
[Faculty of Science
Information and Computing Sciences]

Talen en Compilers

2023 - 2024

David van Balen

Department of Information and Computing Sciences
Utrecht University

2023-12-07

[Faculty of Science
Information and Computing Sciences]

6-1

6. Compositionality

[Faculty of Science
Information and Computing Sciences]

6-2

This lecture

Compositionality

Compiler overview

Folding

Matched parentheses

Simple expressions

A fold for all datatypes

Advanced folds

[Faculty of Science
Information and Computing Sciences]

6-3

6.1 Compiler overview

[Faculty of Science
Information and Computing Sciences]

6-4

Phases of a compiler

Roughly:

▶ Lexing and parsing

▶ Analysis and type checking

▶ Desugaring

▶ Optimization

▶ Code generation

Note that not all compilers have all phases, and others may
have more phases (typically multiple desugaring and
optimization phases).

[Faculty of Science
Information and Computing Sciences]

6-4

Phases of a compiler

Roughly:

▶ Lexing and parsing

▶ Analysis and type checking

▶ Desugaring

▶ Optimization

▶ Code generation

Note that not all compilers have all phases, and others may
have more phases (typically multiple desugaring and
optimization phases).

[Faculty of Science
Information and Computing Sciences]

6-5

Abstract syntax trees

Abstract syntax trees (AST) play a central role:

▶ Some phases build ASTs (such as parsing).

▶ Most phases traverse ASTs (such as analysis, type
checking, code generation).

▶ Some phases traverse one AST and build another (such as
desugaring).

[Faculty of Science
Information and Computing Sciences]

6-6

Status

So far
How to build ASTs using a combinator parser.

Now
How to traverse ASTs systematically in order to compute all
sorts of information.

[Faculty of Science
Information and Computing Sciences]

6-6

Status

So far
How to build ASTs using a combinator parser.

Now
How to traverse ASTs systematically in order to compute all
sorts of information.

[Faculty of Science
Information and Computing Sciences]

6-7

6.2 Folding

[Faculty of Science
Information and Computing Sciences]

6-8

Functions over lists

sum [] = 0
sum (x : xs) = x+ sum xs

length [] = 0
length (x : xs) = 1 + length xs

We abstract the commonalities using a fold:

foldr :: (a → r → r) → r → [a] → r
foldr v [] = v
foldr f v (x : xs) = f x (foldr f v xs)

sum = foldr (+) 0
length= foldr (λ r → 1 + r) 0

[Faculty of Science
Information and Computing Sciences]

6-8

Functions over lists

sum [] = 0
sum (x : xs) = x+ sum xs

length [] = 0
length (x : xs) = 1 + length xs

We abstract the commonalities using a fold:

foldr :: (a → r → r) → r → [a] → r
foldr v [] = v
foldr f v (x : xs) = f x (foldr f v xs)

sum = foldr (+) 0
length= foldr (λ r → 1 + r) 0

[Faculty of Science
Information and Computing Sciences]

6-9

List algebra

We can pack the arguments to foldr into a single one:

foldr :: (r, a → r → r) → [a] → r
foldr (v,) [] = v
foldr (v, f) (x : xs) = f x (foldr (v, f) xs)

The pair (v, f) is called a list algebra:

type ListAlgebra a r = (r, a → r → r)
foldr :: ListAlgebra a r → [a] → r

foldr receives a list algebra and a list, and returns a result
from the carrier of the algebra.

[Faculty of Science
Information and Computing Sciences]

6-9

List algebra

We can pack the arguments to foldr into a single one:

foldr :: (r, a → r → r) → [a] → r
foldr (v,) [] = v
foldr (v, f) (x : xs) = f x (foldr (v, f) xs)

The pair (v, f) is called a list algebra:

type ListAlgebra a r = (r, a → r → r)
foldr :: ListAlgebra a r → [a] → r

foldr receives a list algebra and a list, and returns a result
from the carrier of the algebra.

