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2. Grammars and Parsing
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2.1 Recap
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Previous lecture

Alphabet A finite set of symbols.

Language A set of words/sentences, i.e., sequences of
symbols from the alphabet.

We have discussed different ways to define languages:

▶ by enumerating all elements,

▶ using a predicate,

▶ using an inductive definition
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Example: palindromes

The language of palindromes PAL is defined as follows:

▶ ε is in PAL,

▶ a, b, c are in PAL,

▶ if P is in PAL, then aPa, bPb and cPc are also in PAL.
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2.2 Grammars
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Grammars

A grammar is a formalism to describe a language inductively.

Grammars consist of rewrite rules, called productions.
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A grammar for palindromes

P → ε
P → a

P → b

P → c

P → aPa
P → bPb
P → cPc

The language of palindromes PAL is defined as
follows:

▶ ε is in PAL,

▶ a, b, c are in PAL,

▶ if P is in PAL, then aPa, bPb and cPc are
also in PAL.

Very close to the inductive definition.
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Grammars

P → ε
P → a

P → b

P → c

P → aPa
P → bPb
P → cPc

▶ A grammar consists of multiple
productions. Productions can be seen as
rewrite rules. If the left hand side matches,
it can be replaced by the right hand side.

▶ The grammar makes use of auxiliary
symbols – called nonterminals – that are
not part of the alphabet and hence cannot
be part of the final word/sentence.

▶ The symbols from the alphabet are also
called terminals.
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Derivation

P → ε
P → a

P → b

P → c

P → aPa
P → bPb
P → cPc

Starting from a nonterminal, we can rewrite
successively until we reach a string of
terminals:

P

⇒ aPa
⇒ acPca
⇒ accPcca
⇒ accbcca

We call such a sequence a derivation. All
strings that can be derived from a
nonterminal are in the language generated
by the nonterminal.
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Multiple nonterminals

Grammars can have multiple nonterminals:

S → A
S → B
A → c

A → AA
B → d

B → BB

Question
What is the language generated by
this grammar (i.e., generated by S)?

One nonterminal in the grammar is called the start symbol.

If not otherwise mentioned, we implicitly assume that the
nonterminal on the left hand side of the first production is the
start symbol (and we often, but not always, call it ‘S’).
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Context-free grammars

The grammars we consider are restricted:

▶ the left hand side of a production always consists of a
single nonterminal

Grammars with this restriction are called context-free.
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Remarks about grammars

▶ Not all languages can be generated/described by a
grammar.

▶ Multiple grammars may describe the same language.

▶ Grammars which generate the same language are
equivalent.

▶ Even fewer languages can be described by a context-free
grammar.

▶ Languages that can be described by a context-free
grammar are called context-free languages.

▶ Context-free languages are relatively easy to deal with
algorithmically, and therefore most programming languages
are context-free languages.
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Multiple grammars for one language

S → aS
S → a

S → Sa
S → a

S → SS
S → a

S → AS
S → A
A → a
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2.3 Examples of context-free grammars
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Language of (single) digits

Dig → 0

Dig → 1

Dig → 2

Dig → 3

Dig → 4

Dig → 5

Dig → 6

Dig → 7

Dig → 8

Dig → 9

Multiple productions for the same nonterminal can be joined:

Dig → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

(We still count ten productions!)
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Sequences of digits

Digs → ε | Dig Digs

This grammar allows sequences with leading zeros:

Digs ⇒ Dig Digs ⇒ Dig Dig Digs ⇒ Dig Dig Dig Digs
⇒ Dig Dig Dig ε ⇒∗ 007

The symbol ‘⇒∗’ means that we make multiple (zero or more,
but finitely many) derivation steps at once.

We also allow the star notation on the right hand side of a
grammar to abbreviate zero or more occurrences of symbols:

Digs → Dig∗
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Natural numbers

To disallow leading zeros we introduce another nonterminal:

Dig-0 → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Nat → 0 | Dig-0 Digs
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Integers

Sign → + | -
Int → Sign Nat | Nat

The sign is optional.

