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Preface for the 2009 version

This is a work in progress. These lecture notes are in large parts identical with
the old lecture notes for “Grammars and Parsing” by Johan Jeuring and Doaitse
Swierstra.

The lecture notes have not only been used at Utrecht University, but also at the Open
University. Some modifications made by Manuela Witsiers have been reintegrated.

I have also started to make some modifications to style and content – mainly trying to
adapt the Haskell code contained in the lecture notes to currently established coding
guidelines. I also rearranged some of the material because I think they connect better
in the new order.

However, this work is not quite finished, and this means that some of the later
chapters look a bit different from the earlier chapters. I apologize in advance for any
inconsistencies or mistakes I may have introduced.

Please feel free to point out any mistakes you find in these lecture notes to me – any
other feedback is also welcome.

I hope to be able to update the online version of the lecture notes regularly.

Andres Löh

October 2009
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Voorwoord

Het hiervolgende dictaat is gebaseerd op teksten uit vorige jaren, die onder andere
geschreven zijn in het kader van het project Kwaliteit en Studeerbaarheid.

Het dictaat is de afgelopen jaren verbeterd, maar we houden ons van harte aanbevolen
voor suggesties voor verdere verbetering, met name daar waar het het aangeven van
verbanden met andere vakken betreft.

Veel mensen hebben een bijgedrage geleverd aan de totstandkoming van dit dictaat
door een gedeelte te schrijven, of (een gedeelte van) het dictaat te becommentariëren.
Speciale vermelding verdienen Jeroen Fokker, Rik van Geldrop, en Luc Duponcheel,
die mee hebben geholpen door het schrijven van (een) hoofdstuk(ken) van het dictaat.
Commentaar is onder andere geleverd door: Arthur Baars, Arnoud Berendsen, Gijs-
bert Bol, Breght Boschker, Martin Bravenboer, Pieter Eendebak, Alexander Elyasov,
Matthias Felleisen, Rijk-Jan van Haaften, Graham Hutton, Daan Leijen, Andres Löh,
Erik Meijer, en Vincent Oostindië.

Tenslotte willen we van de gelegenheid gebruik maken enige studeeraanwijzingen te
geven:

• Het is onze eigen ervaring dat het uitleggen van de stof aan iemand anders vaak
pas duidelijk maakt welke onderdelen je zelf nog niet goed beheerst. Als je dus
van mening bent dat je een hoofdstuk goed begrijpt, probeer dan eens in eigen
woorden uiteen te zetten.

• Oefening baart kunst. Naarmate er meer aandacht wordt besteed aan de pre-
sentatie van de stof, en naarmate er meer voorbeelden gegeven worden, is het
verleidelijker om, na lezing van een hoofdstuk, de conclusie te trekken dat je
een en ander daadwerkelijk beheerst. “Begrijpen is echter niet hetzelfde als
“kennen”, “kennen” is iets anders dan “beheersen” en “beheersen” is weer iets
anders dan “er iets mee kunnen”. Maak dus de opgaven die in het dictaat
opgenomen zijn zelf, en doe dat niet door te kijken of je de oplossingen die
anderen gevonden hebben, begrijpt. Probeer voor jezelf bij te houden welk
stadium je bereikt hebt met betrekking tot alle genoemde leerdoelen. In het
ideale geval zou je in staat moeten zijn een mooi tentamen in elkaar te zetten
voor je mede-studenten!

• Zorg dat je up-to-date bent. In tegenstelling tot sommige andere vakken is het
bij dit vak gemakkelijk de vaste grond onder je voeten kwijt te raken. Het is
niet “elke week nieuwe kansen”. We hebben geprobeerd door de indeling van
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Voorwoord

de stof hier wel iets aan te doen, maar de totale opbouw laat hier niet heel
veel vrijheid toe. Als je een week gemist hebt is het vrijwel onmogelijk de
nieuwe stof van de week daarop te begrijpen. De tijd die je dan op college en
werkcollege doorbrengt is dan weinig effectief, met als gevolg dat je vaak voor
het tentamen heel veel tijd (die er dan niet is) kwijt bent om in je uppie alles
te bestuderen.

• We maken gebruik van de taal Haskell om veel concepten en algoritmen te
presenteren. Als je nog moeilijkheden hebt met de taal Haskell aarzel dan niet
direct hier wat aan te doen, en zonodig hulp te vragen. Anders maak je jezelf
het leven heel moeilijk. Goed gereedschap is het halve werk, en Haskell is hier
ons gereedschap.

Veel sterkte, en hopelijk ook veel plezier,

Johan Jeuring en Doaitse Swierstra
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1. Goals

Introduction

Courses on Grammars, Parsing and Compilation of programming languages have
always been some of the core components of a computer science curriculum. The
reason for this is that from the very beginning of these curricula it has been one
of the few areas where the development of formal methods and the application of
formal techniques in actual program construction come together. For a long time the
construction of compilers has been one of the few areas where we had a methodology
available, where we had tools for generating parts of compilers out of formal descrip-
tions of the tasks to be performed, and where such program generators were indeed
generating programs which would have been impossible to create by hand. For many
practicing computer scientists the course on compiler construction still is one of the
highlights of their education.

One of the things which were not so clear however is where exactly this joy originated
from: the techniques taught definitely had a certain elegance, we could construct
programs someone else could not – thus giving us the feeling we had “the right
stuff” –, and when completing the practical exercises, which invariably consisted of
constructing a compiler for some toy language, we had the usual satisfied feeling.
This feeling was augmented by the fact that we would not have had the foggiest idea
how to complete such a product a few months before, and now we knew “how to do
it”.

This situation has remained so for years, and it is only in the last years that we
have started to discover and make explicit the reasons why this area attracted so
much interest. Many of the techniques which were taught on a “this is how you solve
this kind of problems” basis, have been provided with a theoretical underpinning
which explains why the techniques work. As a beneficial side-effect we also gradually
learned to see where the discovered concept further played a rôle, thus linking the
area with many other areas of computer science; and not only that, but also giving
us a means to explain such links, stress their importance, show correspondences and
transfer insights from one area of interest to the other.

Goals

The goals of these lecture notes can be split into primary goals, which are associated
with the specific subject studied, and secondary – but not less important – goals which

1



1. Goals

have to do with developing skills which one would expect every educated computer
scientist to have. The primary, somewhat more traditional, goals are to learn:

• to describe structures (i.e., “formulas”) using grammars;
• to parse, i.e., to recognise (build) such structures in (from) a sequence of sym-

bols;
• to analyse grammars to see whether or not specific properties hold;
• to understand the concept of compositionality ;
• to apply these techniques in the construction of all kinds of programs;
• to familiarise oneself with the concept of computability.

The secondary, more far reaching, goals are:

• to develop the capability to abstract ;
• to understand the concepts of abstract interpretation and partial evaluation;
• to understand the concept of domain specific languages;
• to show how proper formalisations can be used as a starting point for the

construction of useful tools;
• to improve the general programming skills;
• to show a wide variety of useful programming techniques;
• to show how to develop programs in a calculational style.

1.1. History

When at the end of the fifties the use of computers became more and more wide-
spread, and their reliability had increased enough to justify applying them to a wide
range of problems, it was no longer the actual hardware which posed most of the
problems. Writing larger and larger programs by more and more people sparked the
development of the first more or less machine-independent programming language
FORTRAN (FORmula TRANslator), which was soon to be followed by ALGOL-60
and COBOL.

For the developers of the FORTRAN language, of which John Backus was the prime
architect, the problem of how to describe the language was not a hot issue: much
more important problems were to be solved, such as, what should be in the language
and what not, how to construct a compiler for the language that would fit into the
small memories which were available at that time (kilobytes instead of megabytes),
and how to generate machine code that would not be ridiculed by programmers who
had thus far written such code by hand. As a result the language was very much
implicitly defined by what was accepted by the compiler and what not.

Soon after the development of FORTRAN an international working group started to
work on the design of a machine independent high-level programming language, to
become known under the name ALGOL-60. As a remarkable side-effect of this under-
taking, and probably caused by the need to exchange proposals in writing, not only

2



1.2. Grammar analysis of context-free grammars

a language standard was produced, but also a notation for describing programming
languages was proposed by Naur and used to describe the language in the famous
Algol-60 report. Ever since it was introduced, this notation, which soon became to
be known as the Backus-Naur formalism (BNF), has been used as the primary tool
for describing the basic structure of programming languages.

It was not for long that computer scientists, and especially people writing compilers,
discovered that the formalism was not only useful to express what language should be
accepted by their compilers, but could also be used as a guideline for structuring their
compilers. Once this relationship between a piece of BNF and a compiler became
well understood, programs emerged which take such a piece of language description
as input, and produce a skeleton of the desired compiler. Such programs are now
known under the name parser generators.

Besides these very mundane goals, i.e., the construction of compilers, the BNF-
formalism also became soon a subject of study for the more theoretically oriented. It
appeared that the BNF-formalism actually was a member of a hierarchy of grammar
classes which had been formulated a number of years before by the linguist Noam
Chomsky in an attempt to capture the concept of a “language”. Questions arose
about the expressibility of BNF, i.e., which classes of languages can be expressed
by means of BNF and which not, and consequently how to express restrictions and
properties of languages for which the BNF-formalism is not powerful enough. In the
lectures we will see many examples of this.

1.2. Grammar analysis of context-free grammars

Nowadays the use of the word Backus-Naur is gradually diminishing, and, inspired
by the Chomsky hierarchy, we most often speak of context-free grammars. For the
construction of everyday compilers for everyday languages it appears that this class
is still a bit too large. If we use the full power of the context-free languages we
get compilers which in general are inefficient, and probably not so good in handling
erroneous input. This latter fact may not be so important from a theoretical point of
view, but it is from a pragmatical point of view. Most invocations of compilers still
have as their primary goal to discover mistakes made when typing the program, and
not so much generating actual code. This aspect is even stronger present in strongly
typed languages, such as Java and Haskell, where the type checking performed by
the compilers is one of the main contributions to the increase in efficiency in the
programming process.

When constructing a recogniser for a language described by a context-free grammar
one often wants to check whether or not the grammar has specific desirable properties.
Unfortunately, for a human being it is not always easy, and quite often practically
impossible, to see whether or not a particular property holds. Furthermore, it may
be very expensive to check whether or not such a property holds. This has led to a
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whole hierarchy of context-free grammars classes, some of which are more powerful,
some are easy to check by machine, and some are easily checked by a simple human
inspection. In this course we will see many examples of such classes. The general
observation is that the more precise the answer to a specific question one wants to
have, the more computational effort is needed and the sooner this question cannot
be answered by a human being anymore.

1.3. Compositionality

As we will see the structure of many compilers follows directly from the grammar
that describes the language to be compiled. Once this phenomenon was recognised it
went under the name syntax directed compilation. Under closer scrutiny, and under
the influence of the more functional oriented style of programming, it was recognised
that actually compilers are a special form of homomorphisms, a concept thus far only
familiar to mathematicians and more theoretically oriented computer scientist that
study the description of the meaning of a programming language.

This should not come as a surprise since this recognition is a direct consequence of the
tendency that ever greater parts of compilers are more or less automatically generated
from a formal description of some aspect of a programming language; e.g. by making
use of a description of their outer appearance or by making use of a description of the
semantics (meaning) of a language. We will see many examples of such mappings.
As a side effect you will acquire a special form of writing functional programs, which
makes it often surprisingly simple to solve at first sight rather complicated program-
ming assignments. We will see that the concept of lazy evaluation plays an important
rôle in making these efficient and straightforward implementations possible.

1.4. Abstraction mechanisms

One of the main reasons for that what used to be an endeavour for a large team in
the past can now easily be done by a couple of first year’s students in a matter of
days or weeks, is that over the last thirty years we have discovered the right kind of
abstractions to be used, and an efficient way of partitioning a problem into smaller
components. Unfortunately there is no simple way to teach the techniques which
have led us thus far. The only way we see is to take a historians view and to compare
the old and the new situations.

Fortunately however there have also been some developments in programming lan-
guage design, of which we want to mention the developments in the area of functional
programming in particular. We claim that the combination of a modern, albeit quite
elaborate, type system, combined with the concept of lazy evaluation, provides an
ideal platform to develop and practice ones abstraction skills. There does not exist
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another readily executable formalism which may serve as an equally powerful tool.
We hope that by presenting many algorithms, and fragments thereof, in a modern
functional language, we can show the real power of abstraction, and even find some
inspiration for further developments in language design: i.e., find clues about how to
extend such languages to enable us to make common patterns, which thus far have
only been demonstrated by giving examples, explicit.
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2. Context-Free Grammars

Introduction

We often want to recognise a particular structure hidden in a sequence of symbols.
For example, when reading this sentence, you automatically structure it by means of
your understanding of the English language. Of course, not any sequence of symbols
is an English sentence. So how do we characterise English sentences? This is an old
question, which was posed long before computers were widely used; in the area of
natural language research the question has often been posed what actually constitutes
a “language”. The simplest definition one can come up with is to say that the English
language equals the set of all grammatically correct English sentences, and that a
sentence consists of a sequence of English words. This terminology has been carried
over to computer science: the programming language Java can be seen as the set of
all correct Java programs, whereas a Java program can be seen as a sequence of Java
symbols, such as identifiers, reserved words, specific operators etc.