[Faculty of Science
Information and Computing Sciences]

6-10

map is a fold

Question
Write a list algebra mapAlg such that foldr (mapAlg f) =map f.

mapAlg :: (a → b) → ListAlgebra a [b]
mapAlg f = (,)

mapAlg f = ([], λa bs →)

mapAlg f = ([], λa bs → f a : bs)

[Faculty of Science
Information and Computing Sciences]

6-10

map is a fold

Question
Write a list algebra mapAlg such that foldr (mapAlg f) =map f.

mapAlg :: (a → b) → ListAlgebra a [b]
mapAlg f = (,)

mapAlg f = ([], λa bs →)

mapAlg f = ([], λa bs → f a : bs)

[Faculty of Science
Information and Computing Sciences]

6-10

map is a fold

Question
Write a list algebra mapAlg such that foldr (mapAlg f) =map f.

mapAlg :: (a → b) → ListAlgebra a [b]
mapAlg f = (,)

mapAlg f = ([], λa bs →)

mapAlg f = ([], λa bs → f a : bs)

[Faculty of Science
Information and Computing Sciences]

6-11

filter is a fold

Write a list algebra filterAlg: foldr (filterAlg f) = filter f.

filterAlg :: (a → Bool) → ListAlgebra a [a]
filterAlg f = (,)

filterAlg f = ([], λx xs →)

filterAlg f = ([], λx xs → if f x then x : xs else xs)

[Faculty of Science
Information and Computing Sciences]

6-11

filter is a fold

Write a list algebra filterAlg: foldr (filterAlg f) = filter f.

filterAlg :: (a → Bool) → ListAlgebra a [a]
filterAlg f = (,)

filterAlg f = ([], λx xs →)

filterAlg f = ([], λx xs → if f x then x : xs else xs)

[Faculty of Science
Information and Computing Sciences]

6-11

filter is a fold

Write a list algebra filterAlg: foldr (filterAlg f) = filter f.

filterAlg :: (a → Bool) → ListAlgebra a [a]
filterAlg f = (,)

filterAlg f = ([], λx xs →)

filterAlg f = ([], λx xs → if f x then x : xs else xs)

[Faculty of Science
Information and Computing Sciences]

6-12

6.3 Matched parentheses

[Faculty of Science
Information and Computing Sciences]

6-13

Matched parentheses revisited

Grammar:

S → (S) S | ε

Abstract syntax:

data Parens=Match Parens Parens
| Empty

Count the number of pairs:

count :: Parens → Int
count (Match p1 p2) = (count p1 + 1) + count p2
count Empty = 0

[Faculty of Science
Information and Computing Sciences]

6-13

Matched parentheses revisited

Grammar:

S → (S) S | ε

Abstract syntax:

data Parens=Match Parens Parens
| Empty

Count the number of pairs:

count :: Parens → Int
count (Match p1 p2) = (count p1 + 1) + count p2
count Empty = 0

[Faculty of Science
Information and Computing Sciences]

6-14

Matched parentheses – contd.

Maximal nesting depth:

depth :: Parens → Int
depth (Match p1 p2) = (depth p1 + 1) ‘max‘ depth p2
depth Empty = 0

String representation:

print :: Parens → String
print (Match p1 p2) = "("++ print p1 ++ ")"++ print p2
print Empty = ""

[Faculty of Science
Information and Computing Sciences]

6-14

Matched parentheses – contd.

Maximal nesting depth:

depth :: Parens → Int
depth (Match p1 p2) = (depth p1 + 1) ‘max‘ depth p2
depth Empty = 0

String representation:

print :: Parens → String
print (Match p1 p2) = "("++ print p1 ++ ")"++ print p2
print Empty = ""

[Faculty of Science
Information and Computing Sciences]

6-15

Capturing the recursive structure

All the functions we have seen have the following structure:

f :: Parens → . . .
f (Match p1 p2) = . . . (f p1) (f p2)
f Empty = . . .

Idea
Let us abstract from this recursive structure.

[Faculty of Science
Information and Computing Sciences]

6-15

Capturing the recursive structure

All the functions we have seen have the following structure:

f :: Parens → . . .
f (Match p1 p2) = . . . (f p1) (f p2)
f Empty = . . .

Idea
Let us abstract from this recursive structure.

[Faculty of Science
Information and Computing Sciences]

6-16

Capturing the recursive structure – contd.

f :: Parens → . . .
f (Match p1 p2) = . . . (f p1) (f p2)
f Empty = . . .

