
[Faculty of Science
Information and Computing Sciences]

Talen en Compilers

2023 - 2024

David van Balen

Department of Information and Computing Sciences
Utrecht University

2024-01-23



[Faculty of Science
Information and Computing Sciences]

14-1

14. Compiler optimizations



[Faculty of Science
Information and Computing Sciences]

14-2

Announcements

▶ Grades soon

▶ Next lecture: summary

▶ Send topics, questions, example exercises to Lawrence



[Faculty of Science
Information and Computing Sciences]

14-3

This lecture

Compiler optimizations

Optimization passes

Simple optimizations

Loop optimizations

Other optimizations



[Faculty of Science
Information and Computing Sciences]

14-4

14.1 Optimization passes



[Faculty of Science
Information and Computing Sciences]

14-5

What is a compiler optimization

▶ A terrible name

▶ Semantics-preserving code transformation

▶ Hopefully improving the code by some metric



[Faculty of Science
Information and Computing Sciences]

14-6

Visualizing optimization passes

Typically the same input and output type, like pass 2.



[Faculty of Science
Information and Computing Sciences]

14-7

14.2 Simple optimizations



[Faculty of Science
Information and Computing Sciences]

14-8

Peephole optimizations

▶ Group of simple but effective optimizations

▶ Find and replace

▶ Usually on low-level instructions

▶ x ∗ 2⇒ x << 1

▶ x ∗ 0⇒ 0

▶ x← 3;x← 4⇒ x← 4



[Faculty of Science
Information and Computing Sciences]

14-8

Peephole optimizations

▶ Group of simple but effective optimizations

▶ Find and replace

▶ Usually on low-level instructions

▶ x ∗ 2⇒ x << 1

▶ x ∗ 0⇒ 0

▶ x← 3;x← 4⇒ x← 4



[Faculty of Science
Information and Computing Sciences]

14-9

Unreachable/dead code elimination

▶ Uncalled methods/functions

▶ Code after a return statement

▶ Patterns that cannot be matched

▶ . . .



[Faculty of Science
Information and Computing Sciences]

14-10

Tail call elimination

int add (int m, int n) {
if (m= 0) then
return n;

else
return add (m− 1, n+ 1);

}

int add (int m, int n) {
while (m ! = 0) {
m=m− 1;
n= n+ 1;
}
return n;
}



[Faculty of Science
Information and Computing Sciences]

14-11

14.3 Loop optimizations



[Faculty of Science
Information and Computing Sciences]

14-12

Loop optimizations

▶ Loop unrolling

▶ Loop invariant code motion

▶ Loop fusion

▶ Loop fission



[Faculty of Science
Information and Computing Sciences]

14-13

Loop unrolling

for (int i= 0; i< n; i++)
{doStuff (i);
}

for (int i= 0; i< n− 4; i+ = 4)
{doStuff (i);
doStuff (i+ 1);
doStuff (i+ 2);
doStuff (i+ 3);
}

If n is not divisible by 4, you need to do extra iterations before
or after the loop.



[Faculty of Science
Information and Computing Sciences]

14-13

Loop unrolling

for (int i= 0; i< n; i++)
{doStuff (i);
}

for (int i= 0; i< n− 4; i+ = 4)
{doStuff (i);
doStuff (i+ 1);
doStuff (i+ 2);
doStuff (i+ 3);
}

If n is not divisible by 4, you need to do extra iterations before
or after the loop.



[Faculty of Science
Information and Computing Sciences]

14-14

Loop invariant code motion

for (int i= 0; i< n; i++)
{x= 10 ∗ y + cos (0.5);
doStuff (i, x);
}

x= 10 ∗ y + cos (0.5);
for (int i= 0; i< n; i++)
{doStuff (i, x);
}



[Faculty of Science
Information and Computing Sciences]

14-15

Loop fusion

for (int i= 0; i< n; i++)
{doStuff1 (i);
}
for (int i= 0; i< n; i++)
{doStuff2 (i);
}

for (int i= 0; i< n; i++)
{doStuff1 (i);
doStuff2 (i);
}



[Faculty of Science
Information and Computing Sciences]

14-16

Loop fission

for (int i= 0; i< n; i++)
{doStuff1 (i);
doStuff2 (i);
}

for (int i= 0; i< n; i++)
{doStuff1 (i);
}
for (int i= 0; i< n; i++)
{doStuff2 (i);
}

The opposite of fusion: Sometimes one is better, sometimes the
other!

To choose, we might want to add analyses to our compiler.



[Faculty of Science
Information and Computing Sciences]

14-16

Loop fission

for (int i= 0; i< n; i++)
{doStuff1 (i);
doStuff2 (i);
}

for (int i= 0; i< n; i++)
{doStuff1 (i);
}
for (int i= 0; i< n; i++)
{doStuff2 (i);
}

The opposite of fusion: Sometimes one is better, sometimes the
other!

To choose, we might want to add analyses to our compiler.



[Faculty of Science
Information and Computing Sciences]

14-17

14.4 Other optimizations



[Faculty of Science
Information and Computing Sciences]

14-18

Inlining

let x= 5
in x ∗ y + x

5 ∗ y + 5



[Faculty of Science
Information and Computing Sciences]

14-19

Common Subexpression Elimination

cos (5 x) / (1 + cos (5 x)) let y = cos (5 x)
in y / (1 + y)

Opposite of inlining: Tradeoff between computation and
memory.



[Faculty of Science
Information and Computing Sciences]

14-19

Common Subexpression Elimination

cos (5 x) / (1 + cos (5 x)) let y = cos (5 x)
in y / (1 + y)

Opposite of inlining: Tradeoff between computation and
memory.



[Faculty of Science
Information and Computing Sciences]

14-20

Compiler pipeline

Source Desugared Core STG CMM



[Faculty of Science
Information and Computing Sciences]

14-21

My research

Analysis and code transformation

for optimal fusion of array
operations in a data parallel functional language

xs

as bs

cs ds

as

xs

bs

cs ds

as

xs

bs

cs ds



[Faculty of Science
Information and Computing Sciences]

14-21

My research

Analysis and code transformation for optimal fusion

of array
operations in a data parallel functional language

xs

as bs

cs ds

as

xs

bs

cs ds

as

xs

bs

cs ds



[Faculty of Science
Information and Computing Sciences]

14-21

My research

Analysis and code transformation for optimal fusion of array
operations

in a data parallel functional language

xs

as bs

cs ds

as

xs

bs

cs ds

as

xs

bs

cs ds



[Faculty of Science
Information and Computing Sciences]

14-21

My research

Analysis and code transformation for optimal fusion of array
operations in a data parallel functional language

xs

as bs

cs ds

as

xs

bs

cs ds

as

xs

bs

cs ds



[Faculty of Science
Information and Computing Sciences]

14-21

My research

Analysis and code transformation for optimal fusion of array
operations in a data parallel functional language

xs

as bs

cs ds

as

xs

bs

cs ds

as

xs

bs

cs ds



[Faculty of Science
Information and Computing Sciences]

14-22

Vertical fusion

for (int i= 0; i< n; i++) {
y [i] = 2 ∗ x [i];
}
for (int i= 0; i< n; i++) {
z [i] = 4 + y [i];
}
return z;

for (int i= 0; i< n; i++) {
z [i] = 4 + 2 ∗ x [i];
}
return z;

Replacing an array with a scalar

Eliminating n array reads and writes


	Compiler optimizations
	Optimization passes
	Simple optimizations
	Loop optimizations
	Other optimizations