This chapter introduces the most important notions of this course: the concept of
a language and a grammar. A language is a, possibly infinite, set of sentences and
sentences are sequences of symbols taken from a finite set (e. g., sequences of char-
acters, which are referred to as strings). Just as we say that the fact whether or not
a sentence belongs to the English language is determined by the English grammar
(remember that before we have used the phrase “grammatically correct”), we have a
grammatical formalism for describing artificial languages.

A difference with the grammars for natural languages is that this grammatical for-
malism is a completely formal one. This property may enable us to mathematically
prove that a sentence belongs to some language, and often such proofs can be con-
structed automatically by a computer in a process called parsing. Notice that this
is quite different from the grammars for natural languages, where one may easily
disagree about whether something is correct English or not. This completely formal
approach however also comes with a disadvantage; the expressiveness of the class of
grammars we are going to describe in this chapter is rather limited, and there are
many languages one might want to describe but which cannot be described, given
the limitations of the formalism.
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Goals

The main goal of this chapter is to introduce and show the relation between the
main concepts for describing the parsing problem: languages and sentences, and
grammars.

In particular, after you have studied this chapter you will:

• know the concepts of language and sentence;
• know how to describe languages by means of context-free grammars;
• know the difference between a terminal symbol and a nonterminal symbol;
• be able to read and interpret the BNF notation;
• understand the derivation process used in describing languages;
• understand the rôle of parse trees;
• understand the relation between context-free grammars and datatypes;
• understand the EBNF formalism;
• understand the concepts of concrete and abstract syntax ;
• be able to convert a grammar from EBNF-notation into BNF-notation by hand;
• be able to construct a simple context-free grammar in EBNF notation;
• be able to verify whether or not a simple grammar is ambiguous;
• be able to transform a grammar, for example for removing left recursion.

2.1. Languages

The goal of this section is to introduce the concepts of language and sentence.

In conventional texts about mathematics it is not uncommon to encounter a definition
of sequences that looks as follows:

Definition 2.1 (Sequence). Let X be a set. The set of sequences over X , called X ∗,sequence
is defined as follows:

• ε is a sequence, called the empty sequence, and
• if z is a sequence and a is an element of X , then az is also a sequence.

The above definition is an instance of a very common definition pattern: it is a
definition by induction, i. e., the definition of the concept refers to the concept itself.

induction
It is implicitly understood that nothing that cannot be formed by repeated, but finite
application of one of the two given rules is a sequence over X .

Furthermore, the definition corresponds almost exactly to the definition of the type
[a] of lists with elements of type a in Haskell. The one difference is that Haskell lists
can be infinite, whereas sequences are always finite.

In the following, we will introduce several concepts based on sequences. They can be
implemented easily in Haskell using lists.
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Functions that operate on an inductively defined structure such as sequences are
typically structurally recursive, i. e., such definitions often follow a recursion pattern
which is similar to the definition of the structure itself. (Recall the function foldr
from the course on Functional Programming.)

Note that the Haskell notation for lists is generally more precise than the mathemat-
ical notation for sequences. When talking about languages and grammars, we often
leave the distinction between single symbols and sequences implicit.

We use letters from the beginning of the alphabet to represent single symbols, and
letters from the end of the alphabet to represent sequences. We write a to denote
both the single symbol a or the sequence aε, depending on context. We typically use
ε only when we want to explicitly emphasize that we are talking about the empty
sequence.

Furthermore, we denote concatenation of sequences and symbols in the same way,
i. e., az should be understood as the symbol a followed by the sequence z , whereas
xy is the concatenation of sequences x and y .

In Haskell, all these distinctions are explicit. Elements are distinguished from lists
by their type; there is a clear difference between a and [a]. Concatenation of lists
is handled by the operator (++), whereas a single element can be added to the front
of a list using (:). Also, Haskell identifiers often have longer names, so ab in Haskell
is to be understood as a single identifier with name ab, not as a combination of two
symbols a and b.

Now we move from individual sequences to finite or infinite sets of sequences. We
start with some terminology:

Definition 2.2 (Alphabet, Language, Sentence).

• An alphabet is a finite set of symbols.
alphabet• A language is a subset of T ∗, for some alphabet T .
language• A sentence (often also called word) is an element of a language.
sentence

Note that ‘word’ and ‘sentence’ in formal languages are used as synonyms.

Some examples of alphabets are:

• the conventional Roman alphabet: {a, b, c, . . . , z};
• the binary alphabet {0, 1};
• sets of reserved words {if, then, else};
• a set of characters l = {a, b, c, d, e, i, k, l, m, n, o, p, r, s, t, u, w, x};
• a set of English words {course, practical, exercise, exam}.

Examples of languages are:

• T ∗, ∅ (the empty set), {ε} and T are languages over alphabet T ;
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• the set {course, practical, exercise, exam} is a language over the alphabet
l of characters and exam is a sentence in it.

The question that now arises is how to specify a language. Since a language is a set
we immediately see three different approaches:

• enumerate all the elements of the set explicitly;
• characterise the elements of the set by means of a predicate;
• define which elements belong to the set by means of induction.

We have just seen some examples of the first (the Roman alphabet) and third (the set
of sequences over an alphabet) approach. Examples of the second approach are:

• the even natural numbers {n | n ∈ {0, 1, . . . , 9}∗,n mod 2 = 0};
• the language PAL of palindromes, sequences which read the same forward as

backward, over the alphabet {a, b, c}: {s | s ∈ {a, b, c}∗, s = sR}, where sR

denotes the reverse of sequence s.

One of the fundamental differences between the predicative and the inductive ap-
proach to defining a language is that the latter approach is constructive, i. e., it
provides us with a way to enumerate all elements of a language. If we define a lan-
guage by means of a predicate we only have a means to decide whether or not an
element belongs to a language. A famous example of a language which is easily de-
fined in a predicative way, but for which the membership test is very hard, is the set
of prime numbers.

Quite often we want to prove that a language L, which is defined by means of an
inductive definition, has a specific property P . If this property is of the form P(L) =
∀x ∈ L . P(x ), then we want to prove that L ⊆ P .

Since languages are sets the usual set operators such as union, intersection and dif-
ference can be used to construct new languages from existing ones. The complement
of a language L over alphabet T is defined by L = {x | x ∈ T ∗, x /∈ L}.

In addition to these set operators, there are more specific operators, which apply only
to sets of sequences. We will use these operators mainly in the chapter on regular
languages, Chapter 8. Note that ∪ denotes set union, so {1, 2}∪{1, 3}={1, 2, 3}.

Definition 2.3 (Language operations). Let L and M be languages over the same
alphabet T , then

L = T ∗ − L complement of L
LR = {sR | s ∈ L} reverse of L
LM = {st | s ∈ L, t ∈ M } concatenation of L and M

L0 = {ε} 0th power of L
Ln+1 = LLn n + 1st power of L
L∗ =

⋃
i∈N Li = L0 ∪ L1 ∪ L2 ∪ . . . star-closure of L

L+ =
⋃

i∈N,i>0 Li = L1 ∪ L2 ∪ . . . positive closure of L
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The following equations follow immediately from the above definitions.

L∗ = {ε} ∪ LL∗

L+ = LL∗

Exercise 2.1. Let L={ab, aa, baa}, where a and b are the terminals. Which of the following
strings are in L∗: abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaa?

Exercise 2.2. What are the elements of ∅∗?

Exercise 2.3. For any language, prove

1. ∅L = L∅= ∅

2. {ε}L = L{ε}= L

Exercise 2.4. In this section we defined two “star” operators: one for arbitrary sets (Defini-
tion 2.1) and one for languages (Definition 2.3). Is there a difference between these operators?

2.2. Grammars

The goal of this section is to introduce the concept of context-free grammars.

Working with sets might be fun, but it often is complicated to manipulate sets, and
to prove properties of sets. For these purposes we introduce syntactical definitions,
called grammars, of sets. This section will only discuss so-called context-free gram-
mars, a kind of grammars that are convenient for automatic processing, and that can
describe a large class of languages. But the class of languages that can be described
by context-free grammars is limited.

In the previous section we defined PAL, the language of palindromes, by means of
a predicate. Although this definition defines the language we want, it is hard to
use in proofs and programs. An important observation is the fact that the set of
palindromes can be defined inductively as follows.

Definition 2.4 (Palindromes by induction).

• The empty string, ε, is a palindrome;
• the strings consisting of just one character, a, b, and c, are palindromes;
• if P is a palindrome, then the strings obtained by prepending and appending

the same character, a, b, and c, to it are also palindromes, that is, the strings

aPa

bPb

cPc

are palindromes.
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The first two parts of the definition cover the basic cases. The last part of the
definition covers the inductive cases. All strings which belong to the language PAL
inductively defined using the above definition read the same forwards and backwards.
Therefore this definition is said to be sound (every string in PAL is a palindrome).

sound
Conversely, if a string consisting of a’s, b’s, and c’s reads the same forwards and
backwards then it belongs to the language PAL. Therefore this definition is said to
be complete (every palindrome is in PAL).

complete

Finding an inductive definition for a language which is described by a predicate (like
the one for palindromes) is often a nontrivial task. Very often it is relatively easy
to find a definition that is sound, but you also have to convince yourself that the
definition is complete. A typical method for proving soundness and completeness of
an inductive definition is mathematical induction.

Now that we have an inductive definition for palindromes, we can proceed by giving
a formal representation of this inductive definition.

Inductive definitions like the one above can be represented formally by making use
of deduction rules which look like:

a1, a2, . . . , an ` a or ` a

The first kind of deduction rule has to be read as follows:

if a1, a2, . . . and an are true,
then a is true.

The second kind of deduction rule, called an axiom, has to be read as follows:

a is true.

Using these deduction rules we can now write down the inductive definition for PAL
as follows:

` ε ∈ PAL′

` a ∈ PAL′

` b ∈ PAL′

` c ∈ PAL′

P ∈ PAL′ ` aPa ∈ PAL′

P ∈ PAL′ ` bPb ∈ PAL′

P ∈ PAL′ ` cPc ∈ PAL′

Although the definition of PAL′ is completely formal, it is still laborious to write.
Since in computer science we use many definitions which follow such a pattern, we
introduce a shorthand for it, called a grammar . A grammar consists of productiongrammar
rules. We can give a grammar of PAL′ by translating the deduction rules given above
into production rules. The rule with which the empty string is constructed is:

12



2.2. Grammars

P → ε

This rule corresponds to the axiom that states that the empty string ε is a palindrome.
A rule of the form s → α, where s is symbol and α is a sequence of symbols, is called
a production rule, or production for short. A production rule can be considered as

production rule
a possible way to rewrite the symbol s. The symbol P to the left of the arrow is a
symbol which denotes palindromes. Such a symbol is an example of a nonterminal
symbol , or nonterminal for short. Nonterminal symbols are also called auxiliary

nonterminal
symbols: their only purpose is to denote structure, they are not part of the alphabet
of the language. Three other basic production rules are the rules for constructing
palindromes consisting of just one character. Each of the one element strings a, b,
and c is a palindrome, and gives rise to a production:

P → a

P → b

P → c

These production rules correspond to the axioms that state that the one element
strings a, b, and c are palindromes. If a string α is a palindrome, then we obtain a
new palindrome by prepending and appending an a, b, or c to it, that is, aαa, bαb,
and cαc are also palindromes. To obtain these palindromes we use the following
recursive productions:

P → aPa

P → bPb

P → cPc

These production rules correspond to the deduction rules that state that, if P is a
palindrome, then one can deduce that aPa, bPb and cPc are also palindromes. The
grammar we have presented so far consists of three components:

• the set of terminals {a, b, c};
terminal• the set of nonterminals {P };

• and the set of productions (the seven productions that we have introduced so
far).

Note that the intersection of the set of terminals and the set of nonterminals is
empty. We complete the description of the grammar by adding a fourth component:
the nonterminal start symbol P . In this case we have only one choice for a start

start symbol
symbol, but a grammar may have many nonterminal symbols, and we always have
to select one to start with.

To summarize, we obtain the following grammar for PAL:

P → ε
P → a

P → b
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P → c

P → aPa

P → bPb

P → cPc

The definition of the set of terminals, {a, b, c}, and the set of nonterminals, {P }, is
often implicit. Also the start-symbol is implicitly defined here since there is only one
nonterminal.

We conclude this example with the formal definition of a context-free grammar.

Definition 2.5 (Context-Free Grammar). A context-free grammar G is a four-tuple
context-free
grammar

(T ,N ,R,S ) where

• T is a finite set of terminal symbols;
• N is a finite set of nonterminal symbols (T and N are disjunct);
• R is a finite set of production rules. Each production has the form A → α,

where A is a nonterminal and α is a sequence of terminals and nonterminals;
• S is the start symbol, S ∈ N .

The adjective “context-free” in the above definition comes from the specific produc-
tion rules that are considered: exactly one nonterminal on the left hand side. Not
every language can be described via a context-free grammar. The standard example
here is {anbncn |n ∈ N}. We will encounter this example again later in these lecture
notes.