There is an abbreviation for optional symbols as well:

Int → Sign? Nat



[Faculty of Science
Information and Computing Sciences]

2-19

Integers

Sign → + | -
Int → Sign Nat | Nat

The sign is optional.

There is an abbreviation for optional symbols as well:

Int → Sign? Nat



[Faculty of Science
Information and Computing Sciences]

2-20

Letters

Letters are much like digits.

SLetter → a | b | . . . | z
CLetter → A | B | . . . | Z

(52 productions in total.)

Letter → SLetter | CLetter
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Identifiers

In many languages, identifiers must not start with a number,
but can have numbers following an initial letter.

AlphaNum → Letter | Dig
Identifier → SLetter AlphaNum∗

Variations are easy to define (such as allowing certain symbols,
for example ‘ ’, as well).
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A fragment of C#

Stat → Var = Expr ;
| if ( Expr ) Stat else Stat
| while ( Expr ) Stat

Expr → Integer
| Var
| Expr Op Expr

Var → Identifier

Op → Sign | *
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2.4 Ambiguity
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Multiple derivations for one sentence

Consider the grammar:

S → SS
S → a

These are three derivations of aaa:

S ⇒ SS ⇒ aS ⇒ aSS ⇒ aSa ⇒ aaa (1)

S ⇒ SS ⇒ aS ⇒ aSS ⇒ aaS ⇒ aaa (2)

S ⇒ SS ⇒ Sa ⇒ SSa ⇒ aSa ⇒ aaa (3)

Question
Why is (3) fundamentally different from (1) and (2)?
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Ambiguity

A grammar where every sentence corresponds to a unique parse
tree is called unambiguous.

If this is not the case, the grammar is called ambiguous.

The grammar

S → SS
S → a

is thus ambiguous.

Question
Why are ambiguous grammars bad?
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Ambiguity and semantics

Let’s look ahead for a moment. Later we are going to assign
semantics to parse trees.

Assume the (ambiguous) grammar:

S → S-S
S → 1

Now the sentence 1-1-1 corresponds to two parse trees:

S

S

1

- S

S

1

- S

1

S

S

S

1

- S

1

- S

1
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Ambiguity and semantics – contd.

S

S

1

- S

S

1

- S

1

S

S

S

1

- S

1

- S

1

Using the standard semantics,

▶ the left tree corresponds to the value 1,

▶ the right tree corresponds to the value -1.

Hence, ambiguous grammars lead to ambiguous semantics.

Later, we will also see that ambiguous grammars can cause
inefficiency.
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Words of warning: syntax vs. semantics

Do not immediately associate semantics with a sentence:

1-1-1

A language defines which sentences are syntactically correct.
Assigning meaning to these sentences is a separate step.

Depending on the semantics we assign, a string such as 1-1-1
can have many different meanings:

▶ it could mean the value 1 or −1,

▶ it could mean the 1st of January in year 1,

▶ it could mean that the first item in a table should be
copied three times,

▶ . . .
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Dangling else

A famous ambiguity problem, demonstrated using a simplified
grammar:

S → if b then S else S
| if b then S
| a

Consider:

if b then if b then a else a

Exercise 2.17
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Ambiguity is a property of grammars

All of these grammars describe the same language:

S → aS
S → a

S → Sa
S → a

S → SS
S → a

S → AS
S → A
A → a

Are all of them ambiguous?

Note: some CF languages have only ambiguous grammars.
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Grammar transformations

A grammar transformation is a mapping from one grammar
to another, such that the generated language remains the same.

Formally:

A grammar transformation maps a grammar G to another
grammar G′ such that

L(G) = L(G′)

Grammar transformations can help us to transform grammars
with undesirable properties (such as ambiguity) into grammars
with other (hopefully better) properties.