Question
Given that the result type is . . ., what are the types of match
and . . .? And how do they compare to the types of Match and
Empty?

match :: . . . → . . . → . . .
. . . :: . . .

Match :: Parens → Parens → Parens
Empty :: Parens

[Faculty of Science
Information and Computing Sciences]

6-16

Capturing the recursive structure – contd.

f :: Parens → r
f (Match p1 p2) = . . . (f p1) (f p2)
f Empty = . . .

Question
Given that the result type is r, what are the types of match and
. . .? And how do they compare to the types of Match and
Empty?

match :: r → r → r
. . . :: r

Match :: Parens → Parens → Parens
Empty :: Parens

[Faculty of Science
Information and Computing Sciences]

6-16

Capturing the recursive structure – contd.

f :: Parens → r
f (Match p1 p2) =match (f p1) (f p2)
f Empty = . . .

Question
Given that the result type is r, what are the types of match and
. . .? And how do they compare to the types of Match and
Empty?

match :: r → r → r
. . . :: r

Match :: Parens → Parens → Parens
Empty :: Parens

[Faculty of Science
Information and Computing Sciences]

6-16

Capturing the recursive structure – contd.

f :: Parens → r
f (Match p1 p2) =match (f p1) (f p2)
f Empty = empty

Question
Given that the result type is r, what are the types of match and
empty? And how do they compare to the types of Match and
Empty?

match :: r → r → r
empty :: r

Match :: Parens → Parens → Parens
Empty :: Parens

[Faculty of Science
Information and Computing Sciences]

6-16

Capturing the recursive structure – contd.

f :: Parens → r
f (Match p1 p2) =match (f p1) (f p2)
f Empty = empty

Question
Given that the result type is r, what are the types of match and
empty? And how do they compare to the types of Match and
Empty?

match :: r → r → r
empty :: r

Match :: Parens → Parens → Parens
Empty :: Parens

[Faculty of Science
Information and Computing Sciences]

6-16

Capturing the recursive structure – contd.

f :: Parens → r
f (Match p1 p2) =match (f p1) (f p2)
f Empty = empty

Question
Given that the result type is r, what are the types of match and
empty? And how do they compare to the types of Match and
Empty?

match :: r → r → r
empty :: r

Match :: Parens → Parens → Parens
Empty :: Parens

[Faculty of Science
Information and Computing Sciences]

6-16

Capturing the recursive structure – contd.

f :: Parens → r
f (Match p1 p2) =match (f p1) (f p2)
f Empty = empty

Question
Given that the result type is r, what are the types of match and
empty? And how do they compare to the types of Match and
Empty?

match :: r → r → r
empty :: r

Match :: Parens → Parens → Parens
Empty :: Parens

[Faculty of Science
Information and Computing Sciences]

6-17

Capturing the recursive structure – contd.

For each of the functions count, depth and print we have to
give different definitions for match and empty.

type ParensAlgebra r = (r → r → r, -- match
r) -- empty

foldParens :: ParensAlgebra r → Parens → r
foldParens (match, empty) = f

where f (Match p1 p2) =match (f p1) (f p2)
f Empty = empty

[Faculty of Science
Information and Computing Sciences]

6-17

Capturing the recursive structure – contd.

For each of the functions count, depth and print we have to
give different definitions for match and empty.

type ParensAlgebra r = (r → r → r, -- match
r) -- empty

foldParens :: ParensAlgebra r → Parens → r
foldParens (match, empty) = f

where f (Match p1 p2) =match (f p1) (f p2)
f Empty = empty

[Faculty of Science
Information and Computing Sciences]

6-17

Capturing the recursive structure – contd.