2.2.1. Notational conventions

In the definition of the grammar for PAL we have written every production on a
single line. Since this takes up a lot of space, and since the production rules form the
heart of every grammar, we introduce the following shorthand. Instead of writing

S → α
S → β

we combine the two productions for S in one line as using the symbol |:

S → α | β

We may rewrite any number of rewrite rules for one nonterminal in this fashion, so
the grammar for PAL may also be written as follows:

P → ε | a | b | c | aPa | bPb | cPc

The notation we use for grammars is known as BNF – Backus Naur Form – after
BNF

Backus and Naur, who first used this notation for defining grammars.
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Another notational convention concerns names of productions. Sometimes we want to
give names to production rules. The names will be written in front of the production.
So, for example,

Alpha rule: S → α
Beta rule: S → β

Finally, if we give a context-free grammar just by means of its productions, the start-
symbol is usually the nonterminal in the left hand side of the first production, and
the start-symbol is usually called S .

Exercise 2.5. Give a context free grammar for the set of sentences over alphabet X where

1. X = {a},

2. X = {a, b}.

Exercise 2.6. Give a context free grammar for the language

L = {anbn | n ∈ N}

Exercise 2.7. Give a grammar for palindromes over the alphabet {a, b}.

Exercise 2.8. Give a grammar for the language

L = {s sR | s ∈ {a, b}∗}

This language is known as the language of mirror palindromes.

Exercise 2.9. A parity sequence is a sequence consisting of 0’s and 1’s that has an even
number of ones. Give a grammar for parity sequences.

Exercise 2.10. Give a grammar for the language

L = {w | w ∈ {a, b}∗ ∧ #(a,w) = #(b,w)}

where #(c,w) is the number of c-occurrences in w .

2.3. The language of a grammar

The goal of this section is to describe the relation between grammars and languages:
to show how to derive sentences of a language, given its grammar.

In the previous section, we have demonstrated in several examples how to construct
a grammar for a particular language. Now we consider the reverse question: how to
obtain a language from a given grammar? Before we can answer this question we
first have to say what we can do with a grammar. The answer is simple: we can
derive sequences with it.
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How do we construct a palindrome? A palindrome is a sequence of terminals, in our
case the characters a, b and c, that can be derived in zero or more direct derivation
steps from the start symbol P using the productions of the grammar for palindromes
given before.

For example, the sequence bacab can be derived using the grammar for palindromes
as follows:

P
⇒

bPb

⇒
baPab

⇒
bacab

Such a construction is called a derivation. In the first step of this derivation pro-
derivation

duction P → bPb is used to rewrite P into bPb. In the second step production
P → aPa is used to rewrite bPb into baPab. Finally, in the last step production
P → c is used to rewrite baPab into bacab. Constructing a derivation can be seen
as a constructive proof that the string bacab is a palindrome.

We will now describe derivation steps more formally.

Definition 2.6 (Derivation). Suppose X → β is a production of a grammar, where
X is a nonterminal symbol and β is a sequence of (nonterminal or terminal) symbols.
Let αX γ be a sequence of (nonterminal or terminal) symbols. We say that αX γ
directly derives the sequence αβγ, which is obtained by replacing the left hand side

direct derivation
X of the production by the corresponding right hand side β. We write αX γ ⇒ αβγ
and we also say that αX γ rewrites to αβγ in one step. A sequence ϕn is derived

derivation
from a sequence ϕ0, written ϕ0 ⇒∗ ϕn , if there exist sequences ϕ0, . . . , ϕn such that

∀i , 0 6 i < n : ϕi ⇒ ϕi+1

If n = 0, this statement is trivially true, and it follows that we can derive each
sentence ϕ from itself in zero steps:

ϕ⇒∗ ϕ

A partial derivation is a derivation of a sequence that still contains nonterminals.
partial derivation

Finding a derivation ϕ0 ⇒∗ ϕn is, in general, a nontrivial task. A derivation is only
one branch of a whole search tree which contains many more branches. Each branch
represents a (successful or unsuccessful) direction in which a possible derivation may
proceed. Another important challenge is to arrange things in such a way that finding
a derivation can be done in an efficient way.
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From the example derivation above it follows that

P ⇒∗ bacab

Because this derivation begins with the start symbol of the grammar and results in a
sequence consisting of terminals only (a terminal string), we say that the string bacab

belongs to the language generated by the grammar for palindromes. In general, we
define

language of a
grammarDefinition 2.7 (Language of a grammar). The language of a grammar G=(T ,N ,R,S ),

usually denoted by L(G), is defined as

L(G) = {s | S ⇒∗ s, s ∈ T ∗}

The language L(G) is also called the language generated by the grammar G . We
sometimes also talk about the language of a nonterminal A, which is defined by

L(A) = {s |A⇒∗ s, s ∈ T ∗}

Note that different grammars may have the same language. For example, if we extend
the grammar for PAL with the production P → bacab, we obtain a grammar with
exactly the same language as PAL. Two grammars that generate the same language
are called equivalent . So for a particular grammar there exists a unique language,

equivalent
but the reverse is not true: given a language we can construct many grammars that
generate the language. To phrase it more mathematically: the mapping between a
grammar and its language is not a bijection.

Definition 2.8 (Context-free language). A context-free language is a language that
context-free
language

is generated by a context-free grammar.

All palindromes can be derived from the start symbol P . Thus, the language of
our grammar for palindromes is PAL, the set of all palindromes over the alphabet
{a, b, c}, and PAL is context-free.

2.3.1. Examples of basic languages

Digits occur in a several programming languages and other languages, and so do
letters. In this subsection we will define some grammars that specify some basic
languages such as digits and letters. These grammars will be used frequently in later
sections.

• The language of single digits is specified by a grammar with ten production
rules for the nonterminal Dig .

Dig → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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• We obtain sequences of digits by means of the following grammar:

Digs → ε |Dig Digs

• Natural numbers are sequences of digits that start with a non-zero digit. So
in order to specify natural numbers, we first define the language of non-zero
digits.

Dig-0 → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Now we can define the language of natural numbers as follows.

Nat → 0 |Dig-0 Digs

• Integers are natural numbers preceded by a sign. If a natural number is not
preceded by a sign, it is supposed to be a positive number.

Sign → + | -
Int → Sign Nat |Nat

• The languages of small letters and capital letters are each specified by a gram-
mar with 26 productions:

SLetter → a | b | . . . | z
CLetter → A | B | . . . | Z

In the real definitions of these grammars we have to write each of the 26 letters,
of course. A letter is now either a small or a capital letter.

Letter → SLetter | CLetter

• Variable names, function names, datatypes, etc., are all represented by identi-
fiers in programming languages. The following grammar for identifiers might
be used in a programming language:

Identifier → Letter AlphaNums
AlphaNums → ε | Letter AlphaNums |Dig AlphaNums

An identifier starts with a letter, and is followed by a sequence of alphanumeric
characters, i. e., letters and digits. We might want to allow more symbols, such
as for example underscores and dollar symbols, but then we have to adjust the
grammar, of course.

• Dutch zip codes consist of four digits, of which the first digit is non-zero, fol-
lowed by two capital letters. So

ZipCode → Dig-0 Dig Dig Dig CLetter CLetter
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Exercise 2.11. A terminal string that belongs to the language of a grammar is always
derived in one or more steps from the start symbol of the grammar. Why?

Exercise 2.12. What language is generated by the grammar with the single production rule

S → ε

Exercise 2.13. What language does the grammar with the following productions generate?

S → Aa

A → B
B → Aa

Exercise 2.14. Give a simple description of the language generated by the grammar with
productions

S → aA
A→ bS
S → ε

Exercise 2.15. Is the language L defined in Exercise 2.1 context free ?

2.4. Parse trees

The goal of this section is to introduce parse trees, and to show how parse trees relate
to derivations. Furthermore, this section defines (non)ambiguous grammars.

For any partial derivation, i. e., a derivation that contains nonterminals in its right
hand side, there may be several productions of the grammar that can be used to pro-
ceed the partial derivation with. As a consequence, there may be different derivations
for the same sentence.

However, if only the order in which the derivation steps are chosen differs between
two derivations, then the derivations are considered to be equivalent. If, however,
different derivation steps have been chosen in two derivations, then these derivations
are considered to be different.

Here is a simple example. Consider the grammar SequenceOfS with productions:

S → SS
S → s

Using this grammar, we can derive the sentence sss in at least the following two
ways (the nonterminal that is rewritten in each step appears underlined):

S ⇒ SS ⇒ SSS ⇒ SsS ⇒ ssS ⇒ sss
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S ⇒ SS ⇒ sS ⇒ sSS ⇒ sSs⇒ sss

These derivations are the same up to the order in which derivation steps are taken.
However, the following derivation does not use the same derivation steps:

S ⇒ SS ⇒ SSS ⇒ sSS ⇒ ssS ⇒ sss

In both derivation sequences above, the first S was rewritten to s. In this derivation,
however, the first S is rewritten to SS .

The set of all equivalent derivations can be represented by selecting a so-called canoni-
cal element . A good candidate for such a canonical element is the leftmost derivation.

leftmost derivation
In a leftmost derivation, the leftmost nonterminal is rewritten in each step. If there
exists a derivation of a sentence x using the productions of a grammar, then there
exists also a leftmost derivation of x . The last of the three derivation sequences for
the sentence sss given above is a leftmost derivation. The two equivalent derivation
sequences before, however, are both not leftmost. The leftmost derivation corre-
sponding to these two sequences above is

S ⇒ SS ⇒ sS ⇒ sSS ⇒ ssS ⇒ sss

There exists another convenient way for representing equivalent derivations: they all
correspond to the same parse tree (or derivation tree). A parse tree is a representation

parse tree
of a derivation which abstracts from the order in which derivation steps are chosen.
The internal nodes of a parse tree are labelled with a nonterminal N , and the children
of such a node are the parse trees for symbols of the right hand side of a production for
N . The parse tree of a terminal symbol is a leaf labelled with the terminal symbol.

The resulting parse tree of the first two derivations of the sentence sss looks as
follows:

S

S

s

S

S

s

S

s

The third derivation of the sentence sss results in a different parse tree:

S

S

S

s

S

s

S

s
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2.4. Parse trees

As another example, all derivations of the string abba using the productions of the
grammar

P → ε
P → APA
P → BPB
A → a

B → b

are represented by the following derivation tree:

P

A

a

P

B

b

P

ε

B

b

A

a

A derivation tree can be seen as a structural interpretation of the derived sentence.
Note that there might be more than one structural interpretation of a sentence with
respect to a given grammar. Such grammars are called ambiguous.

Definition 2.9 (ambiguous grammar, unambiguous grammar). A grammar is un-
ambiguous if every sentence has a unique leftmost derivation, or, equivalently, if every

unambiguous
sentence has a unique derivation tree. Otherwise it is called ambiguous.

ambiguous

The grammar SequenceOfS for constructing sequences of s’s is an example of an
ambiguous grammar, since there exist two parse trees for the sentence sss.

It is in general undecidable whether or not an arbitrary context-free grammar is
ambiguous. This implies that is impossible to write a program that determines for
an arbitrary context-free grammar whether it is ambiguous or not.

It is usually rather difficult to translate languages with ambiguous grammars. There-
fore, you will find that most grammars of programming languages and other languages
that are used in processing information are unambiguous.

Grammars have proved very successful in the specification of artificial languages (such
as programming languages). They have proved less successful in the specification of
natural languages (such as English), partly because is extremely difficult to construct
an unambiguous grammar that specifies a nontrivial part of the language. Take for
example the sentence ‘They are flying planes’. This sentence can be read in two
ways, with different meanings: ‘They – are – flying planes’, and ‘They – are flying
– planes’. While ambiguity of natural languages may perhaps be considered as an
advantage for their users (e. g., politicians), it certainly is considered a disadvantage
for language translators, because it is usually impossible to maintain an ambiguous
meaning in a translation.
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2. Context-Free Grammars

2.5. Grammar transformations

In this section, we will first look at a number of properties of grammars. We then will
show how we can systematically transform grammars into grammars that describe
the same language and satisfy particular properties.

Here are some examples of properties that are worth considering for a particular
grammar:

• a grammar may be unambiguous, that is, every sentence of its language has a
unique parse tree;

• a grammar may have the property that only the start symbol can derive the
empty string; no other nonterminal can derive the empty string;

• a grammar may have the property that every production either has a single
terminal, or two nonterminals in its right hand side. Such a grammar is said
to be in Chomsky normal form.

So why are we interested in such properties? Some of these properties imply that it
is possible to build parse trees for sentences of the language of the grammar in only
one way. Some other properties imply that we can build these parse trees very fast.
Other properties are used to prove facts about grammars. Yet other properties are
used to efficiently compute certain information from parse trees of a grammar.

Properties are particularly interesting in combination with grammar transformations.
A grammar transformationis a procedure to obtain a grammar G ′ from a grammargrammar

transformation G such that L(G ′) = L(G).

Suppose, for example, that we have a program that builds parse trees for sentences
of grammars in Chomsky normal form, and that we can prove that every grammar
can be transformed in a grammar in Chomsky normal form. Then we can use this
program for building parse trees for any grammar.

Since it is sometimes convenient to have a grammar that satisfies a particular property
for a language, we would like to be able to transform grammars into other grammars
that generate the same language, but that possibly satisfy different properties. In
the following, we describe a number of grammar transformations:

• Removing duplicate productions.
• Substituting right hand sides for nonterminals.
• Removing unreachable productions.
• Left factoring.
• Removing left recursion.
• Associative separator.
• Introduction of priorities.
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2.5. Grammar transformations

There are many more transformations than we describe here; we will only show a
small but useful set of grammar transformations. In the following, we will assume
that N is the set of nonterminals, T is the set of terminals, and that u, v , w , x , y and
z denote sequences of terminals and nonterminals, i. e., are elements of (N ∪ T )∗.