Most grammar transformations are motivated by facilitating
parsing.
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2.5 Parsing, concrete and abstract syntax
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Parsing problem

Given a grammar G and a string s, the parsing problem is to
decide whether or not s ∈ L(G).

Furthermore, if s ∈ L(G), we want evidence/proof/an
explanation why this is the case, usually in the form of a parse
tree.
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Parse trees in Haskell

Consider this grammar (What is the language? Is it
ambiguous?)

S → S-D | D
D → 0 | 1

The string 1-0-1 corresponds to the parse tree

S

S

S

D

1

- D

0

- D

1
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Parse trees in Haskell – contd.

Idea
Let us represent nonterminals as datatypes:

▶ In every node of the parse tree, we have a choice between
one of the productions for the nonterminal in question.

▶ If we want to build a value of a Haskell datatype, we have
a choice between any of that datatype’s constructors.

Hence, productions become constructors.



[Faculty of Science
Information and Computing Sciences]

2-35

Parse trees in Haskell – contd.

Idea
Let us represent nonterminals as datatypes:

▶ In every node of the parse tree, we have a choice between
one of the productions for the nonterminal in question.

▶ If we want to build a value of a Haskell datatype, we have
a choice between any of that datatype’s constructors.

Hence, productions become constructors.



[Faculty of Science
Information and Computing Sciences]

2-35

Parse trees in Haskell – contd.

Idea
Let us represent nonterminals as datatypes:

▶ In every node of the parse tree, we have a choice between
one of the productions for the nonterminal in question.

▶ If we want to build a value of a Haskell datatype, we have
a choice between any of that datatype’s constructors.

Hence, productions become constructors.



[Faculty of Science
Information and Computing Sciences]

2-35

Parse trees in Haskell – contd.

Idea
Let us represent nonterminals as datatypes:

▶ In every node of the parse tree, we have a choice between
one of the productions for the nonterminal in question.

▶ If we want to build a value of a Haskell datatype, we have
a choice between any of that datatype’s constructors.

Hence, productions become constructors.



[Faculty of Science
Information and Computing Sciences]

2-36

Parse trees in Haskell – contd.

S → S-D | D
D → 0 | 1

data S = . . . | . . .
data D= . . . | . . .

What names to choose for the constructors?

– Our choice, but
let’s try to pick somewhat meaningful names.

And what do we do for each of the nonterminals on the right
hand sides of the productions? – They become arguments of
the constructor.

And what do we do with the terminals on the right hand sides
of the productions? – Do we actually need them? – No, the
choice of the constructor already contains enough information
to reconstruct the terminals.
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Parse trees in Haskell – contd.
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choice of the constructor already contains enough information
to reconstruct the terminals.
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Concrete and abstract syntax

The grammar and the datatype describe the language.

concrete:

S → S-D | D
D → 0 | 1

abstract syntax:

data S =Minus S D | SingleDigit D
data D= Zero | One

The string 1-0-1 corresponds to the parse tree

S

S

S

D

1

- D

0

- D

1

Haskell

Minus (Minus (SingleDigit One)
Zero)

One
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Semantic functions

S → S-D | D
D → 0 | 1

data S =Minus S D | SingleDigit D
data D= Zero | One

Back to the string representation:

printS :: S → String
printS (Minus s d) = printS s++ "-"++ printD d
printS (SingleDigit d) = printD d

printD :: D → String
printD Zero = "0"

printD One = "1"

sample=Minus (Minus (SingleDigit One) Zero) One

printS sample evaluates to "1-0-1"
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Semantic functions – contd.

S → S-D | D
D → 0 | 1

data S =Minus S D | SingleDigit D
data D= Zero | One

Another semantic function – evaluation:

evalS :: S → Int
evalS (Minus s d) = evalS s− evalD d
evalS (SingleDigit d) = evalD d

evalD :: D → Int
evalD Zero = 0
evalD One = 1

sample=Minus (Minus (SingleDigit One) Zero) One

evalS sample evaluates to 0
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Summary

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.
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