
[Faculty of Science
Information and Computing Sciences]

Talen en Compilers

2023 - 2024

David van Balen

Department of Information and Computing Sciences
Utrecht University

2023-12-12

[Faculty of Science
Information and Computing Sciences]

7-1

7. Compositional interpreters for expressions

[Faculty of Science
Information and Computing Sciences]

7-2

This lecture

Compositional interpreters for expressions

Reminder: simple expressions

Variables

Definitions

Mutually recursive datatypes: declarations and expressions

Using a list of declarations

Use before definition

[Faculty of Science
Information and Computing Sciences]

7-3

7.1 Reminder: simple expressions

[Faculty of Science
Information and Computing Sciences]

7-4

Simple expressions

data E= Add E E
| Neg E
| Num Int

type EAlgebra r = (r→ r→ r, -- add
r→ r, -- neg
Int→ r) -- num

foldE :: EAlgebra r→ E→ r
foldE (add, neg, num) = f
where f (Add e1 e2) = add (f e1) (f e2)

f (Neg e) = neg (f e)
f (Num n) = num n

The algebra is a tuple of functions; one for each constructor

Parameterised over the result type: carrier type

The fold function traverses a value and recursively replaces the

constructors of the datatype with the semantic actions of the algebra

[Faculty of Science
Information and Computing Sciences]

7-5

Evaluation

Directly:

eval :: E→ Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = negate (eval e)
eval (Num n) = n

Using foldE:

eval :: E→ Int
eval= foldE ((+), negate, id)

[Faculty of Science
Information and Computing Sciences]

7-5

Evaluation

Directly:

eval :: E→ Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = negate (eval e)
eval (Num n) = n

Using foldE:

eval :: E→ Int
eval= foldE ((+), negate, id)

[Faculty of Science
Information and Computing Sciences]

7-6

7.2 Variables

[Faculty of Science
Information and Computing Sciences]

7-7

Adding variables

Let us consider expressions with variables:

data E= Add E E
| Neg E
| Num Int

| Var Id

We use strings to represent identifiers:

type Id= String

[Faculty of Science
Information and Computing Sciences]

7-7

Adding variables

Let us consider expressions with variables:

data E= Add E E
| Neg E
| Num Int
| Var Id

We use strings to represent identifiers:

type Id= String

[Faculty of Science
Information and Computing Sciences]

7-7

Adding variables

Let us consider expressions with variables:

data E= Add E E
| Neg E
| Num Int
| Var Id

We use strings to represent identifiers:

type Id= String

[Faculty of Science
Information and Computing Sciences]

7-8

Extending algebra and fold

type EAlgebra r = (r→ r→ r, -- add
r→ r, -- neg
Int→ r, -- num
Id→ r) -- var

foldE :: EAlgebra r→ E→ r
foldE (add, neg, num, var) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e) = neg (f e)
f (Num n) = num n
f (Var x) = var x

[Faculty of Science
Information and Computing Sciences]

7-8

Extending algebra and fold

type EAlgebra r = (r→ r→ r, -- add
r→ r, -- neg
Int→ r, -- num
Id→ r) -- var

foldE :: EAlgebra r→ E→ r
foldE (add, neg, num, var) = f
where f (Add e1 e2) = add (f e1) (f e2)

f (Neg e) = neg (f e)
f (Num n) = num n
f (Var x) = var x

[Faculty of Science
Information and Computing Sciences]

7-9

Evaluating expressions with variables

What is the value of the following expression?

-x + 1

Observation
We have to know the (integer) value of x if we want to assign
an (integer) value to the expression.

[Faculty of Science
Information and Computing Sciences]

7-9

Evaluating expressions with variables

What is the value of the following expression?

-x + 1

Observation
We have to know the (integer) value of x if we want to assign
an (integer) value to the expression.

[Faculty of Science
Information and Computing Sciences]

7-10

Free variables

Similarly, in order to assign an integer value to

x + y + y + z

we have to know the integer values of x, y and z.

Variables in an expression that are not defined within the
expression itself are called free variables.

In order to determine the value of an expression, we have to
know the values of the free variables that occur in the
expression.

[Faculty of Science
Information and Computing Sciences]

7-10

Free variables

Similarly, in order to assign an integer value to

x + y + y + z

we have to know the integer values of x, y and z.