2.5.1. Removing duplicate productions

This grammar transformation is a transformation that can be applied to any grammar
of the correct form. If a grammar contains two occurrences of the same production
rule, one of these occurrences can be removed. For example,

A→ u | u | v

can be transformed into

A→ u | v

2.5.2. Substituting right hand sides for nonterminals

If a nonterminal X occurs in a right hand side of a production, the production may
be replaced by just as many productions as there exist productions for X , in which
X has been replaced by its right hand sides. For example, we can substitute B in
the right hand side of the first production in the following grammar:

A → uBv | z
B → x | w

The resulting grammar is:

A → uxv | uwv | z
B → x | w

2.5.3. Removing unreachable productions

Consider the result of the transformation above:

A → uxv | uwv | z
B → x | w

If A is the start symbol and B does not occur in any of the symbol sequences u, v ,
w , x , z , then the second production can never occur in the derivation of a sentence
starting from A. In such a case, the unreachable production can be dropped:

A→ uxv | uwv | z
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2.5.4. Left factoring

Left factoring is a grammar transformation that is applicable when two productions
left factoring

for the same nonterminal start with the same sequence of (terminal and/or nonter-
minal) symbols. These two productions can then be replaced by a single production,
that ends with a new nonterminal, replacing the part of the sequence after the com-
mon start sequence. Two productions for the new nonterminal are added: one for
each of the two different end sequences of the two productions. For example:

A→ xy | xz | v

may be transformed into

A→ xZ | v
Z → y | z

where Z is a new nonterminal. As we will see in Chapter 3, parsers can be constructed
systematically from a grammar, and left factoring the grammar before constructing
a parser can dramatically improve the performance of the resulting parser.

2.5.5. Removing left recursion

A production is called left-recursive if the right-hand side starts with the nonterminal
left recursion

of the left-hand side. For example, the production

A→ Az

is left-recursive. A grammar is left-recursive if we can derive bla A⇒+ Az for some
nonterminal A of the grammar (i.e., if we can derive Az from A in one or more
steps).

Left-recursive grammars are sometimes undesirable – we will, for instance, see in
Chapter 3 that a parser constructed systematically from a left-recursive grammar
may loop. Fortunately, left recursion can be removed by transforming the grammar.
The following transformation removes left-recursive productions.

To remove the left-recursive productions of a nonterminal A, we divide the produc-
tions for A in sets of left-recursive and non left-recursive productions. We can thus
factorize the productions for A as follows:

A→ Ax1 |Ax2 | . . . |Axn
A→ y1 | y2 | . . . | ym

where none of the symbol sequences y1, . . . , ym starts with A. We now add a new
nonterminal Z , and replace the productions for A by:
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2.5. Grammar transformations

A→ y1 | y1Z | . . . | ym | ymZ
Z → x1 | x1Z | . . . | xn | xnZ

Note that this procedure only works for a grammar that is directly left-recursive, i. e.,
a grammar that contains a left-recursive production of the form A→ Ax .

Grammars can also be indirectly left recursive. An example is

A → Bx
B → Ay

None of the two productions is left recursive, but we can still derive A ⇒∗ Ayx .
Removing left recursion in an indirectly left-recursive grammar is also possible, but
a bit more complicated [1].

Here is an example of how to apply the procedure described above to a grammar that
is directly left recursive, namely the grammar SequenceOfS that we have introduced
in Section 2.4:

S → SS
S → s

The first production is left-recursive. The second is not. We can thus directly apply
the procedure for left recursion removal, and obtain the following productions:

S → s | sZ
Z → S | SZ

2.5.6. Associative separator

The following grammar fragment generates a list of declarations, separated by a
semicolon ‘;’:

Decls → Decls ; Decls
Decls → Decl

The productions for Decl , which generates a single declaration, have been omitted.
This grammar is ambiguous, for the same reason as SequenceOfS is ambiguous. The
operator ; is an associative separator in the generated language, that is, it does not
matter how we group the declarations; given three declarations d1, d2, and d3, the
meaning of d1 ; (d2 ; d3) and (d1 ; d2) ; d3 is the same. Therefore, we may use the
following unambiguous grammar for generating a language of declarations:

Decls → Decl ; Decls
Decls → Decl
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Note that in this case, the transformed grammar is also no longer left-recursive.

An alternative unambiguous (but still left-recursive) grammar for the same language
is

Decls → Decls ; Decl
Decls → Decl

The grammar transformation just described should be handled with care: if the
separator is associative in the generated language, like the semicolon in this case,
applying the transformation is fine. However, if the separator is not associative, then
removing the ambiguity in favour of a particular nesting is dangerous.

This grammar transformation is often useful for expressions which are separated by
associative operators, such as for example natural numbers and addition.

2.5.7. Introduction of priorities

Another form of ambiguity often arises in the part of a grammar for a programming
language which describes expressions. For example, the following grammar generates
arithmetic expressions:

E → E + E
E → E * E
E → ( E )

E → Digs

where Digs generates a list of digits as described in Section 2.3.1.

This grammar is ambiguous: for example, the sentence 2+4*6 has two parse trees: one
corresponding to (2+4)*6, and one corresponding to 2+(4*6). If we make the usual
assumption that * has higher priority than +, the latter expression is the intended
reading of the sentence 2+4*6. In order to obtain parse trees that respect these
priorities, we transform the grammar as follows:

E → T
E → E + T

T → F
T → T * F

F → ( E )

F → Digs

This grammar generates the same language as the previous grammar for expressions,
but it respects the priorities of the operators.
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2.5. Grammar transformations

In practice, often more than two levels of priority are used. Then, instead of writing
a large number of nearly identically formed production rules, we can abbreviate the
grammar by using parameterised nonterminals. For 1 6 i < n, we get productions

Ei → Ei+1

Ei → Ei Opi Ei+1

The nonterminal Opi is parameterised and generates operators of priority i . In
addition to the above productions, there should also be a production for expressions
of the highest priority, for example:

En → ( E1 ) |Digs

2.5.8. Discussion

We have presented several examples of grammar transformations. A grammar trans-
formation transforms a grammar into another grammar that generates the same
language. For each of the above transformations we should therefore prove that the
generated language remains the same. Since the proofs are too complicated at this
point, they are omitted. Proofs can be found in any of the theoretical books on
language and parsing theory [11].

There exist many other grammar transformations, but the ones given in this section
suffice for now. Note that everywhere we use ‘left’ (left-recursion, left factoring), we
can replace it by ‘right’, and obtain a dual grammar transformation. We will discuss
a larger example of a grammar transformation after the following section.

Exercise 2.16. Consider the following ambiguous grammar with start symbol A:

A→ AaA
A→ b | c

Transform the grammar by applying the rule for associative separators. Choose the trans-
formation such that the resulting grammar is also no longer left-recursive.

Exercise 2.17. The standard example of ambiguity in programming languages is the dan-
gling else. Let G be a grammar with terminal set {if, b, then, else, a} and the following
productions:

S → if b then S else S
S → if b then S
S → a

1. Give two parse trees for the sentence if b then if b then a else a.
2. Give an unambiguous grammar that generates the same language as G .
3. How does Java prevent this dangling else problem?
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Exercise 2.18. A bit list is a nonempty list of bits separated by commas. A grammar for
bit lists is given by

L → B
L → L , L
B → 0 | 1

Remove the left recursion from this grammar.

Exercise 2.19. Consider the follwing grammar with start symbol S :

S → AB
A → ε | aaA
B → ε | Bb

1. What language does this grammar generate?
2. Give an equivalent non left recursive grammar.

2.6. Concrete and abstract syntax

In this section, we establish a connection between context-free grammars and Haskell
datatypes. To this end, we introduce the notion of abstract syntax, and show how
to obtain an abstract syntax from a concrete syntax.

For each context-free grammar we can define a corresponding datatype in Haskell.
Values of these datatypes represent parse trees of the context-free grammar. As an
example we take the grammar SequenceOfS:

S → SS
S → s

First, we give each of the productions of this grammar a name:

Beside: S → SS
Single: S → s

Now we interpret the start symbol of the grammar S as a datatype, using the names
of the productions as constructors:

data S = Beside S S
| Single

Note that the nonterminals on the right hand side of Beside reappear as arguments of
the constructor Beside. On the other hand, the terminal symbol s in the production
Single is omitted in the definition of the constructor Single.

One may be tempted to make the following definition instead:
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data S ′ = Beside ′ S ′ S ′

| Single ′ Char — too general

However, this datatype is too general for the given grammar. An argument of type
Char can be instantiated to any single character, but we know that this character
always has to be s. Since there is no choice anyway, there is no extra value in storing
that s, and the first datatype S serves the purpose of encoding the parse trees of the
grammar SequenceOfS just fine.

For example, the parse tree that corresponds to the first two derivations of the se-
quence sss is represented by the following value of the datatype S :

Beside Single (Beside Single Single)

The third derivation of the sentence sss produces the following parse tree:

Beside (Beside Single Single) Single

To emphasize that these representations contain sufficient information in order to re-
produce the original strings, we can write a function that performs this conversion:

sToString :: S → String
sToString (Beside l r) = sToString l ++ sToString r
sToString Single = "s"

Applying the function sToString to either Beside Single (Beside Single Single) or
Beside (Beside Single Single) Single yields the string "sss".

A concrete syntax of a language describes the appearance of the sentences of a lan-
concrete syntax

guage. So the concrete syntax of the language of nonterminal S is given by the
grammar SequenceOfS.

On the other hand, an abstract syntax of a language describes the shapes of parse trees
abstract syntax

of the language, without the need to refer to concrete terminal symbols. Parse trees
are therefore often also called abstract syntax trees. The datatype S is an example
of an abstract syntax for the language of SequenceOfS. The adjective ‘abstract’
indicates that values of the abstract syntax do not need to explicitly contain all
information about particular sentences, as long as that information is recoverable, as
for example by applying function sToString .

A function such as sToString is often called a semantic function. A semantic function
semantic function

is a function that is defined on an abstract syntax of a language. Semantic functions
are used to give semantics (meaning) to values. In this example, the meaning of a
more abstract representation is expressed in terms of a concrete representation.

Using the removing left recursion grammar transformation, the grammar SequenceOfS
can be transformed into the grammar with the following productions:
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S → sZ | s
Z → SZ | S

An abstract syntax of this grammar may be given by

data SA = ConsS Z | SingleS
data Z = ConsZ SA Z | SingleZ SA

For each nonterminal in the original grammar, we have introduced a corresponding
datatype. For each production for a particular nonterminal (expanding all the alter-
natives into separate productions), we have introduced a constructor and invented a
name for the constructor. The nonterminals on the right hand side of the production
rules appear as arguments of the constructors, but the terminals disappear, because
that information can be recovered by knowing which constructors have been used.

If we look at the two different grammars for SequenceOfS, and the two abstract
syntaxes, we can conclude that the only important information about sequences of
s’s is how many occurrences of s there are. So the ultimate abstract syntax for
SequenceOfS is

data SS = Size Int

Using the abstract syntax SS , the sequence sss is represented by the parse tree
Size 3, and we can still recover the original string from a value SS by means of a
semantic function:

ssToString :: SS → String
ssToString (Size n) = replicate n ’s’

The SequenceOfS example shows that one may choose between many different ab-
stract syntaxes for a given grammar. The choice of an abstract syntax over another
should therefore be determined by the demands of the application, i.e., by what we
ultimately want to compute.

Exercise 2.20. The following Haskell datatype represents a limited form of arithmetic ex-
pressions

data Expr = Add Expr Expr
| Mul Expr Expr
| Con Int

Give a grammar for a suitable concrete syntax corresponding to this datatype.

Exercise 2.21. Consider the grammar for palindromes that you have constructed in Exer-
cise 2.7. Give parse trees for the palindromes pal1 = "abaaba" and pal2 = "baaab". Define a
datatype Pal corresponding to the grammar and represent the parse trees for pal1 and pal2
as values of Pal .

Exercise 2.22. Consider your answers to Exercises 2.7 and 2.21 where we have given a
grammar for palindromes over the alphabet {a, b} and a Haskell datatype describing the
abstract syntax of such palindromes.
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1. Write a semantic function that transforms an abstract representation of a palindrome
into a concrete one. Test your function with the palindromes pal1 and pal2 from
Exercise 2.21.

2. Write a semantic function that counts the number of a’s occurring in a palindrome.
Test your function with the palindromes pal1 and pal2 from Exercise 2.21.

Exercise 2.23. Consider your answer to Exercise 2.8, which describes the concrete syntax
for mirror palindromes.

1. Define a datatype Mir that describes the abstract syntax corresponding to your gram-
mar. Give the two abstract mirror palindromes aMir1 and aMir2 that correspond to
the concrete mirror palindromes cMir1 = "abaaba" and cMir2 = "abbbba".

2. Write a semantic function that transforms an abstract representation of a mirror
palindrome into a concrete one. Test your function with the abstract mirror palin-
dromes aMir1 and aMir2.

3. Write a function that transforms an abstract representation of a mirror palindrome
into the corresponding abstract representation of a palindrome (using the datatype
from Exercise 2.21). Test your function with the abstract mirror palindromes aMir1

and aMir2.

Exercise 2.24. Consider your anwer to Exercise 2.9, which describes the concrete syntax
for parity sequences.

