
[Faculty of Science
Information and Computing Sciences]

Talen en Compilers

2019 - 2020, period 2

Jurriaan Hage

Department of Information and Computing Sciences
Utrecht University

2019-11-04



[Faculty of Science
Information and Computing Sciences]

11-1

11. Intermediate summary



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-2

Languages

Grammar A way to describe a language inductively.

Production A rewrite rule in a grammar.

Context-free The class of grammars/languages we consider.

Nonterminal Auxiliary symbols in a grammar.

Terminal Alphabet symbols in a grammar.

Derivation Successively rewriting from a grammar until we
reach a sentence.

Parse tree Tree representation of a derivation.

Ambiguity Multiple parse trees for the same sentence.

Abstract syntax (Haskell) Datatype corresponding to a grammar.

Semantic function Function defined on the abstract syntax.



[Faculty of Science
Information and Computing Sciences]

11-3

Languages – typical tasks

I Given a grammar, find words in the language.

I Given a language specified as a set, find a context-free
grammar.

I Given a language defined in words and by means of some
examples, define a context-free grammar.

I Basic set theory: empty set, union, difference, intersection.

I Difference between the empty language and the empty
word and the language containing the empty word.

I Sequences, non-empty sequences, optional elements.

I Given a grammar and a word, draw a parse tree.

I Judge whether two given derivations of a word correspond
to the same parse tree or not.



[Faculty of Science
Information and Computing Sciences]

11-4

Ambiguity

If the semantics of the several parse trees match, or all but one
reading are undesired, we can transform the grammar such that
only one reading remains.



[Faculty of Science
Information and Computing Sciences]

11-5

Grammar transformations

I Inlining/abstraction.

I Introducing/eliminating ·∗, ·+, and ·?.

I Removing unreachable productions.

I Removing duplicate productions.

I Left factoring.

I Removing left-recursion.



[Faculty of Science
Information and Computing Sciences]

11-6

Grammar transformations – contd.

I Associative operators/separators.

I Introducing operator priorities.



[Faculty of Science
Information and Computing Sciences]

11-7

Grammar transformations – typical tasks

I Given a grammar, apply a certain transformation.

I Given a grammar, try to simplify it, or to transform it such
that it is suitable for deriving a parser.

I Given a grammar, determine if you can apply a certain
transformation.

I Explain how a grammar transformation works.

I Given two grammars, try to prove their equivalence by
transforming one into the other, or to prove that they are
not equivalent by providing an example word that can be
derived by only one grammar.



[Faculty of Science
Information and Computing Sciences]

11-8

Concrete and abstract syntax

(Haskell) datatypes can be constructed systematically from a
grammar:

I one datatype per nonterminal, one constructor per
production, arguments of constructors correspond to
nonterminals on right hand sides

I often, we can simplify: use lists for ·∗ and ·+, use Maybe
for ·?.

I also, we try to use Int, Char and String where the match is
“good enough”



[Faculty of Science
Information and Computing Sciences]

11-9

Concrete and abstract syntax – typical tasks

I Given a grammar, give a suitable abstract syntax.

I Given a Haskell datatype, come up with a concrete syntax.



[Faculty of Science
Information and Computing Sciences]

11-10

Parser combinators

I Implementation of simple parser combinators.

I Implementation of derived combinators.

I Defining your own abstractions.

I Using parser combinators: systematic derivation from
grammar and performance pitfalls.

I Lexing and parsing in one or two phases, handling of
spaces.

I Constructing an abstract syntax tree as a default semantic
function.



[Faculty of Science
Information and Computing Sciences]

11-11

Parser combinators – typical tasks

I Given a grammar, come up with a combinator parser.

I For a certain pattern, define a derived combinator.

I Analyze the efficiency of a given parser.

I Transform the grammar underlying a certain problematic
parser such that performance improves.

I Plug in a certain semantic function directly into a parser.



[Faculty of Science
Information and Computing Sciences]

11-12

Semantics and compositionality

I Folds abstract from the standard pattern for defining
functions over algebraic datatypes (systematic pattern
matching and recursion where the datatype is recursive).

I Algebras and folds can be defined for most datatypes.

I Also families of datatypes and recursive positions wrapped
into lists can be handled.

I Algebras can have various return types, in particular
functions.



[Faculty of Science
Information and Computing Sciences]

11-13

Semantics and compositionality – typical tasks

I Given an abstract syntax, define a corresponding algebra
type and fold function.

I For a desired semantics, define a directly recursive
semantic function.

I For a desired semantics, define an algebra that can be used
with the fold function.

I For a desired semantics, give a suitable result type for an
algebra.


	Intermediate summary

