[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

Talen en Compilers
2023 - 2024

David van Balen

Department of Information and Computing Sciences
Utrecht University

2023-11-13

1. Introduction

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
«O» «F»

DEE

Course Content Overview

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

«O>» AFr «E>» «E)>» E HQ

guages ...

A language is a set of “correct” sentences.

» But what does that mean?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Languages ...

1-3

A language is a set of “correct” sentences.

» But what does that mean?

» What is the difference between natural and formal
languages?

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Languages ...

A language is a set of “correct” sentences.

» But what does that mean?

> What is the difference between natural and formal
languages?

> Are all languages equally difficult or complicated?

*&\ ﬁ/) [Faculty of Science
% é Universiteit Utrecht Information and Computing Sciences]

1-3

Languages ...

A language is a set of “correct” sentences.

» But what does that mean?

> What is the difference between natural and formal
languages?

> Are all languages equally difficult or complicated?

» How can one decide whether a sentence is correct?

_.‘&\“Wﬁ)‘ [Faculty of Science

= =3 e, P : . .

= b = Universiteit Utrecht Information and Computing Sciences]
13 N

Languages ...

A language is a set of “correct” sentences.

» But what does that mean?

> What is the difference between natural and formal
languages?

> Are all languages equally difficult or complicated?

» How can one decide whether a sentence is correct?

> How can one represent a correct sentence?

_.‘ﬁ\“wﬁ)‘ [Faculty of Science

= =3 e, P : . .

= b = Universiteit Utrecht Information and Computing Sciences]
13 N

.and compilers

A compiler translates one language into another (possibly the
same). How?

» get hold of the structure of the input program

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-4

1-4

.and compilers

A compiler translates one language into another (possibly the
same). How?

» get hold of the structure of the input program

> attach semantics to a sequence of symbols

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-4

.and compilers

A compiler translates one language into another (possibly the
same). How?

» get hold of the structure of the input program
> attach semantics to a sequence of symbols

P check whether a program makes sense

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-4

.and compilers

A compiler translates one language into another (possibly the
same). How?

» get hold of the structure of the input program
> attach semantics to a sequence of symbols

P check whether a program makes sense

P optimize
_\\\‘Wﬁ) [Faculty of Science
%U§ Universiteit Utrecht Information and Computing Sciences]
N

.and compilers

A compiler translates one language into another (possibly the
same). How?

get hold of the structure of the input program
attach semantics to a sequence of symbols
check whether a program makes sense

optimize

vVVvyyvyyvyy

generate good machine code

&\\‘Wﬁ)) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
14 NS

Languages, grammars, and meaning

Computer science studies information processing.

> We describe and transfer information by means of
language

&‘W% [Faculty of Science

N ZZ a q-0 a . .
ESIN) é Universiteit Utrecht Information and Computing Sciences]

1s N

Languages, grammars, and meaning

Computer science studies information processing.

> We describe and transfer information by means of
language

» Information is obtained by assigning meaning to
sentences

g‘ﬂ%_ L W) [Facul.ty of Science
%‘T‘S Universiteit Utrecht Information and Computing Sciences]
1-5 s

Languages, grammars, and meaning

Computer science studies information processing.

> We describe and transfer information by means of
language

» Information is obtained by assigning meaning to
sentences

» The meaning of a sentence is inferred from its structure

&‘W% [Faculty of Science

N ZZ a q-0 a . .
ESIN) é Universiteit Utrecht Information and Computing Sciences]

1s N

Languages, grammars, and meaning

Computer science studies information processing.

> We describe and transfer information by means of
language

» Information is obtained by assigning meaning to
sentences
» The meaning of a sentence is inferred from its structure

» The structure of a sentence is described by means of a
grammar

&‘W% [Faculty of Science

N ZZ a q-0 a . .
ESIN) é Universiteit Utrecht Information and Computing Sciences]

1s N

Languages, grammars, and meaning

Computer science studies information processing.

> We describe and transfer information by means of
language

» Information is obtained by assigning meaning to
sentences

» The meaning of a sentence is inferred from its structure

» The structure of a sentence is described by means of a
grammar

P Getting this wrong is a common source of security bugs!

