transformation parser transformation

parse tree value of abstract syntax type

semantics fold function, algebra

[Faculty of Science
Information and Computing Sciences]

1-12

Haskell

We use Haskell because many concepts from formal language
theory have a direct correspondence in Haskell.

Formal languages Haskell

alphabet datatype

sequence list type

sentence/word a concrete list

abstract syntax datatype

grammar parser

grammar transformation parser transformation

parse tree value of abstract syntax type

semantics fold function, algebra

[Faculty of Science
Information and Computing Sciences]

1-13

1.3 Haskell Refresh

[Faculty of Science
Information and Computing Sciences]

1-14

Functions

Pattern matching

and recursion.

length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

Type signatures, but type inference.

Polymorphism – length works for any list.

[Faculty of Science
Information and Computing Sciences]

1-14

Functions

Pattern matching and recursion.

length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

Type signatures, but type inference.

Polymorphism – length works for any list.

[Faculty of Science
Information and Computing Sciences]

1-14

Functions

Pattern matching and recursion.

length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

Type signatures, but type inference.

Polymorphism – length works for any list.

[Faculty of Science
Information and Computing Sciences]

1-14

Functions

Pattern matching and recursion.

length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

Type signatures, but type inference.

Polymorphism – length works for any list.

[Faculty of Science
Information and Computing Sciences]

1-15

Currying

Functions with multiple arguments are written as “functions to
functions to functions . . . ”:

(++) :: [a] → [a] → [a]
[] ++ ys= ys
(x : xs) ++ ys= x : (xs++ ys)

Again, (++) is polymorphic. We need not know the type of list
elements, but both argument lists must have the same type of
elements!

[Faculty of Science
Information and Computing Sciences]

1-16

Higher-order functions – map

Applying a function to every element of a list:

map :: (a → b) → [a] → [b]

Example:

map (+1) [1, 2, 3, 4, 5]
= [2, 3, 4, 5, 6]

[Faculty of Science
Information and Computing Sciences]

1-16

Higher-order functions – map

Applying a function to every element of a list:

map :: (a → b) → [a] → [b]

Example:

map (+1) [1, 2, 3, 4, 5]
= [2, 3, 4, 5, 6]

[Faculty of Science
Information and Computing Sciences]

1-17

Higher-order functions – filter

Filtering a list according to a predicate:

filter :: (a → Bool) → [a] → [a]

Example:

filter even [1, 2, 3, 4, 5]
= [2, 4]

[Faculty of Science
Information and Computing Sciences]

1-17

Higher-order functions – filter

Filtering a list according to a predicate:

filter :: (a → Bool) → [a] → [a]

Example:

filter even [1, 2, 3, 4, 5]
= [2, 4]

[Faculty of Science
Information and Computing Sciences]

1-18

Higher-order functions – foldr

Traversing a list according to its structure:

foldr :: (a → b → b) → b → [a] → b

Example:

foldr (+) 0 [1, 2, 3, 4, 5]
= foldr (+) 0 (1 : 2 : 3 : 4 : 5 : [])
= foldr (+) 0 (1 : (2 : (3 : (4 : (5 : []))))
= 1 + (2 + (3 + (4 + (5 + 0))))
= 15

[Faculty of Science
Information and Computing Sciences]

1-18

Higher-order functions – foldr

Traversing a list according to its structure:

foldr :: (a → b → b) → b → [a] → b

Example:

foldr (+) 0 [1, 2, 3, 4, 5]
= foldr (+) 0 (1 : 2 : 3 : 4 : 5 : [])
= foldr (+) 0 (1 : (2 : (3 : (4 : (5 : []))))
= 1 + (2 + (3 + (4 + (5 + 0))))
= 15

[Faculty of Science
Information and Computing Sciences]

1-19

Datatypes

data Tree a= Leaf a
| Node (Tree a) (Tree a)

Datatypes can have parameters.

Multiple constructors:

Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

Constructors describe the shape of values of the datatype. They
can be used in patterns.

[Faculty of Science
Information and Computing Sciences]

1-19

Datatypes

data Tree a= Leaf a
| Node (Tree a) (Tree a)

Datatypes can have parameters.

Multiple constructors:

Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

Constructors describe the shape of values of the datatype. They
can be used in patterns.

[Faculty of Science
Information and Computing Sciences]

1-19

Datatypes

data Tree a= Leaf a
| Node (Tree a) (Tree a)

Datatypes can have parameters.

Multiple constructors:

Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

Constructors describe the shape of values of the datatype. They
can be used in patterns.

