
[Faculty of Science
Information and Computing Sciences]

Talen en Compilers

2023 - 2024

David van Balen

Department of Information and Computing Sciences
Utrecht University

2024-11-25



[Faculty of Science
Information and Computing Sciences]

5-1

5. Parser combinators (iii)



[Faculty of Science
Information and Computing Sciences]

5-2

This lecture

Parser combinators (iii)

Parser Combinators: recap

Parser Combinators: new primitives

Parser Combinators: new abstractions

Grammar transformations

Operators



[Faculty of Science
Information and Computing Sciences]

5-3

5.1 Parser Combinators: recap



[Faculty of Science
Information and Computing Sciences]

5-4

Library

module ParseLib (Parser, parse)
data Parser s a= Parser {runParser :: [s]→ [(a, [s])]}
parse= runParser



[Faculty of Science
Information and Computing Sciences]

5-5

Recap

Primitive parser combinators:

type Parser s r = [s]→ [(r, [s])]
epsilon :: Parser s ()
empty :: Parser s a
(<|>) :: Parser s a→ Parser s a→ Parser s a
(<∗>) :: Parser s (a→ b)→ Parser s a→ Parser s b
(<$>) :: (a→ b)→ Parser s a→ Parser s b
satisfy :: (s→ Bool)→ Parser s s



[Faculty of Science
Information and Computing Sciences]

5-6

Recap

Derived parser combinators:

type Parser s r = (hidden)
(<$) :: a→ Parser s b→ Parser s a
(<∗) :: Parser s a→ Parser s b→ Parser s a
(∗>) :: Parser s a→ Parser s b→ Parser s b
succeed :: a→ Parser s a
symbol :: Eq s⇒ s→ Parser s s



[Faculty of Science
Information and Computing Sciences]

5-7

5.2 Parser Combinators: new primitives



[Faculty of Science
Information and Computing Sciences]

5-8

Choice, again

(<|>) :: Parser s a→ Parser s a→ Parser s a
(p<|> q) = λxs→ p xs++ q xs

(<<|>) :: Parser s a→ Parser s a→ Parser s a
(p<<|> q) = λxs→ if null (p xs) then q xs else p xs



[Faculty of Science
Information and Computing Sciences]

5-8

Choice, again

(<|>) :: Parser s a→ Parser s a→ Parser s a
(p<|> q) = λxs→ p xs++ q xs

(<<|>) :: Parser s a→ Parser s a→ Parser s a
(p<<|> q) = λxs→ if null (p xs) then q xs else p xs



[Faculty of Science
Information and Computing Sciences]

5-9

Another primitive combinator

We defined guard as a primitive last lecture:

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser input=

[(result, tail) | (result, tail)← parser input
, cond result]

We can do better!



[Faculty of Science
Information and Computing Sciences]

5-9

Another primitive combinator

We defined guard as a primitive last lecture:

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser input=

[(result, tail) | (result, tail)← parser input
, cond result]

We can do better!



[Faculty of Science
Information and Computing Sciences]

5-10

Another primitive combinator – contd.

We introduce (>>=) – pronounced “bind”:

(>>=) :: Parser s a→ (a→ Parser s b)→ Parser s b
p>>= f = λxs→ [(s, zs) | (r, ys)← p xs

, (s , zs)← f r ys]

Now:

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser = parser >>= λa→
if cond a then succeed a else empty



[Faculty of Science
Information and Computing Sciences]

5-10

Another primitive combinator – contd.

We introduce (>>=) – pronounced “bind”:

(>>=) :: Parser s a→ (a→ Parser s b)→ Parser s b
p>>= f = λxs→ [(s, zs) | (r, ys)← p xs

, (s , zs)← f r ys]

Now:

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser = parser >>= λa→
if cond a then succeed a else empty



[Faculty of Science
Information and Computing Sciences]

5-11

Another primitive combinator – contd.