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-5

his course

» Classes (“difficulty levels”) of languages

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

his course

» Classes (“difficulty levels”) of languages
P context-free languages

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

In this course

» Classes (“difficulty levels”) of languages

» context-free languages
» regular languages

*&\ &) R L. . [Facul_ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]

1-6

In this course

» Classes (“difficulty levels") of languages
» context-free languages
» regular languages

» Describing languages formally, using

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-6

In this course

» Classes (“difficulty levels") of languages
» context-free languages
> regular languages

» Describing languages formally, using
» grammars

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-6

In this course

» Classes (“difficulty levels") of languages
» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-6

In this course

» Classes (“difficulty levels") of languages

» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

» Grammar transformations

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

In this course

» Classes (“difficulty levels") of languages

» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

» Grammar transformations
» for simplification

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

In this course

» Classes (“difficulty levels") of languages
» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

» Grammar transformations
» for simplification
» for obtaining more efficient parsers

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

In this course

» Classes (“difficulty levels") of languages

» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

» Grammar transformations
» for simplification
» for obtaining more efficient parsers
P> Parsing context-free and regular languages, using

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

In this course

» Classes (“difficulty levels") of languages

» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

» Grammar transformations
» for simplification
» for obtaining more efficient parsers

P> Parsing context-free and regular languages, using
» parser combinators

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

In this course

» Classes (“difficulty levels") of languages
» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

» Grammar transformations
» for simplification
» for obtaining more efficient parsers
P> Parsing context-free and regular languages, using

» parser combinators
> parser generators

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

In this course

» Classes (“difficulty levels") of languages
> context-free languages
» regular languages
» Describing languages formally, using
» grammars
> finite state automata
» Grammar transformations
» for simplification
» for obtaining more efficient parsers
P> Parsing context-free and regular languages, using

» parser combinators
> parser generators
> finite state automata

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

In this course

» Classes (“difficulty levels") of languages
» context-free languages
» regular languages

» Describing languages formally, using

» grammars
» finite state automata

» Grammar transformations
» for simplification
» for obtaining more efficient parsers
P> Parsing context-free and regular languages, using

» parser combinators
> parser generators
> finite state automata

» How to go from syntax to semantics

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-6 N

rning goals

» To describe structures (i.e., “formulas”) using grammars;

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Learning goals

» To describe structures (i.e., “formulas”) using grammars;

» To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

g‘ﬁ% L) [Facul.ty of S'cience
%ﬂ!“% Universiteit Utrecht Information and Computing Sciences]
1-7 N

Learning goals

» To describe structures (i.e., “formulas”) using grammars;

» To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

» To analyse grammars to see whether or not specific
properties hold;

*§ &) R L. . [Facul_ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]

1-7

Learning goals

» To describe structures (i.e., “formulas”) using grammars;

» To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

» To analyse grammars to see whether or not specific
properties hold;

> To compose components such as parsers, analysers, and
code generators;

*&\ &) R L. . [Facul_ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]

1-7

Learning goals

» To describe structures (i.e., “formulas”) using grammars;

» To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

» To analyse grammars to see whether or not specific
properties hold;

> To compose components such as parsers, analysers, and
code generators;

> To apply these techniques in the construction of all kinds
of programs;

*§ &) R L. . [Facul_ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]

1-7

Learning goals

» To describe structures (i.e., “formulas”) using grammars;

» To parse, i.e., to recognise (build) such structures in
(from) a sequence of symbols;

» To analyse grammars to see whether or not specific
properties hold;

> To compose components such as parsers, analysers, and
code generators;

> To apply these techniques in the construction of all kinds
of programs;

» To explain and prove why certain problems can or cannot
be described by means of formalisms such as context-free
grammars or finite-state automata.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-7

1.2 Course Organization

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
«O>» «F»r» «=)» <«

S =

DEE

rse website

ics.uu.nl/docs/vakken/b3tc

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

ics.uu.nl/docs/vakken/b3tc

Assignments

Three practicals:

» PO: refresh your FP, doesn’t count for the final grade
> P1-P3: theoretical and practical aspects
» Work in groups of two, self organize

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-10

Exams

Two exams: T1, T2

» Contents for each is specified in the schedule
» You cannot use lecture notes or other material for the

exams.
Resit (aanvullende toets) exam: T3

» You will receive an e-mail that tells you if you qualify for
resit/relab, and telling you what you should in fact do. See

the Osiris website for the rules.

