
[Faculty of Science
Information and Computing Sciences]

Talen en Compilers

2023 - 2024

David van Balen

Department of Information and Computing Sciences
Utrecht University

2024-01-16

[Faculty of Science
Information and Computing Sciences]

12-1

12. Pumping lemma’s and context-free
languages

[Faculty of Science
Information and Computing Sciences]

12-2

This lecture

wooclap questions

Pumping lemma’s and context-free languages

Pumping lemma for regular languages

[Faculty of Science
Information and Computing Sciences]

12-3

12.1 Pumping lemma for regular languages

[Faculty of Science
Information and Computing Sciences]

12-4

How to prove that a language is not regular?

Generally, proving that a language does not belong to a certain
class is much more difficult than proving that it does.

In the case of regular languages,

▶ to show that a language is regular, we have to give one
regular grammar (or regular expression, or DFA, or NFA)
that describes the language;

▶ to show that a language is not regular, we have to
prove that no regular grammar (or regular expression, or
DFA, or NFA) is possible that describes the language.

[Faculty of Science
Information and Computing Sciences]

12-4

How to prove that a language is not regular?

Generally, proving that a language does not belong to a certain
class is much more difficult than proving that it does.

In the case of regular languages,

▶ to show that a language is regular, we have to give one
regular grammar (or regular expression, or DFA, or NFA)
that describes the language;

▶ to show that a language is not regular, we have to
prove that no regular grammar (or regular expression, or
DFA, or NFA) is possible that describes the language.

[Faculty of Science
Information and Computing Sciences]

12-5

The strategy

We proceed in the following steps:

1. we expose a limitation in the formalism (in this case, in
the concept of finite state automata);

2. from this limitation, we derive a property that all
languages in the class (in this case, regular languages)
must have;

3. therefore, if a language does not have that property, it
cannot be in the class.

[Faculty of Science
Information and Computing Sciences]

12-6

Loops in deterministic finite state automata

Assume we have a deterministic finite state automaton, and we
read a string that is accepted.

How many different states do we visit...

▶ if the string has length 0?
– One (the start state).

▶ if the string has length 1?
– Two or one. One if for the given terminal, the start state
has a transition to itself, i.e., we walk through a loop.

▶ if the string has length 2?
– Three or two or one. If less than three, we visit at least
one state twice, i.e., walk through a loop.

[Faculty of Science
Information and Computing Sciences]

12-6

Loops in deterministic finite state automata

Assume we have a deterministic finite state automaton, and we
read a string that is accepted.

How many different states do we visit...

▶ if the string has length 0?

– One (the start state).

▶ if the string has length 1?
– Two or one. One if for the given terminal, the start state
has a transition to itself, i.e., we walk through a loop.

▶ if the string has length 2?
– Three or two or one. If less than three, we visit at least
one state twice, i.e., walk through a loop.

[Faculty of Science
Information and Computing Sciences]

12-6

Loops in deterministic finite state automata

Assume we have a deterministic finite state automaton, and we
read a string that is accepted.

How many different states do we visit...

▶ if the string has length 0?
– One (the start state).

▶ if the string has length 1?
– Two or one. One if for the given terminal, the start state
has a transition to itself, i.e., we walk through a loop.

▶ if the string has length 2?
– Three or two or one. If less than three, we visit at least
one state twice, i.e., walk through a loop.

[Faculty of Science
Information and Computing Sciences]

12-6

Loops in deterministic finite state automata

Assume we have a deterministic finite state automaton, and we
read a string that is accepted.

How many different states do we visit...

▶ if the string has length 0?
– One (the start state).

▶ if the string has length 1?

– Two or one. One if for the given terminal, the start state
has a transition to itself, i.e., we walk through a loop.

▶ if the string has length 2?
– Three or two or one. If less than three, we visit at least
one state twice, i.e., walk through a loop.

[Faculty of Science
Information and Computing Sciences]

12-6

Loops in deterministic finite state automata

Assume we have a deterministic finite state automaton, and we
read a string that is accepted.

How many different states do we visit...

▶ if the string has length 0?
– One (the start state).

▶ if the string has length 1?
– Two or one. One if for the given terminal, the start state
has a transition to itself, i.e., we walk through a loop.