For each of the functions count, depth and print we have to
give different definitions for match and empty.

type ParensAlgebra r = (r → r → r, -- match
r) -- empty

foldParens :: ParensAlgebra r → Parens → r
foldParens (match, empty) = f
where f (Match p1 p2) =match (f p1) (f p2)

f Empty = empty

[Faculty of Science
Information and Computing Sciences]

6-18

Using foldParens

countAlgebra :: ParensAlgebra Int
countAlgebra= (λc1 c2 → c1 + c2 + 1, 0)
count= foldParens countAlgebra

depthAlgebra :: ParensAlgebra Int
depthAlgebra= (λd1 d2 → (d1 + 1) ‘max‘ d2, 0)
depth= foldParens depthAlgebra

printAlgebra :: ParensAlgebra String
printAlgebra= (λp1 p2 → "("++ p1 ++ ")"++ p2, "")
print= foldParens printAlgebra

[Faculty of Science
Information and Computing Sciences]

6-19

6.4 Simple expressions

[Faculty of Science
Information and Computing Sciences]

6-20

Arithmetic expressions

Grammar:

E → E + E
E → - E
E → Nat
E → (E)

Transformed grammar:

E → E′ + E | E′

E′ → - E′

E′ → Nat
E′ → (E)

Abstract syntax, based on original grammar:

data E= Add E E
| Neg E
| Num Int

[Faculty of Science
Information and Computing Sciences]

6-20

Arithmetic expressions

Grammar:

E → E + E
E → - E
E → Nat
E → (E)

Transformed grammar:

E → E′ + E | E′

E′ → - E′

E′ → Nat
E′ → (E)

Abstract syntax, based on original grammar:

data E= Add E E
| Neg E
| Num Int

[Faculty of Science
Information and Computing Sciences]

6-21

Functions on expressions

data E= Add E E
| Neg E
| Num Int

eval :: E → Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = − (eval e)
eval (Num n) = n

Once more, the structure of the function reflects the structure
of the datatype.

Can you write EAlgebra, foldE, and the algebra for eval?

[Faculty of Science
Information and Computing Sciences]

6-21

Functions on expressions

data E= Add E E
| Neg E
| Num Int

eval :: E → Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = − (eval e)
eval (Num n) = n

Once more, the structure of the function reflects the structure
of the datatype.

Can you write EAlgebra, foldE, and the algebra for eval?

[Faculty of Science
Information and Computing Sciences]

6-22

Functions on expressions – contd.

Datatype:

data E= Add E E
| Neg E
| Num Int

Types of the constructors:

Add :: E → E → E
Neg :: E → E
Num :: Int → E

Algebra:

type EAlgebra r = (r → r → r, -- add
r → r, -- neg
Int → r) -- num

[Faculty of Science
Information and Computing Sciences]

6-22

Functions on expressions – contd.

Datatype:

data E= Add E E
| Neg E
| Num Int

Types of the constructors:

Add :: E → E → E
Neg :: E → E
Num :: Int → E

Algebra:

type EAlgebra r = (r → r → r, -- add
r → r, -- neg
Int → r) -- num

[Faculty of Science
Information and Computing Sciences]

6-22

Functions on expressions – contd.

Datatype:

data E= Add E E
| Neg E
| Num Int

Types of the constructors:

Add :: E → E → E
Neg :: E → E
Num :: Int → E

Algebra:

type EAlgebra r = (r → r → r, -- add
r → r, -- neg
Int → r) -- num

[Faculty of Science
Information and Computing Sciences]

6-23

Functions on expressions – contd.

With the algebra, we can define a fold:

type EAlgebra r = (r → r → r, -- add
r → r, -- neg
Int → r) -- num

foldE :: EAlgebra r → E → r
foldE (add, neg, num) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e) = neg (f e)
f (Num n) = num n

evalAlgebra :: EAlgebra Int
evalAlgebra= ((+), negate, id)

eval= foldE evalAlgebra

[Faculty of Science
Information and Computing Sciences]

6-23

Functions on expressions – contd.

With the algebra, we can define a fold:

type EAlgebra r = (r → r → r, -- add
r → r, -- neg
Int → r) -- num

foldE :: EAlgebra r → E → r
foldE (add, neg, num) = f
where f (Add e1 e2) = add (f e1) (f e2)

f (Neg e) = neg (f e)
f (Num n) = num n

evalAlgebra :: EAlgebra Int
evalAlgebra= ((+), negate, id)

eval= foldE evalAlgebra

[Faculty of Science
Information and Computing Sciences]

6-23

Functions on expressions – contd.