[Faculty of Science
Information and Computing Sciences]

1-20

Functions on trees

size :: Tree a → Int
size (Leaf x) = 1
size (Node l r) = size l+ size r

Exercise: A function that reverses (mirrors) a tree.

reverse :: Tree a → Tree a
reverse (Leaf x) = Leaf x
reverse (Node l r) = Node (reverse r) (reverse l)

[Faculty of Science
Information and Computing Sciences]

1-20

Functions on trees

size :: Tree a → Int
size (Leaf x) = 1
size (Node l r) = size l+ size r

Exercise: A function that reverses (mirrors) a tree.

reverse :: Tree a → Tree a
reverse (Leaf x) = Leaf x
reverse (Node l r) = Node (reverse r) (reverse l)

[Faculty of Science
Information and Computing Sciences]

1-20

Functions on trees

size :: Tree a → Int
size (Leaf x) = 1
size (Node l r) = size l+ size r

Exercise: A function that reverses (mirrors) a tree.

reverse :: Tree a → Tree a
reverse (Leaf x) = Leaf x
reverse (Node l r) = Node (reverse r) (reverse l)

[Faculty of Science
Information and Computing Sciences]

1-21

1.4 (Formal) Languages

[Faculty of Science
Information and Computing Sciences]

1-22

What is a language?

A language is a set of sentences (or words).

Which sentences belong to a language, and why?

▶ In natural languages, this is often informally defined and
subject to discussion.

▶ For a formal language, we want a precise definition.

[Faculty of Science
Information and Computing Sciences]

1-22

What is a language?

A language is a set of sentences (or words).

Which sentences belong to a language, and why?

▶ In natural languages, this is often informally defined and
subject to discussion.

▶ For a formal language, we want a precise definition.

[Faculty of Science
Information and Computing Sciences]

1-22

What is a language?

A language is a set of sentences (or words).

Which sentences belong to a language, and why?

▶ In natural languages, this is often informally defined and
subject to discussion.

▶ For a formal language, we want a precise definition.

[Faculty of Science
Information and Computing Sciences]

1-22

What is a language?

A language is a set of sentences (or words).

Which sentences belong to a language, and why?

▶ In natural languages, this is often informally defined and
subject to discussion.

▶ For a formal language, we want a precise definition.

[Faculty of Science
Information and Computing Sciences]

1-23

Sets

A set is a collection of elements.

▶ No duplicates

▶ No order

▶ The empty set: ∅
▶ A nonempty set: {a, b, c}

▶ Union

▶ Intersection

[Faculty of Science
Information and Computing Sciences]

1-23

Sets

A set is a collection of elements.

▶ No duplicates

▶ No order

▶ The empty set: ∅
▶ A nonempty set: {a, b, c}

▶ Union

▶ Intersection

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}

▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}
▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}

▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}
▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}
▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}
▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}
▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}

▶ {if, then, else, do}
▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}

▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}
▶ {+, -}

▶
{

, ,
}

[Faculty of Science
Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

▶ {a, b, c}
▶ {0, 1}
▶ The set of all Latin letters

▶ The set of ASCII characters

▶ The set of Unicode code points

▶ {A, C, G, T}
▶ {if, then, else, do}
▶ {+, -}
▶

{
, ,

}

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶

ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶

ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶ ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶ ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶ ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶ ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶ ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A= {a, b, c}. Examples of sequences over A:

▶ abc

▶ a

▶ acccabcabcabbaca

▶ bbbbbbbbb

▶ ε

The empty sequence is difficult to visualize. Therefore, we
usually write ε as a placeholder to denote the empty sequence.

[Faculty of Science
Information and Computing Sciences]

1-26

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

▶ it is the empty sequence ε,

▶ the sequence has a first element a ∈ A, and if we split off
that element, the tail is still a (possibly empty) sequence z.

We can use this observation to define sequences.

[Faculty of Science
Information and Computing Sciences]

1-26

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

▶ it is the empty sequence ε,

▶ the sequence has a first element a ∈ A, and if we split off
that element, the tail is still a (possibly empty) sequence z.

We can use this observation to define sequences.

[Faculty of Science
Information and Computing Sciences]

1-26

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

▶ it is the empty sequence ε,

▶ the sequence has a first element a ∈ A, and if we split off
that element, the tail is still a (possibly empty) sequence z.

We can use this observation to define sequences.

[Faculty of Science
Information and Computing Sciences]

1-26

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

▶ it is the empty sequence ε,

▶ the sequence has a first element a ∈ A, and if we split off
that element, the tail is still a (possibly empty) sequence z.

We can use this observation to define sequences.

[Faculty of Science
Information and Computing Sciences]

1-27

Sequences, inductively

Given a set A. The set of sequences over A, written A∗, is
defined as follows:

▶ the empty sequence ε is in A∗,

▶ if a ∈ A and z ∈ A∗, then az is in A∗.

In such an inductive definition, it is implicitly understood that

▶ nothing else is in A∗,

▶ we can only apply the construction steps a finite number of
times, i.e., only finite sequences are in A∗.