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser = parser >>= λa→
if cond a then succeed a else empty

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser = do
a← parser
if cond a then return a else empty



[Faculty of Science
Information and Computing Sciences]

5-11

Another primitive combinator – contd.

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser = parser >>= λa→
if cond a then succeed a else empty

guard :: (a→ Bool)→ Parser s a→ Parser s a
guard cond parser = do
a← parser
if cond a then return a else empty



[Faculty of Science
Information and Computing Sciences]

5-12

Another primitive combinator – example

Parse a number, then parse that many lines:

3

Hello

World

!

asdf

parseNLines :: Parser Char [String]
parseNLines= do
n← natural
← symbol ’\n’

sequence $ replicate n parseLine
where parseLine=many (satisfy (̸≡ ’\n’))<∗ symbol ’\n’



[Faculty of Science
Information and Computing Sciences]

5-12

Another primitive combinator – example

Parse a number, then parse that many lines:

3

Hello

World

!

asdf

parseNLines :: Parser Char [String]
parseNLines= do
n← natural
← symbol ’\n’

sequence $ replicate n parseLine
where parseLine=many (satisfy (̸≡ ’\n’))<∗ symbol ’\n’



[Faculty of Science
Information and Computing Sciences]

5-13

Applicative functors

The operations parsers support are very common – many other
types support the same interface(s):

class Functor f where
fmap :: (a→ b)→ f a→ f b
(<$>) = fmap

class Functor f ⇒ Applicative f where
pure :: a→ f a
(<∗>) :: f (a→ b)→ f a→ f b

class Applicative f ⇒ Alternative f where
empty :: f a
(<|>) :: f a→ f a→ f a



[Faculty of Science
Information and Computing Sciences]

5-14

Monads

class Monad m where
(>>=) ::m a→ (a→ m b)→ m b

In contrast to applicative and alternative functors, you have
probably seen monads before.

More about applicative functors and monads in the master
course on Advanced Functional Programming.



[Faculty of Science
Information and Computing Sciences]

5-14

Monads

class Monad m where
(>>=) ::m a→ (a→ m b)→ m b

In contrast to applicative and alternative functors, you have
probably seen monads before.

More about applicative functors and monads in the master
course on Advanced Functional Programming.



[Faculty of Science
Information and Computing Sciences]

5-15

5.3 Parser Combinators: new abstractions



[Faculty of Science
Information and Computing Sciences]

5-16

Option

option :: Parser s a→ a→ Parser s a
option p def = p<|> succeed def



[Faculty of Science
Information and Computing Sciences]

5-17

Lists

many :: Parser s a→ Parser s [a]
many p= (:)<$> p<∗>many p<|> succeed []

some :: Parser s a→ Parser s [a] -- also called many1
some p= (:)<$> p<∗>many p

listOf :: Parser s a→ Parser s b→ Parser s [a]
listOf p s= (:)<$> p<∗>many (s ∗> p)



[Faculty of Science
Information and Computing Sciences]

5-17

Lists

many :: Parser s a→ Parser s [a]
many p= (:)<$> p<∗>many p<|> succeed []

some :: Parser s a→ Parser s [a] -- also called many1
some p= (:)<$> p<∗>many p

listOf :: Parser s a→ Parser s b→ Parser s [a]
listOf p s= (:)<$> p<∗>many (s ∗> p)



[Faculty of Science
Information and Computing Sciences]

5-17

Lists

many :: Parser s a→ Parser s [a]
many p= (:)<$> p<∗>many p<|> succeed []

some :: Parser s a→ Parser s [a] -- also called many1
some p= (:)<$> p<∗>many p

listOf :: Parser s a→ Parser s b→ Parser s [a]
listOf p s= (:)<$> p<∗>many (s ∗> p)



[Faculty of Science
Information and Computing Sciences]

5-18

Greedy lists

greedy :: Parser s a→ Parser s [a]
greedy p= (:)<$> p<∗> greedy p<<|> succeed []

greedy1 :: Parser s a→ Parser s [a] -- also called many1
greedy1 p= (:)<$> p<∗> greedy p