5&\\“% [Faculty of Science
= % Universiteit Utrecht Information and Computing Sciences]
K

K\

1-11

Haskell

We use Haskell because many concepts from formal language
theory have a direct correspondence in Haskell.

&\\‘Wﬁ)) [Faculty of Science
= B = Universiteit Utrecht Information and Computing Sciences]

112 %{ﬂ@

Haskell

We use Haskell because many concepts from formal language
theory have a direct correspondence in Haskell.

Formal languages
alphabet
sequence

sentence/word

abstract syntax
grammar

grammar transformation

parse tree
semantics
N
% Y % Universiteit Utrecht
112 N

Haskell

datatype

list type

a concrete list

datatype

parser

parser transformation

value of abstract syntax type
fold function, algebra

[Faculty of Science
Information and Computing Sciences]

1.3 Haskell Refresh

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
«O>» «Fr «E» <

S =

DEE

Pattern matching

length :: [a] — Int
length] =0
length (x: xs) =1+ length xs

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Functions

Pattern matching and recursion.

length :: [a] — Int
length] =0
length (x : xs) =1 4+ length xs

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-14

Functions

Pattern matching and recursion.

length :: [a] — Int
length] =0
length (x : xs) =1 4+ length xs

Type signatures, but type inference.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-14

Functions

Pattern matching and recursion.

length :: [a] — Int
length] =0
length (x : xs) =1 4+ length xs

Type signatures, but type inference.

Polymorphism — length works for any list.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-14 NS

Currying

Functions with multiple arguments are written as “functions to
functions to functions . ..

(+) = [a] = [a] = [a]
[Arys=ys
(x:xs) Hys=x:(xs+vys)

Again, (+4) is polymorphic. We need not know the type of list
elements, but both argument lists must have the same type of

elements!
_’\\\‘Wﬁ) [Faculty of Science
%Ué Universiteit Utrecht Information and Computing Sciences]
1-15 N

Higher-order functions — map

Applying a function to every element of a list:

| map:: (a = b) = [a] = [b]

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-16

Higher-order functions — map

1-16

Applying a function to every element of a list:
| map:: (a = b) = [a] = [b]
Example:

map (+1) [1,2,3,4,5]

= [2,3,4,5,6]
@W& [Faculty of Science
% & % Universiteit Utrecht Information and Computing Sciences]
KT

Higher-order functions — filter

Filtering a list according to a predicate:

| filter :: (a — Bool) — [a] — [a]

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-17

Higher-order functions — filter

Filtering a list according to a predicate:
| filter :: (a — Bool) — [a] — [a]
Example:

filter even [1,2,3,4, 5]

= [2, 4]
@W&) [Faculty of Science
% & § Universiteit Utrecht Information and Computing Sciences]
1-17 K

Higher-order functions — foldr

Traversing a list according to its structure:

| foldr::(a—=b—b) = b—[a] = b

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-18

Higher-order functions — foldr

Traversing a list according to its structure:

| foldr::(a—=b—b) = b—[a] = b

Example:
foldr (+)O[1, 2, 3, 4, 5]

=foldr (+)0(1: 2: 3: 4: 5:1])

—foldr (1) 0(1: (2:(B3:(@:(:[))

= 1+ 2+ 3+(4+(5+0))))

= 15
&\‘W&) [Faculty of Science
= b = Universiteit Utrecht Information and Computing Sciences]

118 N

atypes

data Tree a = Leaf a
| Node (Tree a) (Tree a)

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

atypes

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Datatypes can have parameters.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o F = = E DA

Datatypes

data Tree a = Leaf a
| Node (Tree a) (Tree a)

Datatypes can have parameters.

Multiple constructors:

Leaf ::a — Treea
Node :: Tree a — Tree a — Tree a

Constructors describe the shape of values of the datatype. They
can be used in patterns.