Variables in an expression that are not defined within the
expression itself are called free variables.

In order to determine the value of an expression, we have to
know the values of the free variables that occur in the
expression.

[Faculty of Science
Information and Computing Sciences]

7-10

Free variables

Similarly, in order to assign an integer value to

x + y + y + z

we have to know the integer values of x, y and z.

Variables in an expression that are not defined within the
expression itself are called free variables.

In order to determine the value of an expression, we have to
know the values of the free variables that occur in the
expression.

[Faculty of Science
Information and Computing Sciences]

7-11

Evaluating expressions with variables

In other words, the value of an expression possibly containing
free variables is not an Int, but a function

Env→ Int

where Env is an environment mapping the free variables to
integer values.

[Faculty of Science
Information and Computing Sciences]

7-12

Representing an environment

We need a mapping from identifiers (type Id) to values (here
type Int). There are several ways to implement such a mapping:

Lists of pairs

type Env = [(Id, Int)]

Insert in O(1), lookup in O(n).

Finite maps (dictionaries)

import Data.Map

type Env =Map Id Int

Implemented using balanced trees. Insert/lookup in O(log n).

[Faculty of Science
Information and Computing Sciences]

7-12

Representing an environment

We need a mapping from identifiers (type Id) to values (here
type Int). There are several ways to implement such a mapping:

Lists of pairs

type Env = [(Id, Int)]

Insert in O(1), lookup in O(n).

Finite maps (dictionaries)

import Data.Map

type Env =Map Id Int

Implemented using balanced trees. Insert/lookup in O(log n).

[Faculty of Science
Information and Computing Sciences]

7-12

Representing an environment

We need a mapping from identifiers (type Id) to values (here
type Int). There are several ways to implement such a mapping:

Lists of pairs

type Env = [(Id, Int)]

Insert in O(1), lookup in O(n).

Finite maps (dictionaries)

import Data.Map

type Env =Map Id Int

Implemented using balanced trees. Insert/lookup in O(log n).

[Faculty of Science
Information and Computing Sciences]

7-13

Interface of finite maps

import Data.Map (Map)
import qualfified Data.Map as Map

type Map k v -- abstract

Map.empty ::Map k v
Map.insert :: Ord k⇒ k→ v→ Map k v→ Map k v
(Map.!) :: Ord k⇒ Map k v→ k→ v

[Faculty of Science
Information and Computing Sciences]

7-14

Evaluation with variables

Directly:

eval :: E→ Env→ Int
eval (Add e1 e2) env = eval e1 env + eval e2 env
eval (Neg e) env = negate (eval e env)
eval (Num n) env = n
eval (Var x) env = env ! x

Algebra:

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra=

(λr1 r2 → λenv→ r1 env + r2 env,
λr → λenv→ negate (r env),
λn → λenv→ n,
λx → λenv→ env ! x)

[Faculty of Science
Information and Computing Sciences]

7-14

Evaluation with variables

Directly:

eval :: E→ Env→ Int
eval (Add e1 e2) env = eval e1 env + eval e2 env
eval (Neg e) env = negate (eval e env)
eval (Num n) env = n
eval (Var x) env = env ! x

Algebra:

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra=
(λr1 r2 → λenv→ r1 env + r2 env,
λr → λenv→ negate (r env),
λn → λenv→ n,
λx → λenv→ env ! x)

[Faculty of Science
Information and Computing Sciences]

7-15

Where to place the environment?

What is the difference between the following two algebras?

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra=
(λr1 r2 → λenv→ r1 env + r2 env,
λr → λenv→ negate (r env),
λn → λenv→ n,
λx → λenv→ env ! x)

evalAlgebra :: Env→ EAlgebra Int
evalAlgebra env =

(λr1 r2 → r1 + r2,
λr → negate r,
λn → n,
λx → env ! x)

[Faculty of Science
Information and Computing Sciences]

7-16

7.3 Definitions

[Faculty of Science
Information and Computing Sciences]

7-17

Adding definitions

let x= 3 in x+ 1

x← 3;
x+ 1

data E= Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E

Def "x" (Num 3) (Add (Var "x") (Num 1))

[Faculty of Science
Information and Computing Sciences]