[Faculty of Science
Information and Computing Sciences]

5-18

Greedy lists

greedy :: Parser s a→ Parser s [a]
greedy p= (:)<$> p<∗> greedy p<<|> succeed []

greedy1 :: Parser s a→ Parser s [a] -- also called many1
greedy1 p= (:)<$> p<∗> greedy p



[Faculty of Science
Information and Computing Sciences]

5-19

5.4 Grammar transformations



[Faculty of Science
Information and Computing Sciences]

5-20

From Grammar to Parser

S → A
S → B
A→ c

A→ AA
B→ d

B→ BB

S → A
S → B
A→ c

S → A
S → B
A→ c

B→ ε



[Faculty of Science
Information and Computing Sciences]

5-20

From Grammar to Parser

S → A
S → B
A→ c

A→ AA
B→ d

B→ BB

S → A
S → B
A→ c

S → A
S → B
A→ c

B→ ε



[Faculty of Science
Information and Computing Sciences]

5-20

From Grammar to Parser

S → A
S → B
A→ c

A→ AA
B→ d

B→ BB

S → A
S → B
A→ c

S → A
S → B
A→ c

B→ ε



[Faculty of Science
Information and Computing Sciences]

5-21

Removing duplicate productions

Example:

A→ u | u | v

can be transformed into

A→ u | v

Parser:

a= u<|> u<|> v

becomes

a= u<|> v



[Faculty of Science
Information and Computing Sciences]

5-21

Removing duplicate productions

Example:

A→ u | u | v

can be transformed into

A→ u | v

Parser:

a= u<|> u<|> v

becomes

a= u<|> v



[Faculty of Science
Information and Computing Sciences]

5-22

Left factoring

Example:

A→ xy | xz | v

can be transformed into

A → xQ | v
Q→ y | z

Parser:

a= x<∗> y <|> x<∗> z<|> v

becomes

a = x<∗> q<|> v
q= y <|> z

▶ Note that x can be an arbitrarily long sequence of symbols.
The longer the sequence, and the more alternatives have
the same prefix, the more useful this transformation is.

▶ What is the effect on the parsers?



[Faculty of Science
Information and Computing Sciences]

5-22

Left factoring

Example:

A→ xy | xz | v

can be transformed into

A → xQ | v
Q→ y | z

Parser:

a= x<∗> y <|> x<∗> z<|> v

becomes

a = x<∗> q<|> v
q= y <|> z

▶ Note that x can be an arbitrarily long sequence of symbols.
The longer the sequence, and the more alternatives have
the same prefix, the more useful this transformation is.

▶ What is the effect on the parsers?



[Faculty of Science
Information and Computing Sciences]

5-22

Left factoring

Example:

A→ xy | xz | v

can be transformed into

A → xQ | v
Q→ y | z

Parser:

a= x<∗> y <|> x<∗> z<|> v

becomes

a = x<∗> q<|> v
q= y <|> z

▶ Note that x can be an arbitrarily long sequence of symbols.
The longer the sequence, and the more alternatives have
the same prefix, the more useful this transformation is.

▶ What is the effect on the parsers?



[Faculty of Science
Information and Computing Sciences]

5-23

Left factoring – contd.

S→ xSy | xSx | x

S → xT
T→ Sy | Sx | ε

S → xT
T→ SU | ε
U→ y | x



[Faculty of Science
Information and Computing Sciences]

5-23

Left factoring – contd.

S→ xSy | xSx | x

S → xT
T→ Sy | Sx | ε

S → xT
T→ SU | ε
U→ y | x



[Faculty of Science
Information and Computing Sciences]

5-23

Left factoring – contd.

S→ xSy | xSx | x

S → xT
T→ Sy | Sx | ε

S → xT
T→ SU | ε
U→ y | x



[Faculty of Science
Information and Computing Sciences]

5-24

Left recursion

A production is called left-recursive if the right hand side
starts with the nonterminal of the left hand side.