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-19

ctions on trees

size:: Treea — Int
size (Leaf x) =1
size (Node | r) =size | + size r

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o F = = E DA

Functions on trees

size:: Tree a — Int
size (Leaf x) =1
size (Node | r) = size | 4 size r

Exercise: A function that reverses (mirrors) a tree.

*&\ &) R L. . [Facul_ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]

1-20

Functions on trees

size:: Tree a — Int
size (Leaf x) =1
size (Node | r) = size | 4 size r

Exercise: A function that reverses (mirrors) a tree.

reverse :: Tree a — Tree a
reverse (Leaf x) = Leaf x
reverse (Node | r) = Node (reverse r) (reverse |)

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-20

1.4 (Formal) Languages

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
«O>» «F»r» «=)» <«

S =

DEE

at is a language?

Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]
«O>» «Fr «E» <

S =

DEE

at is a language?

A language is a set of sentences (or words).

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

What is a language?

1-22

A language is a set of sentences (or words).

Which sentences belong to a language, and why?

» In natural languages, this is often informally defined and
subject to discussion.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

What is a language?

A language is a set of sentences (or words).

Which sentences belong to a language, and why?

» In natural languages, this is often informally defined and
subject to discussion.

» For a formal language, we want a precise definition.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-22 NS

Sets

A set is a collection of elements.

» No duplicates

> No order

» The empty set: ()

» A nonempty set: {a,b,c}

AW
% Y é Universiteit Utrecht
1-23 % “

[Faculty of Science
Information and Computing Sciences]

Sets

A set is a collection of elements.

» No duplicates

> No order

» The empty set: ()

» A nonempty set: {a,b,c}
» Union

Intersection

v

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-23

habet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

» {a,b,c}

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Alphabet

1-24

An alphabet is a (finite) set of symbols that can be used to

form sentences.

» {a,b,c}
» {0,1}

N
§U% Universiteit Utrecht
N

\

[Faculty of Science
Information and Computing Sciences]

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

> {a,b,c}
> {0,1}
» The set of all Latin letters

*&\ &) R L. . [Facul_ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

» {a,b,c}

» {0,1}

> The set of all Latin letters
» The set of ASCII characters

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

» {a,b,c}

» {0,1}

> The set of all Latin letters

» The set of ASCII characters

P> The set of Unicode code points

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-24

Alphabet

1-24

An alphabet is a (finite) set of symbols that can be used to
form sentences.

» {a,b,c}

» {0,1}

> The set of all Latin letters

» The set of ASCII characters

P> The set of Unicode code points
> {AC,GT}

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

» {a,b,c}

» {0,1}

> The set of all Latin letters

The set of ASCII characters
The set of Unicode code points
{A,C,G,T}

>
>
>
» {if then,else,do}

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

» {a,b,c}

» {0,1}

> The set of all Latin letters
» The set of ASCII characters

P> The set of Unicode code points
> {AC,GT}

» {if then,else,do}

>

{+7_}

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-24

Alphabet

An alphabet is a (finite) set of symbols that can be used to
form sentences.

{a,b,c}

{0,1}

The set of all Latin letters

The set of ASCII characters
The set of Unicode code points
{A,C,G,T}
{if,then,else,do}

(+-)

[Faculty of Science

I
N) § Universiteit Utrecht Information and Computing Sciences]

V VvV VVYVYVYYVYY

N
ES
=
120

Given a set, we can consider (finite) sequences of elements of
that set.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A={a,b,c}. Examples of sequences over A:

» abc

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A={a,b,c}. Examples of sequences over A:

P> abc
> a
Q ﬁ)ﬁ . [Faculty of Science
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]
1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A={a,b,c}. Examples of sequences over A:
> abc

> a

» acccabcabcabbaca

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-25

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A={a,b,c}. Examples of sequences over A:
> abc
> a

» acccabcabcabbaca
> bbbbbbbbb

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-25 NS

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A={a,b,c}. Examples of sequences over A:

> abc

> a

P> acccabcabcabbaca

» bbbbbbbbb

> ¢
&\\‘Wﬁ,) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]

1-25 NS

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A={a,b,c}. Examples of sequences over A:

> abc

> a

P> acccabcabcabbaca

» bbbbbbbbb

> ¢
&\\‘Wﬁ,) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]

1-25 NS

Sequence

Given a set, we can consider (finite) sequences of elements of
that set.