[Faculty of Science
Information and Computing Sciences]

1-27

Sequences, inductively

Given a set A. The set of sequences over A, written A∗, is
defined as follows:

▶ the empty sequence ε is in A∗,

▶ if a ∈ A and z ∈ A∗, then az is in A∗.

In such an inductive definition, it is implicitly understood that

▶ nothing else is in A∗,

▶ we can only apply the construction steps a finite number of
times, i.e., only finite sequences are in A∗.

[Faculty of Science
Information and Computing Sciences]

1-27

Sequences, inductively

Given a set A. The set of sequences over A, written A∗, is
defined as follows:

▶ the empty sequence ε is in A∗,

▶ if a ∈ A and z ∈ A∗, then az is in A∗.

In such an inductive definition, it is implicitly understood that

▶ nothing else is in A∗,

▶ we can only apply the construction steps a finite number of
times, i.e., only finite sequences are in A∗.

[Faculty of Science
Information and Computing Sciences]

1-27

Sequences, inductively

Given a set A. The set of sequences over A, written A∗, is
defined as follows:

▶ the empty sequence ε is in A∗,

▶ if a ∈ A and z ∈ A∗, then az is in A∗.

In such an inductive definition, it is implicitly understood that

▶ nothing else is in A∗,

▶ we can only apply the construction steps a finite number of
times, i.e., only finite sequences are in A∗.

[Faculty of Science
Information and Computing Sciences]

1-27

Sequences, inductively

Given a set A. The set of sequences over A, written A∗, is
defined as follows:

▶ the empty sequence ε is in A∗,

▶ if a ∈ A and z ∈ A∗, then az is in A∗.

In such an inductive definition, it is implicitly understood that

▶ nothing else is in A∗,

▶ we can only apply the construction steps a finite number of
times, i.e., only finite sequences are in A∗.

[Faculty of Science
Information and Computing Sciences]

1-28

Remarks about sequences

▶ How many elements does ∅ contain?

▶ How many elements does ∅∗ contain?

▶ How many elements does {a, b, c} contain?

▶ How many elements does {a, b, c}∗ contain?

[Faculty of Science
Information and Computing Sciences]

1-28

Remarks about sequences

▶ How many elements does ∅ contain?

▶ How many elements does ∅∗ contain?

▶ How many elements does {a, b, c} contain?

▶ How many elements does {a, b, c}∗ contain?

[Faculty of Science
Information and Computing Sciences]

1-28

Remarks about sequences

▶ How many elements does ∅ contain?

▶ How many elements does ∅∗ contain?

▶ How many elements does {a, b, c} contain?

▶ How many elements does {a, b, c}∗ contain?

[Faculty of Science
Information and Computing Sciences]

1-28

Remarks about sequences

▶ How many elements does ∅ contain?

▶ How many elements does ∅∗ contain?

▶ How many elements does {a, b, c} contain?

▶ How many elements does {a, b, c}∗ contain?

[Faculty of Science
Information and Computing Sciences]

1-29

Language

Given an alphabet A, a language is a subset of A∗.

Note that we consider any set X to be a subset of itself: X ⊆ X.

So A∗ is a valid language with alphabet A.

[Faculty of Science
Information and Computing Sciences]

1-29

Language

Given an alphabet A, a language is a subset of A∗.

Note that we consider any set X to be a subset of itself: X ⊆ X.

So A∗ is a valid language with alphabet A.

[Faculty of Science
Information and Computing Sciences]

1-29

Language

Given an alphabet A, a language is a subset of A∗.

Note that we consider any set X to be a subset of itself: X ⊆ X.

So A∗ is a valid language with alphabet A.

[Faculty of Science
Information and Computing Sciences]

1-30

How to define a language?

So a language is just the set of correct sentences.

But how do we define such a set?

▶ By enumerating all elements?

▶ By using a predicate?

▶ By giving an inductive definition?

▶ . . .

All these are possible, and more.

[Faculty of Science
Information and Computing Sciences]

1-30

How to define a language?

So a language is just the set of correct sentences.

But how do we define such a set?

▶ By enumerating all elements?

▶ By using a predicate?

▶ By giving an inductive definition?

▶ . . .

All these are possible, and more.

[Faculty of Science
Information and Computing Sciences]

1-30

How to define a language?

So a language is just the set of correct sentences.

But how do we define such a set?

▶ By enumerating all elements?

▶ By using a predicate?

▶ By giving an inductive definition?

▶ . . .

All these are possible, and more.

[Faculty of Science
Information and Computing Sciences]

1-31

Example

Let the set of digits D= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be our
alphabet.

This is a language:

L= {2, 3, 5, 7, 11, 13, 17, 19}

How can we describe this language?

▶ The language L is the language over D of all prime
numbers less than 20.