Example:

A→ Az

A grammar is called left-recursive if A⇒+ Az for some
nonterminal A of the grammar.

Question
Can a grammar be left-recursive if it does not have any
left-recursive productions?

Yes, grammars can be indirectly left-recursive.



[Faculty of Science
Information and Computing Sciences]

5-24

Left recursion

A production is called left-recursive if the right hand side
starts with the nonterminal of the left hand side.

Example:

A→ Az

A grammar is called left-recursive if A⇒+ Az for some
nonterminal A of the grammar.

Question
Can a grammar be left-recursive if it does not have any
left-recursive productions?

Yes, grammars can be indirectly left-recursive.



[Faculty of Science
Information and Computing Sciences]

5-24

Left recursion

A production is called left-recursive if the right hand side
starts with the nonterminal of the left hand side.

Example:

A→ Az

A grammar is called left-recursive if A⇒+ Az for some
nonterminal A of the grammar.

Question
Can a grammar be left-recursive if it does not have any
left-recursive productions?

Yes, grammars can be indirectly left-recursive.



[Faculty of Science
Information and Computing Sciences]

5-24

Left recursion

A production is called left-recursive if the right hand side
starts with the nonterminal of the left hand side.

Example:

A→ Az

A grammar is called left-recursive if A⇒+ Az for some
nonterminal A of the grammar.

Question
Can a grammar be left-recursive if it does not have any
left-recursive productions?

Yes, grammars can be indirectly left-recursive.



[Faculty of Science
Information and Computing Sciences]

5-25

Left recursion and parsers

The production

A→ Az

corresponds to a parser

a= a<∗> z

What happens here?

▶ The parser loops!

▶ Removing left recursion is essential for a combinator parser.



[Faculty of Science
Information and Computing Sciences]

5-25

Left recursion and parsers

The production

A→ Az

corresponds to a parser

a= a<∗> z

What happens here?

▶ The parser loops!

▶ Removing left recursion is essential for a combinator parser.



[Faculty of Science
Information and Computing Sciences]

5-26

Removing left recursion

Transforming a (directly) left-recursive nonterminal A such that
the left recursion is removed is relatively simple.

First, split the productions for A into left-recursive and others:

A→ Ax1 | Ax2 | . . . | A xn
A→ y1 | y2 | . . . | ym {-(none of the yi start with A) -}

This grammar can be transformed to:

A→ y1Z | y2Z | . . . | ymZ
Z → ε | x1Z | x2Z | . . . | xnZ



[Faculty of Science
Information and Computing Sciences]

5-26

Removing left recursion

Transforming a (directly) left-recursive nonterminal A such that
the left recursion is removed is relatively simple.

First, split the productions for A into left-recursive and others:

A→ Ax1 | Ax2 | . . . | A xn
A→ y1 | y2 | . . . | ym {-(none of the yi start with A) -}

This grammar can be transformed to:

A→ y1Z | y2Z | . . . | ymZ
Z → ε | x1Z | x2Z | . . . | xnZ



[Faculty of Science
Information and Computing Sciences]

5-26

Removing left recursion

Transforming a (directly) left-recursive nonterminal A such that
the left recursion is removed is relatively simple.

First, split the productions for A into left-recursive and others:

A→ Ax1 | Ax2 | . . . | A xn
A→ y1 | y2 | . . . | ym {-(none of the yi start with A) -}

This grammar can be transformed to:

A→ y1Z | y2Z | . . . | ymZ
Z → ε | x1Z | x2Z | . . . | xnZ



[Faculty of Science
Information and Computing Sciences]

5-27

Example: Removing left recursion

Consider:

S→ SS
S→ s

One left-recursive production, one other – already split.