▶ if the string has length 2?
– Three or two or one. If less than three, we visit at least
one state twice, i.e., walk through a loop.

[Faculty of Science
Information and Computing Sciences]

12-6

Loops in deterministic finite state automata

Assume we have a deterministic finite state automaton, and we
read a string that is accepted.

How many different states do we visit...

▶ if the string has length 0?
– One (the start state).

▶ if the string has length 1?
– Two or one. One if for the given terminal, the start state
has a transition to itself, i.e., we walk through a loop.

▶ if the string has length 2?

– Three or two or one. If less than three, we visit at least
one state twice, i.e., walk through a loop.

[Faculty of Science
Information and Computing Sciences]

12-6

Loops in deterministic finite state automata

Assume we have a deterministic finite state automaton, and we
read a string that is accepted.

How many different states do we visit...

▶ if the string has length 0?
– One (the start state).

▶ if the string has length 1?
– Two or one. One if for the given terminal, the start state
has a transition to itself, i.e., we walk through a loop.

▶ if the string has length 2?
– Three or two or one. If less than three, we visit at least
one state twice, i.e., walk through a loop.

[Faculty of Science
Information and Computing Sciences]

12-7

Finite state automata are finite

Any finite state automaton has a finite number of states.
Assume we have one with n states.

Question
How many different states do we visit while reading a string
that is accepted and has length n?

Answer
According to the previous considerations, n+ 1 or less, and if
less, we traverse a loop.
But there are only n states, so we cannot traverse n+ 1
different states. Therefore, we must traverse a loop.

[Faculty of Science
Information and Computing Sciences]

12-7

Finite state automata are finite

Any finite state automaton has a finite number of states.
Assume we have one with n states.

Question
How many different states do we visit while reading a string
that is accepted and has length n?

Answer
According to the previous considerations, n+ 1 or less, and if
less, we traverse a loop.
But there are only n states, so we cannot traverse n+ 1
different states. Therefore, we must traverse a loop.

[Faculty of Science
Information and Computing Sciences]

12-8

The strategy – revisited

We proceed in the following steps:

1. we expose a limitation in the formalism (in this case, in the
concept of finite state automata);

2. from this limitation, we derive a property that all languages
in the class (in this case, regular languages) must have;

3. therefore, if a language does not have that property, it
cannot be in the class.

We have done the first step. We have found a limitation in the
formalism. Now we have to derive a property for all regular
languages from that.

[Faculty of Science
Information and Computing Sciences]

12-8

The strategy – revisited

We proceed in the following steps:

1. we expose a limitation in the formalism (in this case, in the
concept of finite state automata);

2. from this limitation, we derive a property that all languages
in the class (in this case, regular languages) must have;

3. therefore, if a language does not have that property, it
cannot be in the class.

We have done the first step. We have found a limitation in the
formalism. Now we have to derive a property for all regular
languages from that.

[Faculty of Science
Information and Computing Sciences]

12-9

A property of loops

Question
What can we say about a loop in a finite state automaton?

Answer
We can traverse it arbitrarily often.
To be more precise: if we have a word that is accepted and
traverses the loop once, then the words that follow the same
path and traverse the loop any other number of times are also
accepted.

[Faculty of Science
Information and Computing Sciences]

12-9

A property of loops

Question
What can we say about a loop in a finite state automaton?

Answer
We can traverse it arbitrarily often.

To be more precise: if we have a word that is accepted and
traverses the loop once, then the words that follow the same
path and traverse the loop any other number of times are also
accepted.

[Faculty of Science
Information and Computing Sciences]

12-9

A property of loops

Question
What can we say about a loop in a finite state automaton?

Answer
We can traverse it arbitrarily often.
To be more precise: if we have a word that is accepted and
traverses the loop once, then the words that follow the same
path and traverse the loop any other number of times are also
accepted.

[Faculty of Science
Information and Computing Sciences]

12-10

Example

Sstart A

B

C

D

E
x

l

oo

p

y

The automaton accepts:

xy (0 loop traversals)
xloopy (1 loop traversal)
xlooploopy (2 loop traversals)
xlooplooploopy (3 loop traversals)
. . .