Let A={a,b,c}. Examples of sequences over A:

abc

a
acccabcabcabbaca
bbbbbbbbb

€

vVVvYvYyVvyy

The empty sequence is difficult to visualize. Therefore, we
usually write € as a placeholder to denote the empty sequence.

5&\\“’%}) [Faculty of Science
; &) é Universiteit Utrecht Information and Computing Sciences]
1-25 NS

Sequences, inductively

1-26

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

> it is the empty sequence ¢,

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

> it is the empty sequence ¢,

> the sequence has a first element a € A, and if we split off
that element, the tail is still a (possibly empty) sequence z.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-26 NS

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

> it is the empty sequence ¢,

> the sequence has a first element a € A, and if we split off
that element, the tail is still a (possibly empty) sequence z.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-26 NS

Sequences, inductively

Given an arbitrary sequence over elements of a set A, we can
make one of the two following observations:

> it is the empty sequence ¢,

> the sequence has a first element a € A, and if we split off
that element, the tail is still a (possibly empty) sequence z.

We can use this observation to define sequences.

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-26 NS

Sequences, inductively

Given a set A. The set of sequences over A, written A*, is
defined as follows:

> the empty sequence ¢ is in A*,

§ &)— R L. . [Facul_ty of S'cience
% é Universiteit Utrecht Information and Computing Sciences]

1-27

Sequences, inductively

1-27

Given a set A. The set of sequences over A, written A*, is
defined as follows:

> the empty sequence ¢ is in A*,
> if a€ Aandze A" then azisin A*.

g‘ﬁ?&é L) [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]
N

Sequences, inductively

1-27

Given a set A. The set of sequences over A, written A*, is
defined as follows:

> the empty sequence ¢ is in A*,
> if a€ Aandze A" then azisin A*.

g‘ﬁ?&é L) [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]
N

Sequences, inductively

Given a set A. The set of sequences over A, written A*, is
defined as follows:

> the empty sequence ¢ is in A*,
> if a€ Aandze A" then azisin A*.

In such an inductive definition, it is implicitly understood that

» nothing else is in A*,

& ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-27

Sequences, inductively

Given a set A. The set of sequences over A, written A*, is
defined as follows:

> the empty sequence ¢ is in A*,
> if a€ Aandze A" then azisin A*.

In such an inductive definition, it is implicitly understood that

» nothing else is in A*,

> we can only apply the construction steps a finite number of
times, i.e., only finite sequences are in A*.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-27

arks about sequences

» How many elements does () contain?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = £ DA

Remarks about sequences

» How many elements does () contain?

» How many elements does ()* contain?

g‘ﬁ% L) [Facul.ty of S'CIEIICE
%‘l $ Universiteit Utrecht Information and Computing Sciences]
1-28 N

Remarks about sequences

» How many elements does () contain?
» How many elements does ()* contain?

» How many elements does {a,b, c} contain?

*&\ &) R L. [Faculty of Science
%35 Universiteit Utrecht Information and Computing Sciences]

1-28

Remarks about sequences

1-28

» How many elements does () contain?
» How many elements does ()* contain?
» How many elements does {a,b, c} contain?

» How many elements does {a,b, c}" contain?

Q ﬁ)é [Faculty of Science
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Given an alphabet A, a language is a subset of A*.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

=] F = = E DA

Language

Given an alphabet A, a language is a subset of A*.

Note that we consider any set X to be a subset of itself: X C X.

*&\ &) R L. . [Facul_ty of S'cience
%‘l % Universiteit Utrecht Information and Computing Sciences]

1-29

Language

1-29

Given an alphabet A, a language is a subset of A*.
Note that we consider any set X to be a subset of itself: X C X.

So A* is a valid language with alphabet A.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

to define a language?

So a language is just the set of correct sentences.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

How to define a language?

So a language is just the set of correct sentences.

But how do we define such a set?

» By enumerating all elements?