Applying the transformation yields:

S → sZ
Z→ ε | SZ



[Faculty of Science
Information and Computing Sciences]

5-27

Example: Removing left recursion

Consider:

S→ SS
S→ s

One left-recursive production, one other – already split.

Applying the transformation yields:

S → sZ
Z→ ε | SZ



[Faculty of Science
Information and Computing Sciences]

5-28

5.5 Operators



[Faculty of Science
Information and Computing Sciences]

5-29

Operator chains

Consider

E → E O E | Nat
O→ + | -

‘-’ is not an associative operator. It is usually defined as
associating to the left (i.e. left-associative).

We inline O and remove it to obtain an abstract syntax:

data E= Plus E E |Minus E E | Nat Int



[Faculty of Science
Information and Computing Sciences]

5-29

Operator chains

Consider

E → E O E | Nat
O→ + | -

‘-’ is not an associative operator. It is usually defined as
associating to the left (i.e. left-associative).

We inline O and remove it to obtain an abstract syntax:

data E= Plus E E |Minus E E | Nat Int



[Faculty of Science
Information and Computing Sciences]

5-29

Operator chains

Consider

E → E O E | Nat
O→ + | -

‘-’ is not an associative operator. It is usually defined as
associating to the left (i.e. left-associative).

We inline O and remove it to obtain an abstract syntax:

data E= Plus E E |Minus E E | Nat Int



[Faculty of Science
Information and Computing Sciences]

5-29

Operator chains

Consider

E → E O E | Nat
O→ + | -

‘-’ is not an associative operator. It is usually defined as
associating to the left (i.e. left-associative).

We inline O and remove it to obtain an abstract syntax:

data E= Plus E E |Minus E E | Nat Int



[Faculty of Science
Information and Computing Sciences]

5-30

Operator chains – contd.

We would like to parse

1+2-3+4

as

((Nat 1 ‘Plus‘ Nat 2) ‘Minus‘ Nat 3) ‘Plus‘ Nat 4



[Faculty of Science
Information and Computing Sciences]

5-31

Operator chains – contd.

We want:

((Nat 1 ‘Plus‘ Nat 2) ‘Minus‘ Nat 3) ‘Plus‘ Nat 4

What does the following evaluate to?

foldl (flip ($)) (Nat 1)
[(‘Plus‘ Nat 2), (‘Minus‘ Nat 3), (‘Plus‘ Nat 4)]

We can obtain this result as follows:

chainl :: Parser s a→ Parser s (a→ a→ a)→ Parser s a
chainl p s= foldl (flip ($))<$> p<∗>many (flip<$> s<∗> p)

e= chainl (Nat<$> natural) o
o= Plus<$ symbol ’+’<|>Minus<$ symbol ’-’



[Faculty of Science
Information and Computing Sciences]

5-31

Operator chains – contd.

We want:

((Nat 1 ‘Plus‘ Nat 2) ‘Minus‘ Nat 3) ‘Plus‘ Nat 4

What does the following evaluate to?

foldl (flip ($)) (Nat 1)
[(‘Plus‘ Nat 2), (‘Minus‘ Nat 3), (‘Plus‘ Nat 4)]

We can obtain this result as follows:

chainl :: Parser s a→ Parser s (a→ a→ a)→ Parser s a
chainl p s= foldl (flip ($))<$> p<∗>many (flip<$> s<∗> p)

e= chainl (Nat<$> natural) o
o= Plus<$ symbol ’+’<|>Minus<$ symbol ’-’



[Faculty of Science
Information and Computing Sciences]

5-31

Operator chains – contd.

We want:

((Nat 1 ‘Plus‘ Nat 2) ‘Minus‘ Nat 3) ‘Plus‘ Nat 4

What does the following evaluate to?

foldl (flip ($)) (Nat 1)
[(‘Plus‘ Nat 2), (‘Minus‘ Nat 3), (‘Plus‘ Nat 4)]

We can obtain this result as follows:

chainl :: Parser s a→ Parser s (a→ a→ a)→ Parser s a
chainl p s= foldl (flip ($))<$> p<∗>many (flip<$> s<∗> p)

e= chainl (Nat<$> natural) o
o= Plus<$ symbol ’+’<|>Minus<$ symbol ’-’



[Faculty of Science
Information and Computing Sciences]

5-31

Operator chains – contd.