[Faculty of Science
Information and Computing Sciences]

12-10

Example

Sstart A

B

C

D

E
x

l

oo

p

y

The automaton accepts:

xy (0 loop traversals)

xloopy (1 loop traversal)

xlooploopy (2 loop traversals)
xlooplooploopy (3 loop traversals)
. . .

[Faculty of Science
Information and Computing Sciences]

12-10

Example

Sstart A

B

C

D

E
x

l

oo

p

y

The automaton accepts:

xy (0 loop traversals)
xloopy (1 loop traversal)
xlooploopy (2 loop traversals)
xlooplooploopy (3 loop traversals)
. . .

[Faculty of Science
Information and Computing Sciences]

12-11

The general situation

Sstart A E
u

v

w

▶ This is an excerpt of the automaton. There may be other
nodes and edges.

▶ Both u and w may be empty (i.e. A and S or A and E may
be the same state), but v is not empty – there is a proper
loop.

▶ All words of the form uviw for i ∈ N are accepted.

[Faculty of Science
Information and Computing Sciences]

12-12

Generalizing even more

A loop has to occur in every subword of at least length n:

Sstart X

A

Y E
x zy

u

v

w

▶ Assume we have an accepted word xyz where subword y is
of at least length n.

▶ Then y has to be of form uvw where v is not empty and
corresponds to a loop.

▶ All words of the form xuviwz for i ∈ N are accepted.

[Faculty of Science
Information and Computing Sciences]

12-12

Generalizing even more

A loop has to occur in every subword of at least length n:

Sstart X A Y E
x z

y

u

v

w

▶ Assume we have an accepted word xyz where subword y is
of at least length n.

▶ Then y has to be of form uvw where v is not empty and
corresponds to a loop.

▶ All words of the form xuviwz for i ∈ N are accepted.

[Faculty of Science
Information and Computing Sciences]

12-12

Generalizing even more

A loop has to occur in every subword of at least length n:

Sstart X A Y E
x z

y

u

v

w

▶ Assume we have an accepted word xyz where subword y is
of at least length n.

▶ Then y has to be of form uvw where v is not empty and
corresponds to a loop.

▶ All words of the form xuviwz for i ∈ N are accepted.

[Faculty of Science
Information and Computing Sciences]

12-13

A property of all regular languages

Pumping Lemma for regular languages

For every regular language L,

there exists an n ∈ N

▶ (corresponding to the number of states in the automaton)

such that for every word xyz in L with |y| ⩾ n,

▶ (this holds for every long substring of every word in L)

we can split y into three parts, y = uvw, with |v|> 0,

▶ (v is a loop)

such that for every i ∈ N, we have xuviwz ∈ L.

[Faculty of Science
Information and Computing Sciences]

12-13

A property of all regular languages

Pumping Lemma for regular languages

For every regular language L,
there exists an n ∈ N
▶ (corresponding to the number of states in the automaton)

such that for every word xyz in L with |y| ⩾ n,

▶ (this holds for every long substring of every word in L)

we can split y into three parts, y = uvw, with |v|> 0,

▶ (v is a loop)

such that for every i ∈ N, we have xuviwz ∈ L.

[Faculty of Science
Information and Computing Sciences]

12-13

A property of all regular languages

Pumping Lemma for regular languages

For every regular language L,
there exists an n ∈ N
▶ (corresponding to the number of states in the automaton)

such that for every word xyz in L with |y| ⩾ n,

▶ (this holds for every long substring of every word in L)

we can split y into three parts, y = uvw, with |v|> 0,

▶ (v is a loop)

such that for every i ∈ N, we have xuviwz ∈ L.

[Faculty of Science
Information and Computing Sciences]

12-13

A property of all regular languages

Pumping Lemma for regular languages

For every regular language L,
there exists an n ∈ N
▶ (corresponding to the number of states in the automaton)

such that for every word xyz in L with |y| ⩾ n,

▶ (this holds for every long substring of every word in L)

we can split y into three parts, y = uvw, with |v|> 0,

▶ (v is a loop)

such that for every i ∈ N, we have xuviwz ∈ L.

