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7. Compositional interpreters for expressions
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This lecture

Compositional interpreters for expressions

Reminder: simple expressions

Variables

Definitions

Mutually recursive datatypes: declarations and expressions

Using a list of declarations

Use before definition
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7.1 Reminder: simple expressions
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Simple expressions

data E= Add E E
| Neg E
| Num Int

type EAlgebra r = (r→ r→ r, -- add
r→ r, -- neg
Int→ r) -- num

foldE :: EAlgebra r→ E→ r
foldE (add, neg, num) = f
where f (Add e1 e2) = add (f e1) (f e2)

f (Neg e) = neg (f e)
f (Num n) = num n



The algebra is a tuple of functions; one for each constructor



Parameterised over the result type: carrier type



The fold function traverses a value and recursively replaces the



constructors of the datatype with the semantic actions of the algebra
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Evaluation

Directly:

eval :: E→ Int
eval (Add e1 e2) = eval e1 + eval e2
eval (Neg e) = negate (eval e)
eval (Num n) = n

Using foldE:

eval :: E→ Int
eval= foldE ((+), negate, id)
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7.2 Variables
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Adding variables

Let us consider expressions with variables:

data E= Add E E
| Neg E
| Num Int

| Var Id

We use strings to represent identifiers:

type Id= String
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Extending algebra and fold

type EAlgebra r = (r→ r→ r, -- add
r→ r, -- neg
Int→ r, -- num
Id→ r) -- var

foldE :: EAlgebra r→ E→ r
foldE (add, neg, num, var) = f

where f (Add e1 e2) = add (f e1) (f e2)
f (Neg e) = neg (f e)
f (Num n) = num n
f (Var x) = var x
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Evaluating expressions with variables

What is the value of the following expression?

-x + 1

Observation
We have to know the (integer) value of x if we want to assign
an (integer) value to the expression.
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Free variables

Similarly, in order to assign an integer value to

x + y + y + z

we have to know the integer values of x, y and z.

Variables in an expression that are not defined within the
expression itself are called free variables.

In order to determine the value of an expression, we have to
know the values of the free variables that occur in the
expression.
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Evaluating expressions with variables

In other words, the value of an expression possibly containing
free variables is not an Int, but a function

Env→ Int

where Env is an environment mapping the free variables to
integer values.
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Representing an environment

We need a mapping from identifiers (type Id) to values (here
type Int). There are several ways to implement such a mapping:

Lists of pairs

type Env = [(Id, Int)]

Insert in O(1), lookup in O(n).

Finite maps (dictionaries)

import Data.Map

type Env =Map Id Int

Implemented using balanced trees. Insert/lookup in O(log n).
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Interface of finite maps

import Data.Map (Map)
import qualfified Data.Map as Map

type Map k v -- abstract

Map.empty ::Map k v
Map.insert :: Ord k⇒ k→ v→ Map k v→ Map k v
(Map.!) :: Ord k⇒ Map k v→ k→ v
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Evaluation with variables

Directly:

eval :: E→ Env→ Int
eval (Add e1 e2) env = eval e1 env + eval e2 env
eval (Neg e) env = negate (eval e env)
eval (Num n) env = n
eval (Var x) env = env ! x

Algebra:

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra=

(λr1 r2 → λenv→ r1 env + r2 env,
λr → λenv→ negate (r env),
λn → λenv→ n,
λx → λenv→ env ! x)
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Where to place the environment?

What is the difference between the following two algebras?

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra=
(λr1 r2 → λenv→ r1 env + r2 env,
λr → λenv→ negate (r env),
λn → λenv→ n,
λx → λenv→ env ! x)

evalAlgebra :: Env→ EAlgebra Int
evalAlgebra env =

(λr1 r2 → r1 + r2,
λr → negate r,
λn → n,
λx → env ! x)
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7.3 Definitions
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Adding definitions

let x= 3 in x+ 1

x← 3;
x+ 1

data E= Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E

Def "x" (Num 3) (Add (Var "x") (Num 1))
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Extending algebra and fold

data EAlgebra r = EAlg {
{add :: r→ r→ r,
, neg :: r→ r,
, num :: Int→ r,
, var :: Id→ r,
, def :: Id→ r→ r→ r}

foldE :: EAlgebra r→ E→ r
foldE alg = f

where f (Add e1 e2) = add alg (f e1) (f e2)
f (Neg e) = neg alg (f e)
f (Num n) = num alg n
f (Var x) = var alg x
f (Def x e1 e2) = def alg x (f e1) (f e2)
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Considerations for defining evaluation

What should the following expressions evaluate to?

let x = 1 in x

let x = y in x + x

let x = 1 in let x = 2 in x

let x = 1 in let x = x + 1 in x

We observe and decide:

▶ in general, we still need an environment, even if we can
now define closed terms with variables;

▶ inner definitions should shadow outer definitions;

▶ since we cannot make useful definitions using recursion, we
do not make the bound variable available on the right hand
side of the binding.
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Evaluating expressions with definitions

Directly:

eval :: E→ Env→ Int
. . . -- as before
eval (Def x e1 e2) env = eval e2 (insert x (eval e1 env) env)

▶ Evaluate e1 in the outer environment env.

▶ Value is bound to x and inserted into the environment env.

▶ Evaluate e2 in the resulting environment.

Algebra:

evalAlgebra :: EAlgebra (Env→ Int)
evalAlgebra= EAlg-- as before
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7.4 Mutually recursive datatypes: declarations
and expressions
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Abstracting from declarations

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def Id E E

data D= Dcl Id E

How does this change affect the algebra and fold?
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Algebra for families of datatypes

Each datatype in the family
can have its own result type.