1. Define a datatype Parity describing the abstract syntax corresponding to your gram-
mar. Give the two abstract parity sequences aEven1 and aEven2 that correspond to
the concrete parity sequences cEven1 = "00101" and cEven2 = "01010".

2. Write a semantic function that transforms an abstract representation of a parity se-
quence into a concrete one. Test your function with the abstract parity sequences aEven1

and aEven2.

Exercise 2.25. Consider your answer to Exercise 2.18, which describes the concrete syntax
for bit lists by means of a grammar that is not left-recursive.

1. Define a datatype BitList that describes the abstract syntax corresponding to your
grammar. Give the two abstract bit-lists aBitList1 and aBitList2 that correspond to
the concrete bit-lists cBitList1 = "0,1,0" and cBitList2 = "0,0,1".

2. Write a semantic function that transforms an abstract representation of a bit list into
a concrete one. Test your function with the abstract bit lists aBitList1 and aBitList2.

3. Write a function that concatenates two abstract representations of a bit lists into a bit
list. Test your function with the abstract bit lists aBitList1 and aBitList2.

2.7. Constructions on grammars

This section introduces some constructions on grammars that are useful when spec-
ifying larger grammars, for example for programming languages. Furthermore, it
gives an example of a larger grammar that is transformed in several steps.

The BNF notation, introduced in Section 2.2.1, was first used in the early sixties
when the programming language ALGOL 60 was defined and until now it is the

31



2. Context-Free Grammars

standard way of defining the syntax of programming languages (see,for instance,
the Java Language Grammar). You may object that the Java grammar contains
more “syntactical sugar” than the grammars that we considered thus far (and to be
honest, this also holds for the ALGOL 60 grammar): one encounters nonterminals
with postfixes ‘?’, ‘+’ and ‘∗’.

This extended BNF notation, EBNF , is introduced in order to help abbreviate a
EBNF

number of standard constructions that usually occur quite often in the syntax of a
programming language:

• one or zero occurrences of nonterminal P , abbreviated P?,
• one or more occurrences of nonterminal P , abbreviated P+,
• and zero or more occurrences of nonterminal P , abbreviated P∗.

We could easily express these constructions by adding additional nonterminals, but
that decreases the readability of the grammar. The notation for the EBNF con-
structions is not entirely standardized. In some texts, you will for instance find the
notation [P ] instead of P?, and {P } for P∗. The same notation can be used for
languages, grammars, and sequences of terminal and nonterminal symbols instead of
just single nonterminals. In this section, we define the meaning of these constructs.

We introduced grammars as an alternative for the description of languages. Designing
a grammar for a specific language may not be a trivial task. One approach is to
decompose the language and to find grammars for each of its constituent parts.

In Definition 2.3, we have defined a number of operations on languages using op-
erations on sets. We now show that these operations can be expressed in terms of
operations on context-free grammars.

Theorem 2.10 (Language operations). Suppose we have grammars for the languages
L and M , say GL = (T ,NL,RL,SL) and GM = (T ,NM ,RM ,SM ). We assume that
the nonterminal sets NL and NM are disjoint. Then

• the language L∪M is generated by the grammar (T ,N ,R,S ) where S is a fresh
nonterminal, N = NL ∪NM ∪ {S } and R = RL ∪ RM ∪ {S → SL,S → SM };

• the language L M is generated by the grammar (T ,N ,R,S ) where S is a fresh
nonterminal, N = NL ∪NM ∪ {S } and R = RL ∪ RM ∪ {S → SL SM };

• the language L∗ is generated by the grammar (T ,N ,R,S ) where S is a fresh
nonterminal, N = NL ∪ {S } and R = RL ∪ {S → ε,S → SL S };

• the language L+ is generated by the grammar (T ,N ,R,S ) where S is a fresh
nonterminal, N = NL ∪ {S } and R = RL ∪ {S → SL,S → SL S }.

The theorem above establishes that the set-theoretic operations at the level of lan-
guages (i. e., sets of sentences) have a direct counterpart at the level of grammatical
descriptions. A straightforward question to ask is now: can we also define languages
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as the difference between two languages or as the intersection of two languages, and
translate these operations to operations on grammars? Unfortunately, the answer
is negative – there are no operations on grammars that correspond to the language
intersection and difference operators.

Two of the above constructions are important enough to actually define them as
grammar operations. Furthermore, we add a new grammar construction for an “op-
tional grammar”.

Definition 2.11 (Grammar operations). Let G = (T ,N ,R,S ) be a context-free
grammar and let S ′ be a fresh nonterminal. Then

G∗ = (T ,N ∪ {S ′},R ∪ {S ′ → ε, S ′ → S S ′},S ′)
G+ = (T ,N ∪ {S ′},R ∪ {S ′ → S ,S ′ → S S ′},S ′)
G? = (T ,N ∪ {S ′},R ∪ {S ′ → ε, S ′ → S },S ′)

The definition of P?, P+, and P∗ for a sequence of symbols P is very similar to the
definitions of the operations on grammars. For example, P∗ denotes zero or more
concatenations of string P , so Dig∗ denotes the language consisting of zero or more
digits.

Definition 2.12 (EBNF for sequences). Let P be a sequence of nonterminals and
terminals, then

L(P∗) = L(Z ) with Z → ε | PZ
L(P+) = L(Z ) with Z → P | PZ
L(P?) = L(Z ) with Z → ε | P

where Z is a new nonterminal in each definition.

Because the concatenation operator for sequences is associative, the operators ·∗
and ·+ can also be defined symmetrically:

L(P∗) = L(Z ) with Z → ε | ZP
L(P+) = L(Z ) with Z → P | ZP

Many variations are possible on this theme:

L(P∗ Q) = L(Z ) with Z → Q | PZ (2.1)

or also

L(P Q∗) = L(Z ) with Z → P | ZQ (2.2)
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2.7.1. SL: an example

To illustrate EBNF and some of the grammar transformations given in the previous
section, we give a larger example. The following grammar generates expressions in a
very small programming language, called SL.

Expr → if Expr then Expr else Expr
Expr → Expr where Decls
Expr → AppExpr

AppExpr → AppExpr Atomic |Atomic

Atomic → Var |Number | Bool | ( Expr )

Decls → Decl
Decls → Decls ; Decls

Decl → Var = Expr

where the nonterminals Var , Number , and Bool generate variables, number expres-
sions, and boolean expressions, respectively. Note that the brackets around the Expr
in the production for Atomic, and the semicolon in between the Decls in the second
production for Decls are also terminal symbols. The following ‘program’ is a sentence
of this language:

if true then funny true else false where funny = 7

It is clear that this is not a very convenient language to write programs in.

The above grammar is ambiguous (why?), and we introduce priorities to resolve
some of the ambiguities. Application binds stronger than if, and both application
and if bind stronger then where. Using the “introduction of priorities” grammar
transformation, we obtain:

Expr → Expr1

Expr → Expr1 where Decls

Expr1 → Expr2

Expr1 → if Expr1 then Expr1 else Expr1

Expr2 → Atomic
Expr2 → Expr2 Atomic

where Atomic and Decls have the same productions as before.

The nonterminal Expr2 is left-recursive. Removing left recursion gives the following
productions for Expr2:

Expr2 → Atomic |Atomic Expr ′2
Expr ′2 → Atomic |Atomic Expr ′2
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Since the new nonterminal Expr ′2 has exactly the same productions as Expr2, these
productions can be replaced by

Expr2 → Atomic |Atomic Expr2

So Expr2 generates a nonempty sequence of atomics. Using the ·+-notation intro-
duced before, we can replace Expr2 by Atomic+.

Another source of ambiguity are the productions for Decls. The nonterminal Decls
generates a nonempty list of declarations, and the separator ; is assumed to be asso-
ciative. Hence we can apply the “associative separator” transformation to obtain

Decls → Decl |Decls ; Decl

or, according to (2.2),

Decls → Decl (; Decl)∗

The last grammar transformation we apply is “left factoring”. This transformation
is applied to the productions for Expr , and yields

Expr → Expr1 Expr ′1
Expr ′1 → ε | where Decls

Since nonterminal Expr ′1 generates either nothing or a where clause, we can replace
Expr ′1 by an optional where clause in the production for Expr :

Expr → Expr1 (where Decls)?

After all these grammar transformations, we obtain the following grammar.

Expr → Expr1 (where Decls)?
Expr1 → Atomic+

Expr1 → if Expr1 then Expr1 else Expr1

Atomic → Var |Number | Bool | ( Expr )

Decls → Decl (; Decl)∗

Exercise 2.26. Give the EBNF notation for each of the basic languages defined in Sec-
tion 2.3.1.

Exercise 2.27. Let G be a grammar G . Give the language that is generated by G? (i.e.,
the ·? operation applied to G).

Exercise 2.28. Let

L1 = {ambmcn |m,n ∈ N}
L2 = {ambn cn |m,n ∈ N}

1. Give grammars for L1 and L2.
2. Is L1 ∩ L2 context-free, i. e., can you give a context-free grammar for this language?
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2.8. Parsing

This section formulates the parsing problem, and discusses some of the future topics
of the course.

Definition 2.13 (Parsing problem). Given the grammar G and a string s, the
parsing problem answers the question whether or not s ∈ L(G). If s ∈ L(G), the

parsing problem
answer to this question may be either a parse tree or a derivation.

This question may not be easy to answer given an arbitrary grammar. Until now we
have only seen simple grammars for which it is relatively easy to determine whether
or not a string is a sentence of the grammar. For more complicated grammars this
may be more difficult. However, in the first part of this course we will show how –
given a grammar with certain reasonable properties – we can easily construct parsers
by hand. At the same time we will show how the parsing process can quite often be
combined with the algorithm we actually want to perform on the recognized object
(the semantic function). The techniques we describe comprise a simple, although
surprisingly efficient, introduction into the area of compiler construction.

A compiler for a programming language consists of several parts. Examples of such
parts are a scanner, a parser, a type checker, and a code generator. Usually, a parser
is preceded by a scanner (also called lexer), which splits an input sentence into a listscanner

lexer of so-called tokens. For example, given the sentence

if true then funny true else false where funny = 7

a scanner might return the following list of tokens:

["if", "true", "then", "funny", "true",
"else", "false", "where", "funny", "=", "7"]

So a token is a syntactical entity. A scanner usually performs the first step towards
token

an abstract syntax: it throws away layout information such as spacing and newlines.
In this course we will concentrate on parsers, but some of the concepts of scanners
will sometimes be used.

In the second part of this course we will take a look at more complicated grammars,
which do not always conform to the restrictions just referred to. By analysing the
grammar we may nevertheless be able to generate parsers as well. Such generated
parsers will be in such a form that it will be clear that writing such parsers by hand
is far from attractive, and actually impossible for all practical cases.

One of the problems we have not referred to yet in this rather formal chapter is of
a more practical nature. Quite often the sentence presented to the parser will not
be a sentence of the language since mistakes were made when typing the sentence.
This raises another interesting question: What are the minimal changes that have
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to be made to the sentence in order to convert it into a sentence of the language?
It goes almost without saying that this is an important question to be answered in
practice; one would not be very happy with a compiler which, given an erroneous
input, would just reply that the “Input could not be recognised”. One of the most
important aspects here is to define metric for deciding about the minimality of a
change; humans usually make certain mistakes more often than others. A semicolon
can easily be forgotten, but the chance that an if symbol is missing is far from likely.
This is where grammar engineering starts to play a rôle.

Summary

Starting from a simple example, the language of palindromes, we have introduced
the concept of a context-free grammar. Associated concepts, such as derivations and
parse trees were introduced.

2.9. Exercises

Exercise 2.29. Do there exist languages L such that (L∗) = (L)
∗
?

Exercise 2.30. Give a language L such that L = L∗.

Exercise 2.31. Under which circumstances is L+ = L∗ − {ε}?

Exercise 2.32. Let L be a language over alphabet {a, b, c} such that L=LR. Does L contain
only palindromes?

Exercise 2.33. Consider the grammar with productions

S → AA
A→ AAA
A→ a

A→ bA
A→ Ab

1. Which terminal strings can be produced by derivations of four or fewer steps?

2. Give at least two distinct derivations for the string babbab.

3. For any m,n, p > 0, describe a derivation of the string bmabnabp .

Exercise 2.34. Consider the grammar with productions

S → aaB

A → bBb

A → ε

B → Aa

Show that the string aabbaabba cannot be derived from S .
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Exercise 2.35. Give a grammar for the language

L = {ωcωR | ω ∈ {a, b}∗}

This language is known as the center-marked palindromes language. Give a derivation of the
sentence abcba.

Exercise 2.36. Describe the language generated by the grammar:

S → ε
S → A
A→ aAb

A→ ab

Can you find another (preferably simpler) grammar for the same language?

Exercise 2.37. Describe the languages generated by the grammars.

S → ε
S → A
A→ Aa

A→ a

and

S → ε
S → A
A→ AaA
A→ a

Can you find other (preferably simpler) grammars for the same languages?

Exercise 2.38. Show that the languages generated by the grammars G1, G2 en G3 are the
same.

G1 : G2 : G3 :

S → ε S → ε S → ε
S → aS S → Sa S → a

S → SS

Exercise 2.39. Consider the following property of grammars:

1. the start symbol is the only nonterminal which may have an empty production (a
production of the form X → ε),

2. the start symbol does not occur in any alternative.