[Faculty of Science
Information and Computing Sciences]

12-13

A property of all regular languages

Pumping Lemma for regular languages

For every regular language L,
there exists an n ∈ N

▶ (corresponding to the number of states in the automaton)

such that for every word xyz in L with |y| ⩾ n,

▶ (this holds for every long substring of every word in L)

we can split y into three parts, y = uvw, with |v|> 0,

▶ (v is a loop)

such that for every i ∈ N, we have xuviwz ∈ L.

[Faculty of Science
Information and Computing Sciences]

12-14

The strategy – revisited

We proceed in the following steps:

1. we expose a limitation in the formalism (in this case, in the
concept of finite state automata);

2. from this limitation, we derive a property that all languages
in the class (in this case, regular languages) must have;

3. therefore, if a language does not have that property, it
cannot be in the class.

We have done the first two steps. We have found a limitation in
the formalism, and derived a property that all regular languages
must have.

[Faculty of Science
Information and Computing Sciences]

12-14

The strategy – revisited

We proceed in the following steps:

1. we expose a limitation in the formalism (in this case, in the
concept of finite state automata);

2. from this limitation, we derive a property that all languages
in the class (in this case, regular languages) must have;

3. therefore, if a language does not have that property, it
cannot be in the class.

We have done the first two steps. We have found a limitation in
the formalism, and derived a property that all regular languages
must have.

[Faculty of Science
Information and Computing Sciences]

12-15

Using the pumping lemma

In order to show that a language is not regular, we show that it
does not have the pumping lemma property as follows:

▶ We assume that the language is regular.
▶ We use the pumping lemma to derive a word that must be

in the language, but is not:
▶ find a word xyz in L with |y| ⩾ n,
▶ from the pumping lemma there must be a loop in y,
▶ but repeating this loop, or omitting it, takes us outside of

the language.

▶ The contradiction means that the language cannot be
regular.

[Faculty of Science
Information and Computing Sciences]

12-16

Using the pumping lemma – strategy

▶ For every natural number n,
▶ because you don’t know what the value of n is

▶ find a word xyz in L with |y| ⩾ n (you choose the word),
▶ such that for every splitting y = uvw with |v|> 0,

▶ because you don’t know where the loop may be

▶ there exists a number i (you figure out the number),

▶ such that xuviwz ̸∈ L (you have to prove it).

[Faculty of Science
Information and Computing Sciences]

12-17

Wooclap questions

[Faculty of Science
Information and Computing Sciences]

12-18

Exercise

For each of these languages:

▶ if it is regular, give an automaton or regular expr. for it;

▶ if not, use the pumping lemma to prove it.

1. L= {ambn |m, n ∈ N}
2. L= {ambn |m, n ∈ N,m< n}
3. L= {ambn |m, n< 1000,m< n}
4. L= {ambn |m< 1000,m< n}

[Faculty of Science
Information and Computing Sciences]

12-19

Context-free grammars

A context-free grammar consists of a sequence of productions:

N → x

▶ the left hand side is always a nonterminal,

▶ the right hand side is any sequence of terminals and
nonterminals.

One nonterminal of the grammar is the start symbol.

[Faculty of Science
Information and Computing Sciences]

12-20

Context-sensitive grammars

Context-sensitive grammars drop the restriction on the left
hand side:

a N b → x

Context-sensitive grammars are as powerful as any other
computing formalism:

▶ Turing machines,

▶ λ-calculus.

Not interesting from a parsing perspective.

[Faculty of Science
Information and Computing Sciences]

12-20

Context-sensitive grammars

Context-sensitive grammars drop the restriction on the left
hand side:

a N b → x

Context-sensitive grammars are as powerful as any other
computing formalism:

▶ Turing machines,

▶ λ-calculus.

Not interesting from a parsing perspective.

[Faculty of Science
Information and Computing Sciences]

12-21

The strategy – revisited

If we want to prove that a certain language is not context-free,
we can apply the same strategy as for regular languages:

▶ we expose a limitation in the formalism (in this case, in the
concept of context-free grammars);

▶ from this limitation, we derive a property that all languages
in the class (in this case, context-free languages) must
have;

▶ therefore, if a language does not have that property, it
cannot be in the class.