Add :: E→ E→ E
Neg :: E→ E
Num :: Int→ E
Var :: Id→ E
Def :: D→ E→ E

Dcl :: Id→ E→ D

Result type e for expressions,
result type d for declarations:

type EDAlgebra e d=
(e→ e→ e,
e→ e,
Int→ e,
Id→ e,
d→ e→ e,

Id→ e→ d)
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Fold for families of datatypes

We also need one function per type to traverse the structure:

foldE :: EDAlgebra e d→ E→ e
foldE (add, neg, num, var, def, dcl) = fe

where fe (Add e1 e2) = add (fe e1) (fe e2)
fe (Neg e) = neg (fe e)
fe (Num n) = num n
fe (Var x) = var x
fe (Def d e) = def (fd d) (fe e)

fd (Dcl x e) = dcl x (fe e)

fe :: E→ e
fd :: D→ d
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Adapting evaluation (directly)

Question
What is the best result type to choose for a declaration?

evalE :: E→ Env→ Int
evalE (Add e1 e2) env = evalE e1 env + evalE e2 env
evalE (Num e) env = negate (evalE e env)
evalE (Num n) env = n
evalE (Var x) env = env ! x
evalE (Def d e) env = evalE e

evalD :: D→
evalD (Dcl x e) =
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Adapting evaluation (as a fold)

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env)
evalAlgebra=
(λe1 e2 → λenv→ e1 env + e2 env,
λe → λenv→ negate (e env),
λn → λenv→ n,
λx → λenv→ env ! x,
λd e → λenv→ e (d env),

λx e → λenv→ insert x (e env) env)
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7.5 Using a list of declarations
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Multiple declarations per definition

data E = Add E E
| Neg E
| Num Int
| Var Id
| Def [D] E -- modified

data D= Dcl Id E

We could also have created a new datatype:

data E = . . .
| Def Ds E

data Ds= NoD
| OneD Ds D
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Adapting the algebra and fold

We keep the list in the algebra . . .

type EDAlgebra e d=
( . . . ,
[d]→ e→ e,
. . . )

. . . and use map in the fold function:

foldE :: EDAlgebra e d→ E→ e
foldE (add, neg, num, var, def, dcl) = fe

where . . .
fe (Def ds e) = def (map fd ds) (fe e)
. . .
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Adapting evaluation

We now get a list of Env→ Env functions (one for each
declaration) in the case for Def:

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env)
evalAlgebra=

(λe1 e2 → λenv→ e1 env + e2 env,
λe → λenv→ negate (e env),
λn → λenv→ n,
λx → λenv→ env ! x,
λds e → λenv→ e (process ds env),

λx e → λenv→ insert x (e env) env)

process :: [Env→ Env]→ Env→ Env
process ds env = foldl (flip ($)) env ds
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7.6 Use before definition
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Recursion revisited

We said before that we interpret

let x = x + 1 in . . .

as a redefinition because recursive functions were not useful.

Let us now reconsider this decision and allow

let { x = y + 1

; y = 2

; z = x + y + 3 }

in z

which will evaluate to 8.
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RepMax

Simpler example: Let’s replace all the elements of a list with
the largest number

maxAlg :: ListAlgebra Int Int
maxAlg = LAlg {nil=minBound, cons x m= x ‘maximum‘m}
repAlg :: Int→ ListAlgebra Int [Int]
repAlg m= LAlg {nil= [], cons xs=m : xs}
repMax xs= foldr repAlg (foldr maxAlg xs) xs

repMaxAlg :: ListAlgebra Int (Int→ ([Int], Int))
repMaxAlg = LAlg {nil = λmax→ ([],minBound)

, cons x f = λmax→
let (ys,maxSoFar) = f max
in (max : ys, x ‘maximum‘maxSoFar)}
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RepMax

repMaxAlg :: ListAlgebra Int (Int→ ([Int], Int))
repMaxAlg = LAlg {nil = λmax→ ([],minBound)

, cons x f = λmax→
let (ys,maxSoFar) = f max
in (max : ys, x ‘maximum‘maxSoFar)}

repMax :: [Int]→ [Int]
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where (maxs,max) = foldr repMaxAlg xs max

What does ’foldr repMaxAlg xs undefined’ return?
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Evaluating recursive declarations

The result type for declarations now becomes

Env→ Env→ Env

We pass two environments:

▶ the current environment about to be extended,

▶ the final environment that already is extended (boldly
assuming that we already know that).

We use the final environment to evaluate the right hand sides.

We extend the current environment one by one.

In the end, we tie the knot as follows:

let finalenv = process ds currentenv finalenv in . . .
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Adapting the fold

evalAlgebra :: EDAlgebra (Env→ Int) (Env→ Env→ Env)
evalAlgebra=
(λe1 e2 → λenv → e1 env + e2 env,
λe → λenv → negate (e env),
λn → λenv → n,
λx → λenv → env ! x,
λds e → λenv → let fenv = process ds env fenv

in e fenv,

λx e → λenv fenv→ insert x (e fenv) env)

process :: [Env→ Env→ Env]→ Env→ Env→ Env
process ds env fenv = foldl (λcenv d→ d cenv fenv) env ds
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Summary

▶ We can define algebras and folds also for families of
mutually recursive types, and also if lists (or other types)
occur surrounding the recursive positions.

▶ Often, the result types of algebras are themselves functions.

▶ Function arguments represent information that is
distributed over the abstract syntax tree.

▶ Function results represent information that is computed
from the abstract syntax tree (and the distributed values).

▶ Next lecture: regular languages.
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