7-17

Adding definitions

let x= 3 in x+ 1

x← 3;
x+ 1

data E= Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E

Def "x" (Num 3) (Add (Var "x") (Num 1))

[Faculty of Science
Information and Computing Sciences]

7-17

Adding definitions

let x= 3 in x+ 1

x← 3;
x+ 1

data E= Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E

Def "x" (Num 3) (Add (Var "x") (Num 1))

[Faculty of Science
Information and Computing Sciences]

7-18

Extending algebra and fold

data EAlgebra r = EAlg {
{add :: r→ r→ r,
, neg :: r→ r,
, num :: Int→ r,
, var :: Id→ r,
, def :: Id→ r→ r→ r}

foldE :: EAlgebra r→ E→ r
foldE alg = f

where f (Add e1 e2) = add alg (f e1) (f e2)
f (Neg e) = neg alg (f e)
f (Num n) = num alg n
f (Var x) = var alg x
f (Def x e1 e2) = def alg x (f e1) (f e2)

[Faculty of Science
Information and Computing Sciences]

7-18

Extending algebra and fold

data EAlgebra r = EAlg {
{add :: r→ r→ r,
, neg :: r→ r,
, num :: Int→ r,
, var :: Id→ r,
, def :: Id→ r→ r→ r}

foldE :: EAlgebra r→ E→ r
foldE alg = f

where f (Add e1 e2) = add alg (f e1) (f e2)
f (Neg e) = neg alg (f e)
f (Num n) = num alg n
f (Var x) = var alg x
f (Def x e1 e2) = def alg x (f e1) (f e2)

[Faculty of Science
Information and Computing Sciences]

7-19

Considerations for defining evaluation

What should the following expressions evaluate to?

let x = 1 in x

let x = y in x + x

let x = 1 in let x = 2 in x

let x = 1 in let x = x + 1 in x

We observe and decide:

▶ in general, we still need an environment, even if we can
now define closed terms with variables;

▶ inner definitions should shadow outer definitions;

▶ since we cannot make useful definitions using recursion, we
do not make the bound variable available on the right hand
side of the binding.

[Faculty of Science
Information and Computing Sciences]

7-19

Considerations for defining evaluation

What should the following expressions evaluate to?

let x = 1 in x

let x = y in x + x

let x = 1 in let x = 2 in x

let x = 1 in let x = x + 1 in x

We observe and decide:

▶ in general, we still need an environment, even if we can
now define closed terms with variables;

▶ inner definitions should shadow outer definitions;

▶ since we cannot make useful definitions using recursion, we
do not make the bound variable available on the right hand
side of the binding.

[Faculty of Science
Information and Computing Sciences]

7-20

Evaluating expressions with definitions

Directly:

eval :: E→ Env→ Int
. . . -- as before
eval (Def x e1 e2) env = eval e2 (insert x (eval e1 env) env)

▶ Evaluate e1 in the outer environment env.

▶ Value is bound to x and inserted into the environment env.

▶ Evaluate e2 in the resulting environment.

Algebra:

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra= EAlg-- as before

[Faculty of Science
Information and Computing Sciences]

7-20

Evaluating expressions with definitions

Directly:

eval :: E→ Env→ Int
. . . -- as before
eval (Def x e1 e2) env = eval e2 (insert x (eval e1 env) env)

▶ Evaluate e1 in the outer environment env.

▶ Value is bound to x and inserted into the environment env.

▶ Evaluate e2 in the resulting environment.

Algebra:

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra= EAlg-- as before

[Faculty of Science
Information and Computing Sciences]

7-21

7.4 Mutually recursive datatypes: declarations
and expressions

[Faculty of Science
Information and Computing Sciences]

7-22

Abstracting from declarations

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E

data D= Dcl Id E

How does this change affect the algebra and fold?

[Faculty of Science
Information and Computing Sciences]

7-22

Abstracting from declarations

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E

data D= Dcl Id E

How does this change affect the algebra and fold?

[Faculty of Science
Information and Computing Sciences]

7-22

Abstracting from declarations

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def D E

data D= Dcl Id E

How does this change affect the algebra and fold?

[Faculty of Science
Information and Computing Sciences]

7-22

Abstracting from declarations

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def D E

data D= Dcl Id E

How does this change affect the algebra and fold?