This time, we analyze parse trees rather than finite state
automata.

[Faculty of Science
Information and Computing Sciences]

12-21

The strategy – revisited

If we want to prove that a certain language is not context-free,
we can apply the same strategy as for regular languages:

▶ we expose a limitation in the formalism (in this case, in the
concept of context-free grammars);

▶ from this limitation, we derive a property that all languages
in the class (in this case, context-free languages) must
have;

▶ therefore, if a language does not have that property, it
cannot be in the class.

This time, we analyze parse trees rather than finite state
automata.

[Faculty of Science
Information and Computing Sciences]

12-22

Grammars and parse trees

For every word in the language, there is a parse tree.

We observe:

▶ We can produce parse trees of arbitrary depth if we find
words in the language that are long enough, because the
number of children per node is bounded by the maximum
length of a right hand side of a production.

▶ Once a path from a leaf to the root has more than n
internal nodes, where n is the number of nonterminals in
the grammar, one nonterminal has to occur twice on such
a path.

[Faculty of Science
Information and Computing Sciences]

12-22

Grammars and parse trees

For every word in the language, there is a parse tree.

We observe:

▶ We can produce parse trees of arbitrary depth if we find
words in the language that are long enough, because the
number of children per node is bounded by the maximum
length of a right hand side of a production.

▶ Once a path from a leaf to the root has more than n
internal nodes, where n is the number of nonterminals in
the grammar, one nonterminal has to occur twice on such
a path.

[Faculty of Science
Information and Computing Sciences]

12-22

Grammars and parse trees

For every word in the language, there is a parse tree.

We observe:

▶ We can produce parse trees of arbitrary depth if we find
words in the language that are long enough, because the
number of children per node is bounded by the maximum
length of a right hand side of a production.

▶ Once a path from a leaf to the root has more than n
internal nodes, where n is the number of nonterminals in
the grammar, one nonterminal has to occur twice on such
a path.

[Faculty of Science
Information and Computing Sciences]

12-23

The situation

S

A

u y

A

v xw

w

A

v xwA

v xw

[Faculty of Science
Information and Computing Sciences]

12-23

The situation

S

A

u y

A

v xw

w

A

v xwA

v xw

[Faculty of Science
Information and Computing Sciences]

12-23

The situation

S

A

u y

A

v xw

w

A

v xwA

v xw

[Faculty of Science
Information and Computing Sciences]

12-23

The situation

S

A

u y

A

v x

w

w

A

v xw

A

v xw

[Faculty of Science
Information and Computing Sciences]

12-23

The situation

S

A

u y

A

v x

w

w

A

v x

w

A

v xw

[Faculty of Science
Information and Computing Sciences]

12-24

The situation – contd.

If the word is long enough, we have a derivation of the form

S ⇒∗ uAy ⇒∗ uvAxy ⇒∗ uvwxy

where |vx|> 0.

Because the grammar is context-free, this implies that

A ⇒∗ vAx
A ⇒∗ w

We can thus derive

S ⇒∗ uAy ⇒∗ uviwxiy

for any i ∈ N.

[Faculty of Science
Information and Computing Sciences]

12-24

The situation – contd.

If the word is long enough, we have a derivation of the form

S ⇒∗ uAy ⇒∗ uvAxy ⇒∗ uvwxy

where |vx|> 0.

Because the grammar is context-free, this implies that

A ⇒∗ vAx
A ⇒∗ w

We can thus derive

S ⇒∗ uAy ⇒∗ uviwxiy

for any i ∈ N.

[Faculty of Science
Information and Computing Sciences]

12-24

The situation – contd.

If the word is long enough, we have a derivation of the form

S ⇒∗ uAy ⇒∗ uvAxy ⇒∗ uvwxy

where |vx|> 0.

Because the grammar is context-free, this implies that

A ⇒∗ vAx
A ⇒∗ w

We can thus derive

S ⇒∗ uAy ⇒∗ uviwxiy

for any i ∈ N.

[Faculty of Science
Information and Computing Sciences]

12-25

The lemma

Pumping lemma for context-free languages

For every context-free language L,

▶ there exists a number n ∈ N such that

▶ for every word z ∈ L with |z| ⩾ n,

▶ we can split z into five parts, z= uvwxy, with |vx|> 0 and
|vwx| ⩽ n, such that

▶ for every i ∈ N, we have uviwxiy ∈ L.