With the algebra, we can define a fold:

type EAlgebra r = (r → r → r, -- add
r → r, -- neg
Int → r) -- num

foldE :: EAlgebra r → E → r
foldE (add, neg, num) = f
where f (Add e1 e2) = add (f e1) (f e2)

f (Neg e) = neg (f e)
f (Num n) = num n

evalAlgebra :: EAlgebra Int
evalAlgebra= ((+), negate, id)

eval= foldE evalAlgebra

[Faculty of Science
Information and Computing Sciences]

6-24

6.5 A fold for all datatypes

[Faculty of Science
Information and Computing Sciences]

6-25

How to build a fold, in general

For a datatype T, we can define a fold function as follows:

▶ Define an algebra type TAlgebra that is parameterized over
all of T’s parameters, plus a result type r.

▶ The algebra is a tuple containing one component per
constructor function.

▶ The types of the components are like the types of the
constructor functions, but all (recursive) occurrences of T
are replaced with r.

▶ The fold function is defined by traversing the data
structure, replacing constructors with their corresponding
algebra components, and recursing where required.

[Faculty of Science
Information and Computing Sciences]

6-26

Trees

data Tree a= Leaf a
| Node (Tree a) (Tree a)

Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

type TreeAlgebra a r = (a → r, -- leaf
r → r → r) -- node

foldTree :: TreeAlgebra a r → Tree a → r
foldTree (leaf, node) = f
where f (Leaf x) = leaf x

f (Node l r) = node (f l) (f r)

[Faculty of Science
Information and Computing Sciences]

6-26

Trees

data Tree a= Leaf a
| Node (Tree a) (Tree a)

Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

type TreeAlgebra a r = (a → r, -- leaf
r → r → r) -- node

foldTree :: TreeAlgebra a r → Tree a → r
foldTree (leaf, node) = f
where f (Leaf x) = leaf x

f (Node l r) = node (f l) (f r)

[Faculty of Science
Information and Computing Sciences]

6-27

Tree algebra examples

sizeAlgebra :: TreeAlgebra a Int
sumAlgebra :: TreeAlgebra Int Int
inorderAlgebra :: TreeAlgebra a [a]
reverseAlgebra :: TreeAlgebra a (Tree a)

sizeAlgebra = (const 1, (+))
sumAlgebra = (id, (+))
inorderAlgebra= ((:[]),++)
reverseAlgebra = (Leaf, flip Node)

[Faculty of Science
Information and Computing Sciences]

6-27

Tree algebra examples

sizeAlgebra :: TreeAlgebra a Int
sumAlgebra :: TreeAlgebra Int Int
inorderAlgebra :: TreeAlgebra a [a]
reverseAlgebra :: TreeAlgebra a (Tree a)

sizeAlgebra = (const 1, (+))
sumAlgebra = (id, (+))
inorderAlgebra= ((:[]),++)
reverseAlgebra = (Leaf, flip Node)

[Faculty of Science
Information and Computing Sciences]

6-28

Identity algebra

idAlgebra :: TreeAlgebra a (Tree a)
idAlgebra= (Leaf,Node)

Every datatype has an identity algebra, which arises by using
the constructors as components of the algebra.

[Faculty of Science
Information and Computing Sciences]

6-29

Maybe

data Maybe a= Nothing
| Just a

Nothing ::Maybe a
Just :: a → Maybe a

type MaybeAlgebra a r = (r,
a → r)

foldMaybe ::MaybeAlgebra a r → Maybe a → r
foldMaybe (nothing, just) = f
where f Nothing = nothing

f (Just x) = just x

[Faculty of Science
Information and Computing Sciences]

6-30

foldMaybe vs. maybe

type MaybeAlgebra a r = (r,
a → r)

foldMaybe ::MaybeAlgebra a r → Maybe a → r
foldMaybe (nothing, just) = f
where f Nothing = nothing

f (Just x) = just x

maybe :: r → (a → r) → Maybe a → r
maybe nothing just Nothing = nothing
maybe nothing just (Just x) = just x

maybe nothing just = = foldMaybe (nothing, just)

[Faculty of Science
Information and Computing Sciences]

6-31

Bool

data Bool= True
| False

True :: Bool
False :: Bool

What is the algebra and the fold of Bool?