A grammar having this property is called non-contracting . The grammar A → aAb | ε does
not have this property. Give a non-contracting grammar which describes the same language.

Exercise 2.40. Describe the language L of the grammar

A→ AaA | a

Give a grammar for L that has no left-recursive productions. Give a grammar for L that has
no right-recursive productions.
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Exercise 2.41. Describe the language L of the grammar

X → a |X b

Give a grammar for L that has no left-recursive productions. Give a grammar for L that has
no left-recursive productions and is non-contracting.

Exercise 2.42. Consider the language L of the grammar

S → T |US
T → aSa |U a

U → S | SUT

Give a grammar for L which uses only productions with two or less symbols on the right
hand side. Give a grammar for L which uses only two nonterminals.

Exercise 2.43. Give a grammar for the language of all sequences of 0’s and 1’s which start
with a 1 and contain exactly one 0.

Exercise 2.44. Give a grammar for the language consisting of all nonempty sequences of
brackets,

{(, )}

in which the brackets match. An example sentence of the language is ( ) ( ( ) ) ( ). Give a
derivation for this sentence.

Exercise 2.45. Give a grammar for the language consisting of all nonempty sequences of
two kinds of brackets,

{(, ), [, ]}

in which the brackets match. An example sentence in this language is [ ( ) ] ( ).

Exercise 2.46. This exercise shows an example (attributed to Noam Chomsky) of an am-
biguous English sentence. Consider the following grammar for a part of the English language:

Sentence → Subject Predicate .

Subject → they

Predicate → Verb NounPhrase
Predicate → AuxVerb Verb Noun
Verb → are

Verb → flying

AuxVerb → are

NounPhrase → Adjective Noun
Adjective → flying

Noun → planes

Give two different leftmost derivations for the sentence

they are flying planes.
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Exercise 2.47. Try to find some ambiguous sentences in your own natural language. Here
are some ambiguous Dutch sentences seen in the newspapers:

Vliegen met hartafwijking niet gevaarlijk

Jessye Norman kan niet zingen

Alcohol is voor vrouwen schadelijker dan mannen

Exercise 2.48 (•). Is your grammar for Exercise 2.45 unambiguous? If not, find one which
is unambiguous.

Exercise 2.49. This exercise deals with a grammar that uses unusual terminal and non-
terminal symbols. Assume that �, ⊗, and ⊕ are nonterminals, and the other symbols are
terminals.

� → �4⊗
� → ⊗
⊗ → ⊗3⊕
⊗ → ⊕
⊕ → ♣
⊕ → ♠

Find a derivation for the sentence ♣3♣4♠.

Exercise 2.50 (•). Prove, using induction, that the grammar G for palindromes in Sec-
tion 2.2 does indeed generate the language of palindromes.

Exercise 2.51 (••, no answer provided). Prove that the language generated by the grammar
of Exercise 2.33 contains all strings over {a, b} where the number of a’s is even and greater
than zero.

Exercise 2.52 (no answer provided). Consider the natural numbers in unary notation where
only the symbol I is used; thus 4 is represented as IIII. Write an algorithm that, given a
string w of I’s, determines whether or not w is divisible by 7.

Exercise 2.53 (no answer provided). Consider the natural numbers in reverse binary no-
tation; thus 4 is represented as 001. Write an algorithm that, given a string w of zeros and
ones, determines whether or not w is divisible by 7.

Exercise 2.54 (no answer provided). Let w be a string consisting of a’s and b’s only. Write
an algorithm that determines whether or not the number of a’s in w equals the number of
b’s in w .
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Introduction

This chapter is an informal introduction to writing parsers in a lazy functional lan-
guage using ‘parser combinators’. Parsers can be written using a small set of basic
parsing functions, and a number of functions that combine parsers into more com-
plicated parsers. The functions that combine parsers are called parser combinators.
The basic parsing functions do not combine parsers, and are therefore not parser
combinators in this sense, but they are usually also called parser combinators.

Parser combinators are used to write parsers that are very similar to the grammar of
a language. Thus writing a parser amounts to translating a grammar to a functional
program, which is often a simple task.

Parser combinators are built by means of standard functional language constructs
like higher-order functions, lists, and datatypes. List comprehensions are used in a
few places, but they are not essential, and could easily be rephrased using the map,
filter and concat functions. Type classes are only used for overloading the equality
and arithmetic operators.

We will start by motivating the definition of the type of parser functions. Using that
type, we can build parsers for the language of (possibly ambiguous) grammars. Next,
we will introduce some elementary parsers that can be used for parsing the terminal
symbols of a language.

In Section 3.3 the first parser combinators are introduced, which can be used for se-
quentially and alternatively combining parsers, and for calculating so-called semantic
functions during the parse. Semantic functions are used to give meaning to syntactic
structures. As an example, we construct a parser for strings of matching paren-
theses in Section 3.3.1. Different semantic values are calculated for the matching
parentheses: a tree describing the structure, and an integer indicating the nesting
depth.

In Section 3.4 we introduce some new parser combinators. Not only do these make life
easier later, but their definitions are also nice examples of using parser combinators.
A real application is given in Section 3.5, where a parser for arithmetical expressions
is developed. Finally, the expression parser is generalised to expressions with an
arbitrary number of precedence levels. This is done without coding the priorities of
operators as integers, and we will avoid using indices and ellipses.
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It is not always possible to directly construct a parser from a context-free grammar
using parser combinators. If the grammar is left-recursive, it has to be transformed
into a non left-recursive grammar before we can construct a combinator parser. An-
other limitation of the parser combinator technique as described in this chapter is
that it is not trivial to write parsers for complex grammars that perform reasonably
efficient. However, there do exist implementations of parser combinators that per-
form remarkably well, see [10, 12]. For example, there exist good parsers using parser
combinators for the Haskell language.

Most of the techniques introduced in this chapter have been described by Burge [4],
Wadler [13] and Hutton [7].

This chapter is a revised version of an article by Fokker [5].

Goals

This chapter introduces the first programs for parsing in these lecture notes. Parsers
are composed from simple parsers by means of parser combinators. Hence, important
primary goals of this chapter are:

• to understand how to parse, i. e., how to recognise structure in a sequence of
symbols, by means of parser combinators;
• to be able to construct a parser when given a grammar;
• to understand the concept of semantic functions.

Two secondary goals of this chapter are:

• to develop the capability to abstract;
• to understand the concept of domain specific language.

Required prior knowledge

To understand this chapter, you should be able to formulate the parsing problem,
and you should understand the concept of context-free grammar. Furthermore, you
should be familiar with functional programming concepts such as type, class, and
higher-order functions.
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3.1. The type of parsers

The goals of this section are:

• develop a type Parser that is used to give the type of parsing functions;
• show how to obtain this type by means of several abstraction steps.

The parsing problem is (see Section 2.8): Given a grammar G and a string s, de-
termine whether or not s ∈ L(G). If s ∈ L(G), the answer to this question may
be either a parse tree or a derivation. For example, in Section 2.4 we have seen a
grammar for sequences of s’s:

S → SS | s

A parse tree of an expression of this language is a value of the datatype S (or a value
of several variants of that type, see Section 2.6, depending on what you want to do
with the result of the parser), which is defined by

data S = Beside S S | Single

A parser for expressions could be implemented as a function of the following type:

type Parser = String → S — preliminary

For parsing substructures, a parser can call other parsers, or call itself recursively.
These calls do not only have to communicate their result, but also the part of the
input string that is left unprocessed. For example, when parsing the string sss, a
parser will first build a parse tree Beside Single Single for ss, and only then build a
complete parse tree

Beside (Beside Single Single) Single

using the unprocessed part s of the input string. As this cannot be done using a global
variable, the unprocessed input string has to be part of the result of the parser. The
two results can be paired. A better definition for the type Parser is hence:

type Parser = String → (S ,String) — still preliminary

Any parser of type Parser returns an S and a String . However, for different grammars
we want to return different parse trees: the type of tree that is returned depends on
the grammar for which we want to parse sentences. Therefore it is better to abstract
from the type S , and to turn the parser type into a polymorphic type. The type
Parser is parametrised with a type a, which represents the type of parse trees.

type Parser a = String → (a,String) — still preliminary

For example, a parser that returns a structure of type Oak (whatever that is) now
has type Parser Oak . A parser that parses sequences of s’s has type Parser S .
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We might also define a parser that does not return a value of type S , but instead
the number of s’s in the input sequence. This parser would have type Parser Int .
Another instance of a parser is a parse function that recognises a string of digits, and
returns the number represented by it as a parse ‘tree’. In this case the function is
also of type Parser Int . Finally, a recogniser that either accepts or rejects sentences
of a grammar returns a boolean value, and will have type Parser Bool .

Until now, we have assumed that every string can be parsed in exactly one way. In
general, this need not be the case: it may be that a single string can be parsed in
various ways, or that there is no way to parse a string. For example, the string "sss"

has the following two parse trees:

Beside (Beside Single Single) Single
Beside Single (Beside Single Single)

As another refinement of the type Parser , instead of returning one parse tree (and
its associated rest string), we let a parser return a list of trees. Each element of the
result consists of a tree, paired with the rest string that was left unprocessed after
parsing. The type definition of Parser therefore becomes:

type Parser a = String → [(a,String)] — useful, but still suboptimal

If there is just one parse, the result of the parse function is a singleton list. If no
parse is possible, the result is an empty list. In case of an ambiguous grammar, the
result consists of all possible parses.

This method for parsing is called the list of successes method, described by Wadler [13].
list of successes

It can be used in situations where in other languages you would use so-called back-
tracking techniques. In the Bird and Wadler textbook it is used to solve combinatorial
problems like the eight queens problem [3]. If only one solution is required rather
than all possible solutions, you can take the head of the list of successes. Thanks
to lazy evaluation, not all elements of the list are computed if only the first value is

lazy evaluation
needed, so there will be no loss of efficiency. Lazy evaluation provides a backtracking
approach to finding the first solution.

Parsers with the type described so far operate on strings, that is lists of characters.
There is however no reason for not allowing parsing strings of elements other than
characters. You may imagine a situation in which a preprocessor prepares a list of
tokens (see Section 2.8), which is subsequently parsed. To cater for this situation we
refine the parser type once more: we let the type of the elements of the input string
be an argument of the parser type. Calling the type of symbols s, and as before the
result type a, the type of parsers becomes

type Parser s a = [s]→ [(a, [s])]

or, if you prefer meaningful identifiers over conciseness:
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— The type of parsers

type Parser symbol result = [symbol ]→ [(result , [symbol ])]

Listing 3.1: ParserType.hs

type Parser symbol result = [symbol ]→ [(result , [symbol ])]

We will use this type definition in the rest of this chapter. This type is defined in
Listing 3.1, the first part of our parser library. The list of successes appears in result
type of a parser. Each element of this list is a possible parsing of (an initial part of)
the input. We will hardly use the full generality provided by the Parser type: the
type of the input s (or symbol) will almost always be Char .

3.2. Elementary parsers

The goals of this section are:

• introduce some very simple parsers for parsing sentences of grammars with rules
of the form:

A→ ε
A→ a

A→ x

where x is a sequence of terminals;

• show how one can construct useful functions from simple, trivially correct func-
tions by means of generalisation and partial parametrisation.

This section defines parsers that can only be used to parse fixed sequences of terminal
symbols. For a grammar with a production that contains nonterminals in its right-
hand side we need techniques that will be introduced in the following section.

We will start with a very simple parse function that just recognises the terminal
symbol a. The type of the input string symbols is Char in this case, and as a parse
‘tree’ we also simply use a Char :

symbola :: Parser Char Char
symbola [] = []
symbola (x : xs) | x = = ’a’ = [(’a’, xs)]

| otherwise = []

45



3. Parser combinators

— Elementary parsers

symbol :: Eq s ⇒ s → Parser s s
symbol a [] = []
symbol a (x : xs) | x = = a = [(x , xs)]

| otherwise = []

satisfy :: (s → Bool)→ Parser s s
satisfy p [] = []
satisfy p (x : xs) | p x = [(x , xs)]

| otherwise = []

token :: Eq s ⇒ [s]→ Parser s [s]
token k xs | k = = take n xs = [(k , drop n xs)]

| otherwise = []
where n = length k

failp :: Parser s a
failp xs = []

succeed :: a → Parser s a
succeed r xs = [(r , xs)]

— Applications of elementary parsers

digit :: Parser Char Char
digit = satisfy isDigit

Listing 3.2: ParserType.hs

The list of successes method immediately pays off, because now we can return an
empty list if no parsing is possible (because the input is empty, or does not start
with an a).

In the same fashion, we can write parsers that recognise other symbols. As always,
rather than defining a lot of closely related functions, it is better to abstract from the
symbol to be recognised by making it an extra argument of the function. Further-
more, the function can operate on lists of characters, but also on lists of symbols of
other types, so that it can be used in other applications than character oriented ones.
The only prerequisite is that the symbols to be parsed can be tested for equality. In
Haskell, this is indicated by the Eq predicate in the type of the function.

Using these generalisations, we obtain the function symbol that is given in Listing 3.2.
The function symbol is a function that, given a symbol, returns a parser for that
symbol. A parser on its turn is a function too. This is why two arguments appear in
the definition of symbol .