The n lets us limit the size of the part that gets pumped,
similar to how the pumping lemma for regular languages lets us
choose the subword that contains the loop.

[Faculty of Science
Information and Computing Sciences]

12-25

The lemma

Pumping lemma for context-free languages

For every context-free language L,

▶ there exists a number n ∈ N such that

▶ for every word z ∈ L with |z| ⩾ n,

▶ we can split z into five parts, z= uvwxy, with |vx|> 0 and
|vwx| ⩽ n, such that

▶ for every i ∈ N, we have uviwxiy ∈ L.

The n lets us limit the size of the part that gets pumped,
similar to how the pumping lemma for regular languages lets us
choose the subword that contains the loop.

[Faculty of Science
Information and Computing Sciences]

12-25

The lemma

Pumping lemma for context-free languages

For every context-free language L,

▶ there exists a number n ∈ N such that

▶ for every word z ∈ L with |z| ⩾ n,

▶ we can split z into five parts, z= uvwxy, with |vx|> 0 and
|vwx| ⩽ n, such that

▶ for every i ∈ N, we have uviwxiy ∈ L.

The n lets us limit the size of the part that gets pumped,
similar to how the pumping lemma for regular languages lets us
choose the subword that contains the loop.

[Faculty of Science
Information and Computing Sciences]

12-25

The lemma

Pumping lemma for context-free languages

For every context-free language L,

▶ there exists a number n ∈ N such that

▶ for every word z ∈ L with |z| ⩾ n,

▶ we can split z into five parts, z= uvwxy, with |vx|> 0 and
|vwx| ⩽ n, such that

▶ for every i ∈ N, we have uviwxiy ∈ L.

The n lets us limit the size of the part that gets pumped,
similar to how the pumping lemma for regular languages lets us
choose the subword that contains the loop.

[Faculty of Science
Information and Computing Sciences]

12-25

The lemma

Pumping lemma for context-free languages

For every context-free language L,

▶ there exists a number n ∈ N such that

▶ for every word z ∈ L with |z| ⩾ n,

▶ we can split z into five parts, z= uvwxy, with |vx|> 0 and
|vwx| ⩽ n, such that

▶ for every i ∈ N, we have uviwxiy ∈ L.

The n lets us limit the size of the part that gets pumped,
similar to how the pumping lemma for regular languages lets us
choose the subword that contains the loop.

[Faculty of Science
Information and Computing Sciences]

12-25

The lemma

Pumping lemma for context-free languages

For every context-free language L,

▶ there exists a number n ∈ N such that

▶ for every word z ∈ L with |z| ⩾ n,

▶ we can split z into five parts, z= uvwxy, with |vx|> 0 and
|vwx| ⩽ n, such that

▶ for every i ∈ N, we have uviwxiy ∈ L.

The n lets us limit the size of the part that gets pumped,
similar to how the pumping lemma for regular languages lets us
choose the subword that contains the loop.

[Faculty of Science
Information and Computing Sciences]

12-26

Using the pumping lemma

▶ For every of number n,

▶ find a word z in L with |z| ⩾ n (you choose the word),

▶ such that for every splitting z= uvwxy with |vx|> 0 and
|vwx| ⩽ n,

▶ there exists a number i (you choose the number),

▶ such that uviwxiy ̸∈ L (you have to prove it).

[Faculty of Science
Information and Computing Sciences]

12-27

An example

Theorem
The language L= {ambmcm |m ∈ N} is not context-free.

Let n be any number.

We then consider the word z= anbncn.

From the pumping lemma, we learn that we can pump z, and
that the part that gets pumped is smaller than n.

The part being pumped can thus not contain a’s, b’s and c’s at
the same time, and is not empty either. In all these cases, we
pump out of the language (for any i ̸= 1).

[Faculty of Science
Information and Computing Sciences]

12-27

An example

Theorem
The language L= {ambmcm |m ∈ N} is not context-free.

Let n be any number.

We then consider the word z= anbncn.