[Faculty of Science
Information and Computing Sciences]

7-23

Algebra for families of datatypes

Each datatype in the family
can have its own result type.

Add :: E→ E→ E
Neg :: E→ E
Num :: Int→ E
Var :: Id→ E
Def :: D→ E→ E

Dcl :: Id→ E→ D

Result type e for expressions,
result type d for declarations:

type EDAlgebra e d=
(e→ e→ e,
e→ e,
Int→ e,
Id→ e,
d→ e→ e,

Id→ e→ d)

[Faculty of Science
Information and Computing Sciences]

7-24

Fold for families of datatypes

We also need one function per type to traverse the structure:

foldE :: EDAlgebra e d→ E→ e
foldE (add, neg, num, var, def, dcl) = fe

where fe (Add e1 e2) = add (fe e1) (fe e2)
fe (Neg e) = neg (fe e)
fe (Num n) = num n
fe (Var x) = var x
fe (Def d e) = def (fd d) (fe e)

fd (Dcl x e) = dcl x (fe e)

fe :: E→ e
fd :: D→ d

[Faculty of Science
Information and Computing Sciences]

7-24

Fold for families of datatypes

We also need one function per type to traverse the structure:

foldE :: EDAlgebra e d→ E→ e
foldE (add, neg, num, var, def, dcl) = fe

where fe (Add e1 e2) = add (fe e1) (fe e2)
fe (Neg e) = neg (fe e)
fe (Num n) = num n
fe (Var x) = var x
fe (Def d e) = def (fd d) (fe e)

fd (Dcl x e) = dcl x (fe e)

fe :: E→ e
fd :: D→ d

[Faculty of Science
Information and Computing Sciences]

7-25

Adapting evaluation (directly)

Question
What is the best result type to choose for a declaration?

evalE :: E→ Env→ Int
evalE (Add e1 e2) env = evalE e1 env + evalE e2 env
evalE (Num e) env = negate (evalE e env)
evalE (Num n) env = n
evalE (Var x) env = env ! x
evalE (Def d e) env = evalE e

evalD :: D→
evalD (Dcl x e) =

[Faculty of Science
Information and Computing Sciences]

7-26

Adapting evaluation (directly)

Question
What is the best result type to choose for a declaration?

evalE :: E→ Env→ Int
evalE (Add e1 e2) env = evalE e1 env + evalE e2 env
evalE (Num e) env = negate (evalE e env)
evalE (Num n) env = n
evalE (Var x) env = env ! x
evalE (Def d e) env = evalE e (evalD d env)

evalD :: D→ Env→ Env
evalD (Dcl x e) env = insert x (evalE e env) env

[Faculty of Science
Information and Computing Sciences]

7-27

Adapting evaluation (as a fold)

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env)
evalAlgebra=
(λe1 e2 → λenv→ e1 env + e2 env,
λe → λenv→ negate (e env),
λn → λenv→ n,
λx → λenv→ env ! x,
λd e → λenv→ e (d env),

λx e → λenv→ insert x (e env) env)

[Faculty of Science
Information and Computing Sciences]

7-28

7.5 Using a list of declarations

[Faculty of Science
Information and Computing Sciences]

7-29

Multiple declarations per definition

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def [D] E -- modified

data D= Dcl Id E

We could also have created a new datatype:

data E = . . .
| Def Ds E

data Ds= NoD
| OneD Ds D

[Faculty of Science
Information and Computing Sciences]

7-29

Multiple declarations per definition

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def [D] E -- modified

data D= Dcl Id E

We could also have created a new datatype:

data E = . . .
| Def Ds E

data Ds= NoD
| OneD Ds D

[Faculty of Science
Information and Computing Sciences]

7-30

Adapting the algebra and fold

We keep the list in the algebra . . .

type EDAlgebra e d=
(. . . ,
[d]→ e→ e,
. . .)

. . . and use map in the fold function:

foldE :: EDAlgebra e d→ E→ e
foldE (add, neg, num, var, def, dcl) = fe

where . . .
fe (Def ds e) = def (map fd ds) (fe e)
. . .