type BoolAlgebra r = (r,
r)

foldBool :: BoolAlgebra r → Bool → r
foldBool (true, false) True = true
foldBool (true, false) False= false

foldBool (true, false) x = = if x then true else false

[Faculty of Science
Information and Computing Sciences]

6-31

Bool

data Bool= True
| False

True :: Bool
False :: Bool

What is the algebra and the fold of Bool?

type BoolAlgebra r = (r,
r)

foldBool :: BoolAlgebra r → Bool → r
foldBool (true, false) True = true
foldBool (true, false) False= false

foldBool (true, false) x = = if x then true else false

[Faculty of Science
Information and Computing Sciences]

6-31

Bool

data Bool= True
| False

True :: Bool
False :: Bool

What is the algebra and the fold of Bool?

type BoolAlgebra r = (r,
r)

foldBool :: BoolAlgebra r → Bool → r
foldBool (true, false) True = true
foldBool (true, false) False= false

foldBool (true, false) x = = if x then true else false

[Faculty of Science
Information and Computing Sciences]

6-32

Exercise 1

Write the type of the algebra for the following datatype:

data Expr v = Var v
| App (Expr v) (Expr v)
| Lam v (Expr v)

This represents λ-expressions in which variables are represented
by values of type v (the λ-calculus).

type ExprAlgebra v r = (v → r, r → r → r, v → r → r)
foldExpr :: ExprAlgebra v r → Expr v → r
foldExpr (var, app, lam) = f

where f (Var v) = var v
f (App x y) = app (f x) (f y)
f (Lam v e) = lam v (f e)

[Faculty of Science
Information and Computing Sciences]

6-32

Exercise 1

Write the type of the algebra for the following datatype:

data Expr v = Var v
| App (Expr v) (Expr v)
| Lam v (Expr v)

This represents λ-expressions in which variables are represented
by values of type v (the λ-calculus).

type ExprAlgebra v r = (v → r, r → r → r, v → r → r)
foldExpr :: ExprAlgebra v r → Expr v → r
foldExpr (var, app, lam) = f

where f (Var v) = var v
f (App x y) = app (f x) (f y)
f (Lam v e) = lam v (f e)

[Faculty of Science
Information and Computing Sciences]

6-33

Exercise 2a

Here is the datatype of symmetric lists:

data SymList a= Zero
| One a
| Add a (SymList a) a

Write the algebra and the fold.

type SymListAlgebra a r = (r, a → r, a → r → a → r)

foldSymList :: SymListAlgebra a r → SymList a → r
foldSymList (z, ,) Zero = z
foldSymList (, o,) (One x) = o x
foldSymList (z, o, a) (Add l c r) = a l (foldSymList (z, o, a) c) r

[Faculty of Science
Information and Computing Sciences]

6-33

Exercise 2a

Here is the datatype of symmetric lists:

data SymList a= Zero
| One a
| Add a (SymList a) a

Write the algebra and the fold.

type SymListAlgebra a r = (r, a → r, a → r → a → r)

foldSymList :: SymListAlgebra a r → SymList a → r
foldSymList (z, ,) Zero = z
foldSymList (, o,) (One x) = o x
foldSymList (z, o, a) (Add l c r) = a l (foldSymList (z, o, a) c) r

[Faculty of Science
Information and Computing Sciences]

6-34

Exercise 2b

data SymList a= Zero
| One a
| Add a (SymList a) a

type SymListAlgebra a r = (r, a → r, a → r → a → r)

foldSymList :: SymListAlgebra a r → SymList a → r

Write an algebra to check whether a given symmetric list is a
palindrome (it reads the same in the reverse order):

palinAlg :: Eq a ⇒ SymAlgebra a Bool

[Faculty of Science
Information and Computing Sciences]

6-35

Advantages of using folds

▶ We stick to a systematic recursion pattern that is well
known and easy to understand.

▶ Using a fold forces us to define semantics in a
compositional fashion – the semantics of a whole term is
composed from the semantics of its subterms.

▶ The systematic nature of a fold makes it easy to combine
several folds into one. This is essential for efficiency in a
compiler.