From the pumping lemma, we learn that we can pump z, and
that the part that gets pumped is smaller than n.

The part being pumped can thus not contain a’s, b’s and c’s at
the same time, and is not empty either. In all these cases, we
pump out of the language (for any i ̸= 1).

[Faculty of Science
Information and Computing Sciences]

12-27

An example

Theorem
The language L= {ambmcm |m ∈ N} is not context-free.

Let n be any number.

We then consider the word z= anbncn.

From the pumping lemma, we learn that we can pump z, and
that the part that gets pumped is smaller than n.

The part being pumped can thus not contain a’s, b’s and c’s at
the same time, and is not empty either. In all these cases, we
pump out of the language (for any i ̸= 1).

[Faculty of Science
Information and Computing Sciences]

12-27

An example

Theorem
The language L= {ambmcm |m ∈ N} is not context-free.

Let n be any number.

We then consider the word z= anbncn.

From the pumping lemma, we learn that we can pump z, and
that the part that gets pumped is smaller than n.

The part being pumped can thus not contain a’s, b’s and c’s at
the same time, and is not empty either. In all these cases, we
pump out of the language (for any i ̸= 1).

[Faculty of Science
Information and Computing Sciences]

12-27

An example

Theorem
The language L= {ambmcm |m ∈ N} is not context-free.

Let n be any number.

We then consider the word z= anbncn.

From the pumping lemma, we learn that we can pump z, and
that the part that gets pumped is smaller than n.

The part being pumped can thus not contain a’s, b’s and c’s at
the same time, and is not empty either. In all these cases, we
pump out of the language (for any i ̸= 1).

[Faculty of Science
Information and Computing Sciences]

12-28

Wooclap questions!

For more practice exercises, see the lecture notes

[Faculty of Science
Information and Computing Sciences]

12-29

Normal forms

Context-free grammars can be wildly complex, in general.

But all of them can be brought into more normalised forms.

▶ We call them normal forms.

We get to them by applying grammar transformations
(see lecture 4).

[Faculty of Science
Information and Computing Sciences]

12-30

Chomsky Normal Form

A context-free grammar is in Chomsky Normal Form if each
production rule has one of these forms:

A → B C
A → x

S → ε

where A, B, and C are nonterminals, x is a terminal, and S is
the start symbol of the grammar. Also, B and C cannot be S.

▶ No rule produces ε except (possibly) from the start.

▶ No chain rules of the form A → B.

▶ Parse trees are always binary.

[Faculty of Science
Information and Computing Sciences]

12-30

Chomsky Normal Form

A context-free grammar is in Chomsky Normal Form if each
production rule has one of these forms:

A → B C
A → x

S → ε

where A, B, and C are nonterminals, x is a terminal, and S is
the start symbol of the grammar. Also, B and C cannot be S.

▶ No rule produces ε except (possibly) from the start.

▶ No chain rules of the form A → B.

▶ Parse trees are always binary.

[Faculty of Science
Information and Computing Sciences]

12-31

Greibach Normal Form

A context-free grammar is in Greibach Normal Form if each
production rule has one of these forms:

A → xA1A2 . . . An

S → ε

where A, A1, . . . , An are nonterminals (n ⩾ 0), x is a terminal,
and S is the start symbol of the grammar and does not occur in
any right hand side.

▶ At most one rule produces ε, and only from the start.

▶ No left recursion.

▶ A derivation of a word of length n has exactly n rule
applications (except ε).

▶ Generalizes GNF for regular grammars (where n ⩽ 1)

[Faculty of Science
Information and Computing Sciences]

12-31

Greibach Normal Form

A context-free grammar is in Greibach Normal Form if each
production rule has one of these forms:

A → xA1A2 . . . An

S → ε

where A, A1, . . . , An are nonterminals (n ⩾ 0), x is a terminal,
and S is the start symbol of the grammar and does not occur in
any right hand side.

▶ At most one rule produces ε, and only from the start.

▶ No left recursion.

▶ A derivation of a word of length n has exactly n rule
applications (except ε).

▶ Generalizes GNF for regular grammars (where n ⩽ 1)

	Pumping lemma's and context-free languages
	Pumping lemma for regular languages