» By using a predicate?

» By giving an inductive definition?
> ...

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-30

How to define a language?

So a language is just the set of correct sentences.

But how do we define such a set?

» By enumerating all elements?

» By using a predicate?

» By giving an inductive definition?
> ...

All these are possible, and more.

*&\ ﬁ/) . [Facul_ty of S'cience
%ﬂ é Universiteit Utrecht Information and Computing Sciences]

1-30

mple

Let the set of digits D=1{0,1,2,3,4,5,6,7,8,9} be our
alphabet.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = £ DA

Example

Let the set of digits D=1{0,1,2,3,4,5,6,7,8,9} be our
alphabet.

This is a language:
| L={2,3,5,7,11,13,17,19}

How can we describe this language?

&\\‘Wﬁ)) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
131 N

Example

Let the set of digits D=1{0,1,2,3,4,5,6,7,8,9} be our
alphabet.

This is a language:
| L={2,3,5,7,11,13,17,19}
How can we describe this language?

» The language L is the language over D of all prime
numbers less than 20.

5&\\“’%}) [Faculty of Science
% § Universiteit Utrecht Information and Computing Sciences]
131 AN

Languages by enumeration

» Enumerating all elements of a language is impossible if the
language is infinite.

g‘ﬁ?&é L) [Facul.ty of S'cience
= bl =% Universiteit Utrecht Information and Computing Sciences
KN

1-32)

Languages by enumeration

» Enumerating all elements of a language is impossible if the
language is infinite.
> Most interesting languages are infinite:

> C#
> Haskell
> ..
~§ &) [Faculty of Science
; N é Universiteit Utrecht Information and Computing Sciences]
1-32 % “

Languages by enumeration

» Enumerating all elements of a language is impossible if the
language is infinite.
> Most interesting languages are infinite:
> C#

» Haskell
> .

» Defining a language using a predicate seems better.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-32

ning by predicate example

Let A={a,b,c} be our alphabet.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = £ DA

Defining by predicate example

Let A={a,b,c} be our alphabet.
Then

| PAL={s e A*|s=5"}

is the language of palindromes over A.

&‘W% [Faculty of Science

N ZZ a q-0 a . .
ESIN) é Universiteit Utrecht Information and Computing Sciences]

1-33 N

Example — contd.

Palindromes can also be defined inductively:

> cisin PAL,
» a, b, c are in PAL,
» if Pisin PAL, then aPa, bPb and cPc are also in PAL.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-34

By predicate vs. by induction

Which definition is better?
| PAL={s € A* |s =57}
or

The set PAL of palindromes over A is defined as follows:

> cisin PAL,
» a, b, c are in PAL,
» if Pisin PAL, then aPa, bPb and cPc are also in PAL.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

1-35

predicate vs. by induction

Definition by predicate is (in this case) shorter.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

By predicate vs. by induction

1-36

Definition by predicate is (in this case) shorter.

How can we check whether a given sequence is in PAL?

&) [Faculty of Science
N é Universiteit Utrecht Information and Computing Sciences]

N
N

By predicate vs. by induction

1-36

Definition by predicate is (in this case) shorter.
How can we check whether a given sequence is in PAL?

How can we generate all the words in PAL?

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

By predicate vs. by induction

Definition by predicate is (in this case) shorter.
How can we check whether a given sequence is in PAL?
How can we generate all the words in PAL?

An inductive definition gives us more structure, and makes it
easier to explain why a sentence is in the language.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-36 NS

Alphabet A finite set of symbols.

This werkcollege: Haskell setup and PO.

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = £ DA

Summary

1-37

Alphabet A finite set of symbols.

Language A set of words/sentences, i.e., sequences of
symbols from the alphabet.

This werkcollege: Haskell setup and PO.

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Summary

Alphabet A finite set of symbols.

Language A set of words/sentences, i.e., sequences of
symbols from the alphabet.

Grammar Next lecture: A way to define a language
inductively by means of rewrite rules.

This werkcollege: Haskell setup and PO.

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
1-37 NS

	Introduction
	Course Content Overview
	Course Organization
	Haskell Refresh
	(Formal) Languages