[Faculty of Science
Information and Computing Sciences]

6-36

6.6 Advanced folds

[Faculty of Science
Information and Computing Sciences]

6-37

Combining algebras: Fusion

You can combine two algebras to produce pairs of results:

combine :: LAlgebra a x → LAlgebra a y → LAlgebra a (x, y)
combine (v1, f1) (v2, f2)

= ((v1, v2), λx (r1, r2) → (f1 x r1, f2 x r2))

Now you only need to traverse the data structure once!

You can fuse a fold with a map:

foldr f v .map g = = foldr (λx xs → f (g x) xs) v

mapAlg :: LAlgebra b x → (a → b) → LAlgebra a x
mapAlg (v, f) g = (v, λx xs → f (g x) xs)

[Faculty of Science
Information and Computing Sciences]

6-37

Combining algebras: Fusion

You can combine two algebras to produce pairs of results:

combine :: LAlgebra a x → LAlgebra a y → LAlgebra a (x, y)
combine (v1, f1) (v2, f2)

= ((v1, v2), λx (r1, r2) → (f1 x r1, f2 x r2))

Now you only need to traverse the data structure once!

You can fuse a fold with a map:

foldr f v .map g = = foldr (λx xs → f (g x) xs) v

mapAlg :: LAlgebra b x → (a → b) → LAlgebra a x
mapAlg (v, f) g = (v, λx xs → f (g x) xs)

[Faculty of Science
Information and Computing Sciences]

6-38

Fusing more algebras

combine1 :: LAlgebra a x
→ LAlgebra a y
→ LAlgebra a (x, y)

combine2 :: LAlgebra a x
→ LAlgebra a (x → y)
→ LAlgebra a (x, x → y, y)

combine3 :: LAlgebra a x
→ LAlgebra x y
→ LAlgebra a (x, y)

[Faculty of Science
Information and Computing Sciences]

6-39

Record Syntax

type ListAlgebra a r = (r, a → r → r)

foldList (nil, cons) [] = nil
foldList (nil, cons) (x : xs) = cons x (foldList (nil, cons) xs)

lengthAlg = (0, λ l → l+ 1)

data ListAlgebra a r = ListAlg
{nil :: r
, cons :: a → r → r}

foldList alg [] = nil alg
foldList alg (x : xs) = cons alg x (foldList alg xs)

lengthAlg = ListAlg {nil= 0, cons= λ l → l+ 1}

[Faculty of Science
Information and Computing Sciences]

6-39

Record Syntax

type ListAlgebra a r = (r, a → r → r)

foldList (nil, cons) [] = nil
foldList (nil, cons) (x : xs) = cons x (foldList (nil, cons) xs)

lengthAlg = (0, λ l → l+ 1)

data ListAlgebra a r = ListAlg
{nil :: r
, cons :: a → r → r}

foldList alg [] = nil alg
foldList alg (x : xs) = cons alg x (foldList alg xs)

lengthAlg = ListAlg {nil= 0, cons= λ l → l+ 1}

[Faculty of Science
Information and Computing Sciences]

6-40

One Fix to rule them all...

We can separate the recursive structure of a datatype:

data Parens′ r =Match′ r r | Empty′

data List′ a r = Nil′ | Cons′ a r

and tie it back together using a fixpoint:

newtype Fix f = Fix {unFix :: f (Fix f)}
type Parens= Fix Parens′

type List a = Fix (List′ a)

[1, 2] = = Fix (Cons′ 1 (Fix (Cons′ 2 (Fix Nil′))))

[Faculty of Science
Information and Computing Sciences]

6-41

...and in the darkness fold them

type Algebra f a= f a → a

foldAlg :: Functor f ⇒ Algebra f a → Fix f → a
foldAlg alg (Fix x) = alg (fmap (foldAlg alg) x)

The length of a list can be defined that way:

lengthAlg :: Algebra (List′ Char) Int -- that is
:: List′ Char Int → Int

lengthAlg Nil′ = 0
lengthAlg (Cons′ l) = 1 + l

[Faculty of Science
Information and Computing Sciences]

6-42

Next lecture

▶ Mutually recursive datatypes.

▶ Defining algebras for more advanced computations.

	Compositionality
	Compiler overview
	Folding
	Matched parentheses
	Simple expressions
	A fold for all datatypes
	Advanced folds