[Faculty of Science
Information and Computing Sciences]

1-31

Example

Let the set of digits D= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be our
alphabet.

This is a language:

L= {2, 3, 5, 7, 11, 13, 17, 19}

How can we describe this language?

▶ The language L is the language over D of all prime
numbers less than 20.

[Faculty of Science
Information and Computing Sciences]

1-31

Example

Let the set of digits D= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be our
alphabet.

This is a language:

L= {2, 3, 5, 7, 11, 13, 17, 19}

How can we describe this language?

▶ The language L is the language over D of all prime
numbers less than 20.

[Faculty of Science
Information and Computing Sciences]

1-32

Languages by enumeration

▶ Enumerating all elements of a language is impossible if the
language is infinite.

▶ Most interesting languages are infinite:
▶ C#
▶ Haskell
▶ . . .

▶ Defining a language using a predicate seems better.

[Faculty of Science
Information and Computing Sciences]

1-32

Languages by enumeration

▶ Enumerating all elements of a language is impossible if the
language is infinite.

▶ Most interesting languages are infinite:
▶ C#
▶ Haskell
▶ . . .

▶ Defining a language using a predicate seems better.

[Faculty of Science
Information and Computing Sciences]

1-32

Languages by enumeration

▶ Enumerating all elements of a language is impossible if the
language is infinite.

▶ Most interesting languages are infinite:
▶ C#
▶ Haskell
▶ . . .

▶ Defining a language using a predicate seems better.

[Faculty of Science
Information and Computing Sciences]

1-33

Defining by predicate example

Let A= {a, b, c} be our alphabet.

Then

PAL= {s ∈ A∗ | s= sR}

is the language of palindromes over A.

[Faculty of Science
Information and Computing Sciences]

1-33

Defining by predicate example

Let A= {a, b, c} be our alphabet.

Then

PAL= {s ∈ A∗ | s= sR}

is the language of palindromes over A.

[Faculty of Science
Information and Computing Sciences]

1-34

Example – contd.

Palindromes can also be defined inductively:

▶ ε is in PAL,

▶ a, b, c are in PAL,

▶ if P is in PAL, then aPa, bPb and cPc are also in PAL.

[Faculty of Science
Information and Computing Sciences]

1-35

By predicate vs. by induction

Which definition is better?

PAL= {s ∈ A∗ | s= sR}

or

The set PAL of palindromes over A is defined as follows:

▶ ε is in PAL,

▶ a, b, c are in PAL,

▶ if P is in PAL, then aPa, bPb and cPc are also in PAL.

[Faculty of Science
Information and Computing Sciences]

1-36

By predicate vs. by induction

Definition by predicate is (in this case) shorter.

How can we check whether a given sequence is in PAL?

How can we generate all the words in PAL?

An inductive definition gives us more structure, and makes it
easier to explain why a sentence is in the language.

[Faculty of Science
Information and Computing Sciences]

1-36

By predicate vs. by induction

Definition by predicate is (in this case) shorter.

How can we check whether a given sequence is in PAL?

How can we generate all the words in PAL?

An inductive definition gives us more structure, and makes it
easier to explain why a sentence is in the language.

[Faculty of Science
Information and Computing Sciences]

1-36

By predicate vs. by induction

Definition by predicate is (in this case) shorter.

How can we check whether a given sequence is in PAL?

How can we generate all the words in PAL?

An inductive definition gives us more structure, and makes it
easier to explain why a sentence is in the language.

[Faculty of Science
Information and Computing Sciences]

1-36

By predicate vs. by induction

Definition by predicate is (in this case) shorter.

How can we check whether a given sequence is in PAL?

How can we generate all the words in PAL?

An inductive definition gives us more structure, and makes it
easier to explain why a sentence is in the language.

[Faculty of Science
Information and Computing Sciences]

1-37

Summary

Alphabet A finite set of symbols.

Language A set of words/sentences, i.e., sequences of
symbols from the alphabet.

Grammar Next lecture: A way to define a language
inductively by means of rewrite rules.

This werkcollege: Haskell setup and P0.

[Faculty of Science
Information and Computing Sciences]

1-37

Summary

Alphabet A finite set of symbols.

Language A set of words/sentences, i.e., sequences of
symbols from the alphabet.

Grammar Next lecture: A way to define a language
inductively by means of rewrite rules.

This werkcollege: Haskell setup and P0.

[Faculty of Science
Information and Computing Sciences]

1-37

Summary

Alphabet A finite set of symbols.

Language A set of words/sentences, i.e., sequences of
symbols from the alphabet.

Grammar Next lecture: A way to define a language
inductively by means of rewrite rules.

This werkcollege: Haskell setup and P0.

	Introduction
	Course Content Overview
	Course Organization
	Haskell Refresh
	(Formal) Languages