We want:

((Nat 1 ‘Plus‘ Nat 2) ‘Minus‘ Nat 3) ‘Plus‘ Nat 4

What does the following evaluate to?

foldl (flip ($)) (Nat 1)
[(‘Plus‘ Nat 2), (‘Minus‘ Nat 3), (‘Plus‘ Nat 4)]

We can obtain this result as follows:

chainl :: Parser s a→ Parser s (a→ a→ a)→ Parser s a
chainl p s= foldl (flip ($))<$> p<∗>many (flip<$> s<∗> p)

e= chainl (Nat<$> natural) o
o= Plus<$ symbol ’+’<|>Minus<$ symbol ’-’



[Faculty of Science
Information and Computing Sciences]

5-32

Chain combinators

There are combinators for left-associative and right-associative
chains:

chainl :: Parser s a→ Parser s (a→ a→ a)→ Parser s a
chainr :: Parser s a→ Parser s (a→ a→ a)→ Parser s a

chainl p s=
foldl (flip ($))<$> p<∗>many (flip<$> s<∗> p)

chainr p s=
flip (foldr ($))<$>many (flip ($)<$> p<∗> s)<∗> p

Use chainl and chainr for some of the most common
occurrences of left recursion in grammars.



[Faculty of Science
Information and Computing Sciences]

5-32

Chain combinators

There are combinators for left-associative and right-associative
chains:

chainl :: Parser s a→ Parser s (a→ a→ a)→ Parser s a
chainr :: Parser s a→ Parser s (a→ a→ a)→ Parser s a

chainl p s=
foldl (flip ($))<$> p<∗>many (flip<$> s<∗> p)

chainr p s=
flip (foldr ($))<$>many (flip ($)<$> p<∗> s)<∗> p

Use chainl and chainr for some of the most common
occurrences of left recursion in grammars.



[Faculty of Science
Information and Computing Sciences]

5-32

Chain combinators

There are combinators for left-associative and right-associative
chains:

chainl :: Parser s a→ Parser s (a→ a→ a)→ Parser s a
chainr :: Parser s a→ Parser s (a→ a→ a)→ Parser s a

chainl p s=
foldl (flip ($))<$> p<∗>many (flip<$> s<∗> p)

chainr p s=
flip (foldr ($))<$>many (flip ($)<$> p<∗> s)<∗> p

Use chainl and chainr for some of the most common
occurrences of left recursion in grammars.



[Faculty of Science
Information and Computing Sciences]

5-33

Operator priorities

Consider:

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

This is a typical grammar for expressions with operators.

For the same reasons as before, it is ambiguous.

Given the priorities of the operators and their associativity, we
can transform this grammar such that the ambiguity is removed.



[Faculty of Science
Information and Computing Sciences]

5-33

Operator priorities

Consider:

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

This is a typical grammar for expressions with operators.

For the same reasons as before, it is ambiguous.

Given the priorities of the operators and their associativity, we
can transform this grammar such that the ambiguity is removed.



[Faculty of Science
Information and Computing Sciences]

5-33

Operator priorities

Consider:

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

This is a typical grammar for expressions with operators.

For the same reasons as before, it is ambiguous.

Given the priorities of the operators and their associativity, we
can transform this grammar such that the ambiguity is removed.



[Faculty of Science
Information and Computing Sciences]

5-34

Operator priorities – contd.

The basic idea is to associate operators of different priorities
with different non-terminals.

For each priority level i, we get

Ei → Ei Opi Ei+1 | Ei+1 (for left-associative operators)

or

Ei → Ei+1 Opi Ei | Ei+1 (for right-associative operators)

or

Ei → Ei+1 Opi Ei+1 | Ei+1 (for non-associative operators)

The highest level contains the remaining productions.