We will now define some elementary parsers that can do the work traditionally taken
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care of by lexical analysers (see Section 2.8). For example, a useful parser is one
that recognises a fixed string of symbols, such as while or switch. We will call this
function token; it is defined in Listing 3.2. As in the case of the symbol function we
have parametrised this function with the string to be recognised, effectively making
it into a family of functions. Of course, this function is not confined to strings of
characters. However, we do need an equality test on the type of values in the input
string; the type of token is:

token :: Eq s ⇒ [s]→ Parser s [s]

The function token is a generalisation of the symbol function, in that it recognises
a list of symbols instead of a single symbol. Note that we cannot define symbol in
terms of token: the two functions have incompatible types.

Another generalisation of symbol is a function which may, depending on the in-
put, return different parse results. Instead of specifying a specific symbol, we can
parametrise the function with a condition that the symbol should fulfill. Thus the
function satisfy has a function s → Bool as argument. Where symbol tests for equal-
ity to a specific value, the function satisfy tests for compliance with this predicate.
It is defined in Listing 3.2. This generalised function is for example useful when we
want to parse digits (characters in between ’0’ and ’9’):

digit :: Parser Char Char
digit = satisfy isDigit

where the function isDigit is the standard predicate that tests whether or not a
character is a digit:

isDigit :: Char → Bool
isDigit x = ’0’ 6 x ∧ x 6 ’9’

In books on grammar theory an empty string is often called ‘ε’. In this tradition,
we will define a function epsilon that ‘parses’ the empty string. It does not consume
any input, and hence always returns an empty parse tree and unmodified input. A
zero-tuple can be used as a result value: () is the only value of the type () – both the
type and the value are pronounced unit .

unit type

epsilon :: Parser s ()
epsilon xs = [((), xs)]

A more useful variant is the function succeed , which also doesn’t consume input,
but always returns a given, fixed value (or ‘parse tree’, if you can call the result of
processing zero symbols a parse tree). It is defined in Listing 3.2.

Dual to the function succeed is the function failp, which fails to recognise any symbol
on the input string. As the result list of a parser is a ‘list of successes’, and in the
case of failure there are no successes, the result list should be empty. Therefore the
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function failp always returns the empty list of successes. It is defined in Listing 3.2.
Note the difference with epsilon, which does have one element in its list of successes
(albeit an empty one).

Do not confuse failp with epsilon: there is an important difference between returning
one solution (which contains the unchanged input as ‘rest’ string) and not returning
a solution at all!

Exercise 3.1. Define a function capital :: Parser Char Char that parses capital letters.

Exercise 3.2. Since satisfy is a generalisation of symbol , the function symbol can be defined
as an instance of satisfy . How can this be done?

Exercise 3.3. Define the function epsilon using succeed .

3.3. Parser combinators

Using the elementary parsers from the previous section, parsers can be constructed
for terminal symbols from a grammar. More interesting are parsers for nonterminal
symbols. It is convenient to construct these parsers by partially parametrising higher-
order functions.

The goals of this section are:

• show how parsers can be constructed directly from the productions of a gram-
mar. The kind of productions for which parsers will be constructed are

A→ x | y
A→ x y

where x and y are sequences of nonterminal or terminal symbols;

• show how we can construct a small, powerful combinator language (a domain
specific language) for the purpose of parsing;

• understand and use the concept of semantic functions in parsers.

Let us have a look at the grammar for expressions again, see also Section 2.5:

E → T + E | T
T → F * T | F
F → Digs | ( E )

where Digs is a nonterminal that generates the language of sequences of digits, see
Section 2.3.1. An expression can be parsed according to any of the two rules for E.
This implies that we want to have a way to say that a parser consists of several alter-
native parsers. Furthermore, the first rule says that in order to parse an expression,
we should first parse a term, then a terminal symbol +, and then an expression. This
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implies that we want to have a way to say that a parser consists of several parsers
that are applied sequentially.

So important operations on parsers are sequential and alternative composition: a
more complex construct can consist of a simple construct followed by another con-
struct (sequential composition), or by a choice between two constructs (alternative
composition). These operations correspond directly to their grammatical counter-
parts. We will develop two functions for this, which for notational convenience are
defined as operators: <∗> for sequential composition, and <|> for alternative com-
position. The names of these operators are chosen so that they can be easily remem-
bered: <∗> ‘multiplies’ two constructs together, and <|> can be pronounced as ‘or’.
Be careful, though, not to confuse the <|>-operator with Haskell’s built-in construct
|, which is used to distinguish cases in a function definition or as a separator for the
constructors of a datatype.

Priorities of these operators are defined so as to minimise parentheses in practical
situations:

infixl 6<∗>
infixr 4<|>

So <∗> has a higher priority – i. e., it binds stronger – than <|>.

Both operators take two parsers as argument, and return a parser as result. By
again combining the result with other parsers, you may construct even more involved
parsers.

In the definitions in Listing 3.3, the functions operate on parsers p and q . Apart
from the arguments p and q , the function operates on a string, which can be thought
of as the string that is parsed by the parser that is the result of combining p and
q .

We start with the definition of operator <∗>. For sequential composition, p must be
applied to the input first. After that, q is applied to the rest string of the result. The
first parser, p, returns a list of successes, each of which contains a value and a rest
string. The second parser, q , should be applied to the rest string, returning a second
value. Therefore we use a list comprehension, in which the second parser is applied
in all possible ways to the rest string of the first parser:

(p <∗> q) xs = [(combine r1 r2, zs)
|(r1, ys)← p xs
, (r2, zs) ← q ys
]

The rest string of the parser for the sequential composition of p and q is whatever
the second parser q leaves behind as rest string.
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— Parser combinators

(<|>) :: Parser s a → Parser s a → Parser s a
(p <|> q) xs = p xs ++ q xs

(<∗>) :: Parser s (b → a)→ Parser s b → Parser s a
(p <∗> q) xs = [ (f x , zs )

| (f , ys)← p xs
, ( x , zs )← q ys
]

(<$>) :: (a → b)→ Parser s a → Parser s b
(f <$> p) xs = [ (f y , ys)

| ( y , ys)← p xs
]

— Applications of parser combinators

newdigit :: Parser Char Int
newdigit = f <$> digit

where f c = ord c − ord ’0’

Listing 3.3: ParserCombinators.hs

Now, how should the results of the two parsings be combined? We could, of course,
parametrise the whole thing with an operator that describes how to combine the
parts (as is done in the zipWith function). However, we have chosen for a different
approach, which nicely exploits the ability of functional languages to manipulate
functions. The function combine should combine the results of the two parse trees
recognised by p and q . In the past, we have interpreted the word ‘tree’ liberally:
simple values, like characters, may also be used as a parse ‘tree’. We will now also
accept functions as parse trees. That is, the result type of a parser may be a function
type.

If the first parser that is combined by <∗> would return a function of type b → a,
and the second parser a value of type b, a straightforward choice for the combine
function would be function application. That is exactly the approach taken in the
definition of <∗> in Listing 3.3. The first parser returns a function, the second parser
a value, and the combined parser returns the value that is obtained by applying the
function to the value.

Apart from ‘sequential composition’ we need a parser combinator for representing
‘choice’. For this, we have the parser combinator operator <|>. Thanks to the list
of successes method, both p1 and p2 return lists of possible parsings. To obtain all
possible parsings when applying p1 or p2, we only need to concatenate these two
lists.
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By combining parsers with parser combinators we can construct new parsers. The
most important parser combinators are <∗> and <|>. The parser combinator <,>
in exercise 3.12 is just a variation of <∗>.

Sometimes we are not quite satisfied with the result value of a parser. The parser
might work well in that it consumes symbols from the input adequately (leaving the
unused symbols as rest-string in the tuples in the list of successes), but the result
value might need some postprocessing. For example, a parser that recognises one digit
is defined using the function satisfy : digit = satisfy isDigit . In some applications,
we may need a parser that recognises one digit character, but returns the result
as an integer, instead of a character. In a case like this, we can use a new parser
combinator: <$>. It takes a function and a parser as argument; the result is a parser
that recognises the same string as the original parser, but ‘postprocesses’ the result
using the function. We use the $ sign in the name of the combinator, because the
combinator resembles the operator that is used for normal function application in
Haskell: f $ x = f x . The definition of <$> is given in Listing 3.3. It is an infix
operator:

infixl 7<$>

Using this postprocessing parser combinator, we can modify the parser digit that was
defined above:

newdigit :: Parser Char Int
newdigit = f <$> digit

where f c = ord c − ord ’0’

The auxiliary function f determines the ordinal number of a digit character; using
the parser combinator <$> it is applied to the result part of the digit parser.

In practice, the <$> operator is used to build a certain value during parsing (in the
case of parsing a computer program this value may be the generated code, or a list
of all variables with their types, etc.). Put more generally: using <$> we can add
semantic functions to parsers.

A parser for the SequenceOfS grammar that returns the abstract syntax tree of the
input, i.e., a value of type S , see Section 2.6, is defined as follows:

sequenceOfS :: Parser Char S
sequenceOfS = Beside <$> sequenceOfS <∗> sequenceOfS

<|> const Single <$> symbol ’s’

But if you try to run this function, you will get a stack overflow! If you apply
sequenceOfS to a string, the first thing it does is to apply itself to the same string,
which loops. The problem stems from the fact that the underlying grammar is left-
recursive. For any left-recursive grammar, a systematically constructed parser using
parser combinators will exhibit the problem that it loops. However, in Section 2.5
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we have shown how to remove the left recursion in the SequenceOfS grammar. The
resulting grammar is used to obtain the following parser:

sequenceOfS ′ :: Parser Char SA
sequenceOfS ′ =

const ConsS <$> symbol ’s’<∗> parseZ
<|> const SingleS <$> symbol ’s’
where parseZ = ConsZ <$> sequenceOfS ′ <∗> parseZ

<|> SingleZ <$> sequenceOfS ′

This example is a direct translation of the grammar obtained by using the remov-
ing left recursion grammar transformation. There exists a much simpler parser for
parsing sequences of s’s.

Exercise 3.4. Prove for all f :: a → b that

f <$> succeed a = succeed (f a)

In the sequel we will often use this rule for constant functions f , i. e., f = λ → c for some
term c.

Exercise 3.5. Consider the parser (:) <$> symbol ’a’. Give its type and show its results
on inputs [] and x : xs.

Exercise 3.6. Consider the parser (:) <$> symbol ’a’ <∗> p. Give its type and show its
results on inputs [] and x : xs.

Exercise 3.7. Define a parser for Booleans.

Exercise 3.8 (no answer provivded). Define parsers for each of the basic languages defined
in Section 2.3.1.

Exercise 3.9. Consider the grammar for palindromes that you have constructed in Exer-
cise 2.7.

1. Give the datatype Pal2 that corresponds to this grammar.

2. Define a parser palin2 that returns parse trees for palindromes. Test your function
with the palindromes cPal1 = "abaaba" and cPal2 = "baaab". Compare the results
with your answer to Exercise 2.21.

3. Define a parser palina that counts the number of a’s occurring in a palindrome.

Exercise 3.10. Consider the grammar for a part of the English language that is given in
Exercise 2.46.

1. Give the datatype English that corresponds to this grammar.

2. Define a parser english that returns parse trees for the English language. Test your
function with the sentence they are flying planes. Compare the result to your
answer of Exercise 2.46.
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Exercise 3.11. When defining the priority of the <|> operator with the infixr keyword,
we also specified that the operator associates to the right. Why is this a better choice than
association to the left?

Exercise 3.12. Define a parser combinator <,> that combines two parsers. The value
returned by the combined parser is a tuple containing the results of the two component
parsers. What is the type of this parser combinator?

Exercise 3.13. The term ‘parser combinator’ is in fact not an adequate description for <$>.
Can you think of a better word?

Exercise 3.14. Compare the type of <$> with the type of the standard function map. Can
you describe your observations in an easy-to-remember, catchy phrase?

Exercise 3.15. Define <∗> in terms of <,> and <$>. Define <,> in terms of <∗> and <$>.

Exercise 3.16. If you examine the definitions of <∗> and <$> in Listing 3.3, you can observe
that <$> is in a sense a special case of <∗>. Can you define <$> in terms of <∗>?

3.3.1. Matching parentheses: an example

Using parser combinators, it is often fairly straightforward to construct a parser for
a language for which you have a grammar. Consider, for example, the grammar that
you wrote in Exercise 2.44:

S → ( S ) S | ε

This grammar can be directly translated to a parser, using the parser combinators
<∗> and <|>. We use <∗> when symbols are written next to each other, and <|>
when | appears in a production (or when there is more than one production for a
nonterminal).

parens :: Parser Char ??? — ill-typed
parens = symbol ’(’<∗> parens <∗> symbol ’)’<∗> parens

<|> epsilon

However, this function is not correctly typed: the parsers in the first alternative
cannot be composed using <∗>, as for example symbol ’(’ is not a parser returning
a function.