[Faculty of Science
Information and Computing Sciences]

7-30

Adapting the algebra and fold

We keep the list in the algebra . . .

type EDAlgebra e d=
(. . . ,
[d]→ e→ e,
. . .)

. . . and use map in the fold function:

foldE :: EDAlgebra e d→ E→ e
foldE (add, neg, num, var, def, dcl) = fe

where . . .
fe (Def ds e) = def (map fd ds) (fe e)
. . .

[Faculty of Science
Information and Computing Sciences]

7-31

Adapting evaluation

We now get a list of Env→ Env functions (one for each
declaration) in the case for Def:

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env)
evalAlgebra=

(λe1 e2 → λenv→ e1 env + e2 env,
λe → λenv→ negate (e env),
λn → λenv→ n,
λx → λenv→ env ! x,
λds e → λenv→ e (process ds env),

λx e → λenv→ insert x (e env) env)

process :: [Env→ Env]→ Env→ Env
process ds env = foldl (flip ($)) env ds

[Faculty of Science
Information and Computing Sciences]

7-31

Adapting evaluation

We now get a list of Env→ Env functions (one for each
declaration) in the case for Def:

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env)
evalAlgebra=
(λe1 e2 → λenv→ e1 env + e2 env,
λe → λenv→ negate (e env),
λn → λenv→ n,
λx → λenv→ env ! x,
λds e → λenv→ e (process ds env),

λx e → λenv→ insert x (e env) env)

process :: [Env→ Env]→ Env→ Env
process ds env = foldl (flip ($)) env ds

[Faculty of Science
Information and Computing Sciences]

7-31

Adapting evaluation

We now get a list of Env→ Env functions (one for each
declaration) in the case for Def:

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env)
evalAlgebra=
(λe1 e2 → λenv→ e1 env + e2 env,
λe → λenv→ negate (e env),
λn → λenv→ n,
λx → λenv→ env ! x,
λds e → λenv→ e (process ds env),

λx e → λenv→ insert x (e env) env)

process :: [Env→ Env]→ Env→ Env
process ds env = foldl (flip ($)) env ds

[Faculty of Science
Information and Computing Sciences]

7-32

7.6 Use before definition

[Faculty of Science
Information and Computing Sciences]

7-33

Recursion revisited

We said before that we interpret

let x = x + 1 in . . .

as a redefinition because recursive functions were not useful.

Let us now reconsider this decision and allow

let { x = y + 1

; y = 2

; z = x + y + 3 }

in z

which will evaluate to 8.

[Faculty of Science
Information and Computing Sciences]

7-33

Recursion revisited

We said before that we interpret

let x = x + 1 in . . .

as a redefinition because recursive functions were not useful.

Let us now reconsider this decision and allow

let { x = y + 1

; y = 2

; z = x + y + 3 }

in z

which will evaluate to 8.

[Faculty of Science
Information and Computing Sciences]

7-34

RepMax

Simpler example: Let’s replace all the elements of a list with
the largest number

maxAlg :: ListAlgebra Int Int
maxAlg = LAlg {nil=minBound, cons x m= x ‘maximum‘m}
repAlg :: Int→ ListAlgebra Int [Int]
repAlg m= LAlg {nil= [], cons xs=m : xs}
repMax xs= foldr repAlg (foldr maxAlg xs) xs

repMaxAlg :: ListAlgebra Int (Int→ ([Int], Int))
repMaxAlg = LAlg {nil = λmax→ ([],minBound)

, cons x f = λmax→
let (ys,maxSoFar) = f max
in (max : ys, x ‘maximum‘maxSoFar)}

[Faculty of Science
Information and Computing Sciences]

7-34

RepMax

Simpler example: Let’s replace all the elements of a list with
the largest number

maxAlg :: ListAlgebra Int Int
maxAlg = LAlg {nil=minBound, cons x m= x ‘maximum‘m}
repAlg :: Int→ ListAlgebra Int [Int]
repAlg m= LAlg {nil= [], cons xs=m : xs}
repMax xs= foldr repAlg (foldr maxAlg xs) xs

repMaxAlg :: ListAlgebra Int (Int→ ([Int], Int))
repMaxAlg = LAlg {nil = λmax→ ([],minBound)

, cons x f = λmax→
let (ys,maxSoFar) = f max
in (max : ys, x ‘maximum‘maxSoFar)}

[Faculty of Science
Information and Computing Sciences]

7-35

RepMax

repMaxAlg :: ListAlgebra Int (Int→ ([Int], Int))
repMaxAlg = LAlg {nil = λmax→ ([],minBound)

, cons x f = λmax→
let (ys,maxSoFar) = f max
in (max : ys, x ‘maximum‘maxSoFar)}

repMax :: [Int]→ [Int]
repMax xs=maxs
where (maxs,max) = foldr repMaxAlg xs max

What does ’foldr repMaxAlg xs undefined’ return?