All forms of brackets point to the outer (lowest) level of
expressions.



[Faculty of Science
Information and Computing Sciences]

5-34

Operator priorities – contd.

The basic idea is to associate operators of different priorities
with different non-terminals.

For each priority level i, we get

Ei → Ei Opi Ei+1 | Ei+1 (for left-associative operators)

or

Ei → Ei+1 Opi Ei | Ei+1 (for right-associative operators)

or

Ei → Ei+1 Opi Ei+1 | Ei+1 (for non-associative operators)

The highest level contains the remaining productions.

All forms of brackets point to the outer (lowest) level of
expressions.



[Faculty of Science
Information and Computing Sciences]

5-34

Operator priorities – contd.

The basic idea is to associate operators of different priorities
with different non-terminals.

For each priority level i, we get

Ei → Ei Opi Ei+1 | Ei+1 (for left-associative operators)

or

Ei → Ei+1 Opi Ei | Ei+1 (for right-associative operators)

or

Ei → Ei+1 Opi Ei+1 | Ei+1 (for non-associative operators)

The highest level contains the remaining productions.

All forms of brackets point to the outer (lowest) level of
expressions.



[Faculty of Science
Information and Computing Sciences]

5-34

Operator priorities – contd.

The basic idea is to associate operators of different priorities
with different non-terminals.

For each priority level i, we get

Ei → Ei Opi Ei+1 | Ei+1 (for left-associative operators)

or

Ei → Ei+1 Opi Ei | Ei+1 (for right-associative operators)

or

Ei → Ei+1 Opi Ei+1 | Ei+1 (for non-associative operators)

The highest level contains the remaining productions.

All forms of brackets point to the outer (lowest) level of
expressions.



[Faculty of Science
Information and Computing Sciences]

5-35

Operator priorities – contd.

Applied to

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

we obtain:

E1 → E1 Op1 E2 | E2

E2 → E2 Op2 E3 | E3

E3 → ( E1 ) | Nat
Op1 → + | -
Op2 → *



[Faculty of Science
Information and Computing Sciences]

5-36

Parsers for operator expressions

Since the abstract syntax tree structure makes the nesting
explicit, it typically makes sense to derive the Haskell datatype
from the ambiguous grammar:

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

data E= Plus E E
| Minus E E
| Times E E

| Nat

We can now use chainl and chainr again for each of the levels.



[Faculty of Science
Information and Computing Sciences]

5-36

Parsers for operator expressions

Since the abstract syntax tree structure makes the nesting
explicit, it typically makes sense to derive the Haskell datatype
from the ambiguous grammar:

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

data E= Plus E E
| Minus E E
| Times E E
| Parens E
| Nat

We can now use chainl and chainr again for each of the levels.



[Faculty of Science
Information and Computing Sciences]

5-36

Parsers for operator expressions

Since the abstract syntax tree structure makes the nesting
explicit, it typically makes sense to derive the Haskell datatype
from the ambiguous grammar:

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

data E= Plus E E
| Minus E E
| Times E E

| Nat

We can now use chainl and chainr again for each of the levels.



[Faculty of Science
Information and Computing Sciences]

5-36

Parsers for operator expressions

Since the abstract syntax tree structure makes the nesting
explicit, it typically makes sense to derive the Haskell datatype
from the ambiguous grammar:

E→ E + E
E→ E - E
E→ E * E
E→ ( E )

E→ Nat

data E= Plus E E
| Minus E E
| Times E E

| Nat

We can now use chainl and chainr again for each of the levels.



[Faculty of Science
Information and Computing Sciences]

5-37

Parsers for operator expressions – contd.
E1 → E1 Op1 E2 | E2

E2 → E2 Op2 E3 | E3

E3 → ( E1 ) | Nat
Op1 → + | -
Op2 → *

data E= Plus E E
| Minus E E
| Times E E
| Nat Int

Parser:

e1, e2, e3 :: Parser Char E
e1 = chainl e2 op1
e2 = chainl e3 op2
e3 = parenthesised e1 <|> Nat<$> natural

op1, op2 :: Parser Char (E→ E→ E)
op1 = Plus <$ symbol ’+’<|>Minus<$ symbol ’-’
op2 = Times<$ symbol ’*’



[Faculty of Science
Information and Computing Sciences]

5-37

Parsers for operator expressions – contd.
E1 → E1 Op1 E2 | E2

E2 → E2 Op2 E3 | E3

E3 → ( E1 ) | Nat
Op1 → + | -
Op2 → *

data E= Plus E E
| Minus E E
| Times E E
| Nat Int

Parser:

e1, e2, e3 :: Parser Char E
e1 = chainl e2 op1
e2 = chainl e3 op2
e3 = parenthesised e1 <|> Nat<$> natural

op1, op2 :: Parser Char (E→ E→ E)
op1 = Plus <$ symbol ’+’<|>Minus<$ symbol ’-’
op2 = Times<$ symbol ’*’



[Faculty of Science
Information and Computing Sciences]

5-38

A general operator parser

We can abstract even further from this pattern:

type Op a= (Char, a→ a→ a)

gen :: [Op a]→ Parser Char a→ Parser Char a
gen ops p=
chainl p (choice (map (λ(s, c)→ c<$ symbol s) ops))

where choice combines a list of parsers using (<|>).

Now:

e1 = gen [(’+’,Plus), (’-’,Minus)] e2
e2 = gen [(’*’,Times)] e3



[Faculty of Science
Information and Computing Sciences]

5-38

A general operator parser

We can abstract even further from this pattern:

type Op a= (Char, a→ a→ a)

gen :: [Op a]→ Parser Char a→ Parser Char a
gen ops p=
chainl p (choice (map (λ(s, c)→ c<$ symbol s) ops))

where choice combines a list of parsers using (<|>).

Now:

e1 = gen [(’+’,Plus), (’-’,Minus)] e2
e2 = gen [(’*’,Times)] e3



[Faculty of Science
Information and Computing Sciences]

5-39

A general operator parser – contd.

e1 = gen [(’+’,Plus), (’-’,Minus)] e2
e2 = gen [(’*’,Times)] e3

We do not even need the intermediate levels anymore:

e1 = foldr gen e3
[[(’+’,Plus), (’-’,Minus)], [(’*’,Times)]]

Remarks:

▶ Extra functionality can be added (such as the possibility of
right-associative or unary operators).

▶ User-defined abstractions are like macros or meta-level
programming.



[Faculty of Science
Information and Computing Sciences]

5-39

A general operator parser – contd.

e1 = gen [(’+’,Plus), (’-’,Minus)] e2
e2 = gen [(’*’,Times)] e3

We do not even need the intermediate levels anymore:

e1 = foldr gen e3
[[(’+’,Plus), (’-’,Minus)], [(’*’,Times)]]

Remarks:

▶ Extra functionality can be added (such as the possibility of
right-associative or unary operators).

▶ User-defined abstractions are like macros or meta-level
programming.



[Faculty of Science
Information and Computing Sciences]

5-39

A general operator parser – contd.

e1 = gen [(’+’,Plus), (’-’,Minus)] e2
e2 = gen [(’*’,Times)] e3

We do not even need the intermediate levels anymore:

e1 = foldr gen e3
[[(’+’,Plus), (’-’,Minus)], [(’*’,Times)]]

Remarks:

▶ Extra functionality can be added (such as the possibility of
right-associative or unary operators).

▶ User-defined abstractions are like macros or meta-level
programming.


	Parser combinators (iii)
	Parser Combinators: recap
	Parser Combinators: new primitives
	Parser Combinators: new abstractions
	Grammar transformations
	Operators