[Faculty of Science
Information and Computing Sciences]

7-35

RepMax

repMaxAlg :: ListAlgebra Int (Int→ ([Int], Int))
repMaxAlg = LAlg {nil = λmax→ ([],minBound)

, cons x f = λmax→
let (ys,maxSoFar) = f max
in (max : ys, x ‘maximum‘maxSoFar)}

repMax :: [Int]→ [Int]
repMax xs=maxs
where (maxs,max) = foldr repMaxAlg xs max

What does ’foldr repMaxAlg xs undefined’ return?

[Faculty of Science
Information and Computing Sciences]

7-36

Evaluating recursive declarations

The result type for declarations now becomes

Env→ Env→ Env

We pass two environments:

▶ the current environment about to be extended,

▶ the final environment that already is extended (boldly
assuming that we already know that).

We use the final environment to evaluate the right hand sides.

We extend the current environment one by one.

In the end, we tie the knot as follows:

let finalenv = process ds currentenv finalenv in . . .

[Faculty of Science
Information and Computing Sciences]

7-36

Evaluating recursive declarations

The result type for declarations now becomes

Env→ Env→ Env

We pass two environments:

▶ the current environment about to be extended,

▶ the final environment that already is extended (boldly
assuming that we already know that).

We use the final environment to evaluate the right hand sides.

We extend the current environment one by one.

In the end, we tie the knot as follows:

let finalenv = process ds currentenv finalenv in . . .

[Faculty of Science
Information and Computing Sciences]

7-36

Evaluating recursive declarations

The result type for declarations now becomes

Env→ Env→ Env

We pass two environments:

▶ the current environment about to be extended,

▶ the final environment that already is extended (boldly
assuming that we already know that).

We use the final environment to evaluate the right hand sides.

We extend the current environment one by one.

In the end, we tie the knot as follows:

let finalenv = process ds currentenv finalenv in . . .

[Faculty of Science
Information and Computing Sciences]

7-37

Adapting the fold

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env→ Env)
evalAlgebra=
(λe1 e2 → λenv → e1 env + e2 env,
λe → λenv → negate (e env),
λn → λenv → n,
λx → λenv → env ! x,
λds e → λenv → let fenv = process ds env fenv

in e fenv,

λx e → λenv fenv→ insert x (e fenv) env)

process :: [Env→ Env→ Env]→ Env→ Env→ Env
process ds env fenv = foldl (λcenv d→ d cenv fenv) env ds

[Faculty of Science
Information and Computing Sciences]

7-37

Adapting the fold

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env→ Env)
evalAlgebra=
(λe1 e2 → λenv → e1 env + e2 env,
λe → λenv → negate (e env),
λn → λenv → n,
λx → λenv → env ! x,
λds e → λenv → let fenv = process ds env fenv

in e fenv,

λx e → λenv fenv→ insert x (e fenv) env)

process :: [Env→ Env→ Env]→ Env→ Env→ Env
process ds env fenv = foldl (λcenv d→ d cenv fenv) env ds

[Faculty of Science
Information and Computing Sciences]

7-38

Summary

▶ We can define algebras and folds also for families of
mutually recursive types, and also if lists (or other types)
occur surrounding the recursive positions.

▶ Often, the result types of algebras are themselves functions.

▶ Function arguments represent information that is
distributed over the abstract syntax tree.

▶ Function results represent information that is computed
from the abstract syntax tree (and the distributed values).

▶ Next lecture: regular languages.

	Compositional interpreters for expressions
	Reminder: simple expressions
	Variables
	Definitions
	Mutually recursive datatypes: declarations and expressions
	Using a list of declarations
	Use before definition