But we can postprocess the parser symbol ’(’ so that, instead of a character, this
parser does return a function. So, what function should we use? This depends on the
kind of value that we want as a result of the parser. A nice result would be a tree-
like description of the parentheses that are parsed. For this purpose we introduce
an abstract syntax, see Section 2.6, for the parentheses grammar. We obtain the
following Haskell datatype:

data Parentheses = Match Parentheses Parentheses
| Empty
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data Parentheses = Match Parentheses Parentheses
| Empty

deriving Show

open = symbol ’(’
close = symbol ’)’

parens :: Parser Char Parentheses
parens = (λ x y → Match x y)

<$> open <∗> parens <∗> close <∗> parens
<|> succeed Empty

nesting :: Parser Char Int
nesting = (λ x y → max (1 + x ) y)

<$> open <∗> nesting <∗> close <∗> nesting
<|> succeed 0

Listing 3.4: ParseParentheses.hs

For example, the sentence ()() is represented by

Match Empty (Match Empty Empty)

Suppose we want to calculate the number of parentheses in a sentence. The number
of parentheses is calculated by the function nrofpars, which is defined by induction
on the datatype Parentheses.

nrofpars :: Parentheses → Int
nrofpars (Match pl pr) = 2 + nrofpars pl + nrofpars pr
nrofpars Empty = 0

Using the datatype Parentheses, we can add ‘semantic functions’ to the parser. We
then obtain the definition of parens in Listing 3.4.

By varying the function used as a first argument of <$> (the ‘semantic function’), we
can return other things than parse trees. As an example we construct a parser that
calculates the nesting depth of nested parentheses, see the function nesting defined
in Listing 3.4.

A session in which nesting is used may look like this:

? nesting "()(())()"

[(2,[]), (2,"()"), (1,"(())()"), (0,"()(())()")]

? nesting "())"

[(1,")"), (0,"())")]
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As you can see, when there is a syntax error in the argument, there are no solutions
with empty rest string. It is fairly simple to test whether a given string belongs to
the language that is parsed by a given parser.

Exercise 3.17. What is the type of the function f =λ x y → Match x y which appears in
function parens in Listing 3.4? What is the type of the parser open? Using the type of <$>,
what is the type of f <$> open? Can f <$> open be used as a left hand side of <∗>parens?
What is the type of the result?

Exercise 3.18. What is a convenient way for <∗> to associate? Does it?

Exercise 3.19. Write a function test that determines whether or not a given string belongs
to the language parsed by a given parser.

3.4. More parser combinators

In principle you can build parsers for any context-free language using the combina-
tors <∗> and <|>, but in practice it is easier to have some more parser combinators
available. In traditional grammar formalisms, additional symbols are used to describe
for example optional or repeated constructions. Consider for example the BNF for-
malism, in which originally only sequential and alternative composition can be used
(denoted by juxtaposition and vertical bars, respectively), but which was later ex-
tended to EBNF to also allow for repetition, denoted by a star. The goal of this
section is to show how the set of parser combinators can be extended.

3.4.1. Parser combinators for EBNF

It is very easy to make new parser combinators for EBNF. As a first example we
consider repetition. Given a parser p for a construction, many p constructs a parser
for zero or more occurrences of that construction:

many :: Parser s a → Parser s [a]
many p = (:)<$> p <∗>many p

<|> succeed []

So the EBNF expression P∗ is implemented by many P . The function (:) is just the
cons-operator for lists: it takes a head element and a tail list and combines them.

The order in which the alternatives are given only influences the order in which
solutions are placed in the list of successes.

For example, the many combinator can be used in parsing a natural number:

natural :: Parser Char Int
natural = foldl f 0<$>many newdigit

where f a b = a ∗ 10 + b
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— EBNF parser combinators

option :: Parser s a → a → Parser s a
option p d = p <|> succeed d

many :: Parser s a → Parser s [a]
many p = (:)<$> p <∗>many p <|> succeed []

many1 :: Parser s a → Parser s [a]
many1 p = (:)<$> p <∗>many p

pack :: Parser s a → Parser s b → Parser s c → Parser s b
pack p r q = (λ x → x )<$> p <∗> r <∗> q

listOf :: Parser s a → Parser s b → Parser s [a]
listOf p s = (:)<$> p <∗>many ((λ x → x )<$> s <∗> p)

— Auxiliary functions

first :: Parser s b → Parser s b
first p xs | null r = []

| otherwise = [head r ]
where r = p xs

greedy , greedy1 :: Parser s b → Parser s [b]
greedy = first .many
greedy1 = first .many1

Listing 3.5: EBNF.hs
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Defined in this way, the natural parser also accepts empty input as a number. If
this is not desired, we had better use the many1 parser combinator, which accepts
one or more occurrences of a construction, and corresponds to the EBNF expression
P+, see Section 2.7. It is defined in Listing 3.5. Another combinator from EBNF
is the option combinator P?. It takes a parser as argument, and returns a parser
that recognises the same construct, but which also succeeds if that construct is not
present in the input string. The definition is given in Listing 3.5. It has an additional
argument: the value that should be used as result in case the construct is not present.
It is a kind of ‘default’ value.

By the use of the option and many functions, a large amount of backtracking possi-
bilities are introduced. This is not always advantageous. For example, if we define a
parser for identifiers by

identifier = many1 (satisfy isAlpha)

a single word may also be parsed as two identifiers. Caused by the order of the
alternatives in the definition of many (succeed [] appears as the second alternative),
the ‘greedy’ parsing, which accumulates as many letters as possible in the identifier
is tried first, but if parsing fails elsewhere in the sentence, also less greedy parsings
of the identifier are tried – in vain. You will give a better definition of identifier in
Exercise 3.27.

In situations where from the way the grammar is built we can predict that it is
hopeless to try non-greedy results of many , we can define a parser transformer first ,
that transforms a parser into a parser that only returns the first possible parsing. It
does so by taking the first element of the list of successes.

first :: Parser a b → Parser a b
first p xs | null r = []

| otherwise = [head r ]
where r = p xs

Using this function, we can create a special ‘take all or nothing’ version of many :

greedy = first .many
greedy1 = first .many1

If we compose the first function with the option parser combinator:

obligatory p d = first (option p d)

we get a parser which must accept a construction if it is present, but which does not
fail if it is not present.
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3.4.2. Separators

The combinators many , many1 and option are classical in compiler constructions
– there are notations for it in EBNF (·∗, ·+ and ·?, respectively) –, but there is no
need to leave it at that. For example, in many languages constructions are frequently
enclosed between two meaningless symbols, most often some sort of parentheses. For
this case we design a parser combinator pack . Given a parser for an opening token,
a body, and a closing token, it constructs a parser for the enclosed body, as defined
in Listing 3.5. Special cases of this combinator are:

parenthesised p = pack (symbol ’(’) p (symbol ’)’)
bracketed p = pack (symbol ’[’) p (symbol ’]’)
compound p = pack (token "begin") p (token "end")

Another frequently occurring construction is repetition of a certain construction,
where the elements are separated by some symbol. You may think of lists of ar-
guments (expressions separated by commas), or compound statements (statements
separated by semicolons). For the parse trees, the separators are of no importance.
The function listOf below generates a parser for a non-empty list, given a parser for
the items and a parser for the separators:

listOf :: Parser s a → Parser s b → Parser s [a]
listOf p s = (:)<$> p <∗>many ((λ x → x )<$> s <∗> p)

Useful instantiations are:

commaList , semicList :: Parser Char a → Parser Char [a]
commaList p = listOf p (symbol ’,’)
semicList p = listOf p (symbol ’;’)

A somewhat more complicated variant of the function listOf is the case where the
separators carry a meaning themselves. For example, in arithmetical expressions,
where the operators that separate the subexpressions have to be part of the parse
tree. For this case we will develop the functions chainr and chainl . These functions
expect that the parser for the separators returns a function (!); that function is used
by chain to combine parse trees for the items. In the case of chainr the operator is
applied right-to-left, in the case of chainl it is applied left-to-right. The functions
chainr and chainl are defined in Listing 3.6 (remember that $ is function application:
f $ x = f x ).

The definitions look quite complicated, but when you look at the underlying grammar
they are quite straightforward. Suppose we apply operator ⊕ (⊕ is an operator
variable, it denotes an arbitrary right-associative operator) from right to left, so

e1 ⊕ e2 ⊕ e3 ⊕ e4
=
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— Chain expression combinators

chainr :: Parser s a → Parser s (a → a → a)→ Parser s a
chainr pe po = h <$>many (j <$> pe <∗> po)<∗> pe

where j x op = (x ‘op‘)
h fs x = foldr ($) x fs

chainl :: Parser s a → Parser s (a → a → a)→ Parser s a
chainl pe po = h <$> pe <∗>many (j <$> po <∗> pe)

where j op x = (‘op‘x )
h x fs = foldl (flip ($)) x fs

Listing 3.6: Chains.hs

e1 ⊕ (e2 ⊕ (e3 ⊕ e4))
=

((e1⊕) · (e2⊕) · (e3⊕)) e4

It follows that we can parse such expressions by parsing many pairs of expressions
and operators, turning them into functions, and applying all those functions to the
last expression. This is done by function chainr , see Listing 3.6.

If operator ⊕ is applied from left to right, then

e1 ⊕ e2 ⊕ e3 ⊕ e4
=

((e1 ⊕ e2)⊕ e3)⊕ e4
=

((⊕e4) · (⊕e3) · (⊕e2)) e1

So such an expression can be parsed by first parsing a single expression (e1), and then
parsing many pairs of operators and expressions, turning them into functions, and
applying all those functions to the first expression. This is done by function chainl ,
see Listing 3.6.

Functions chainl and chainr can be made more efficient by avoiding the construction
of the intermediate list of functions. The resulting definitions can be found in the
article by Fokker [5].

Note that functions chainl and chainr are very similar, the only difference is that
everything is ‘turned around’: function j of chainr takes a value and an operator,
and returns the function obtained by ‘left’ applying the operator; function j of chainl
takes an operator and a value, and returns the function obtained by ‘right’ applying
the operator to the value. Such functions are sometimes called dual .

dual
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Exercise 3.20.

1. Define a parser that analyses a string and recognises a list of digits separated by a
space character. The result is a list of integers.

2. Define a parser sumParser that recognises digits separated by the character ’+’ and
returns the sum of these integers.

3. Both parsers return a list of solutions. What should be changed in order to get only
one solution?

Exercise 3.21. What is the value of

many (symbol ’a’) xs

for xs ∈ {[], [’a’], [’b’], [’a’, ’b’], [’a’, ’a’, ’b’]}?

Exercise 3.22. Consider the application of the parser many (symbol ’a’) to the string aaa.
In what order do the four possible parsings appear in the list of successes?

Exercise 3.23 (no answer provided). Using the parser combinators option, many and many1

define parsers for each of the basic languages defined in Section 2.3.1.

Exercise 3.24. As another variation on the theme ‘repetition’, define a parser combinator
psequence that transforms a list of parsers for some type into a parser returning a list of
elements of that type. What is the type of psequence? Also define a combinator choice that
iterates the operator <|>.

Exercise 3.25. As an application of psequence, define the function token that was discussed
in Section 3.2.

Exercise 3.26 (no answer provided). Carefully analyse the semantic functions in the defi-
nition of chainl in Listing 3.6.

Exercise 3.27. In real programming languages, identifiers follow rather flexible rules: the
first symbol must be a letter, but the symbols that follow (if any) may be a letter, digit, or
underscore symbol. Define a more realistic parser identifier .

3.5. Arithmetical expressions

The goal of this section is to use parser combinators in a concrete application. We
will develop a parser for arithmetical expressions, which have the following concrete
syntax:

E → E + E
| E - E
| E / E
| ( E )

| Digs
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Besides these productions, we also have productions for identifiers and applications
of functions:

E → Identifier
| Identifier ( Args )

Args → ε | E (, E )∗

The parse trees for this grammar are of type Expr :

data Expr = Con Int
| Var String
| Fun String [Expr ]
| Expr :+: Expr
| Expr :−: Expr
| Expr :∗: Expr
| Expr :/: Expr

You can almost recognise the structure of the parser in this type definition. But in
order to account for the priorities of the operators, we will use a grammar with three
non-terminals ‘expression’, ‘term’ and ‘factor’: an expression is composed of terms
separated by + or −; a term is composed of factors separated by ∗ or /, and a factor
is a constant, variable, function call, or expression between parentheses.

This grammar appears as a parser in the functions in Listing 3.7.

The first parser, fact , parses factors.

fact :: Parser Char Expr
fact = Con <$> integer

<|>Var <$> identifier
<|> Fun <$> identifier <∗> parenthesised (commaList expr)
<|> parenthesised expr

The first alternative is an integer parser which is postprocessed by the ‘semantic
function’ Con. The second and third alternative are a variable or function call,
depending on the presence of an argument list. In absence of the latter, the function
Var is applied, in presence the function Fun. For the fourth alternative there is no
semantic function, because the meaning of an expression between parentheses is the
meaning of the expression.

For the definition of a term as a list of factors separated by multiplicative operators
we use the function chainl . Recall that chainl repeatedly recognises its first argument
(fact), separated by its second argument (a ∗ or /). The parse trees for the individual
factors are joined by the constructor functions that appear before<$>. We use chainl
and not chainr because the operator ’/’ is considered to be left-associative.

The function expr is analogous to term, only with additive operators instead of
multiplicative operators, and with terms instead of factors.
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— Type definition for parse tree

data Expr = Con Int
| Var String
| Fun String [Expr ]
| Expr :+: Expr
| Expr :−: Expr
| Expr :∗: Expr
| Expr :/: Expr

— Parser for expressions with two priorities

fact :: Parser Char Expr
fact = Con <$> integer

<|> Var <$> identifier
<|> Fun <$> identifier <∗> parenthesised (commaList expr)
<|> parenthesised expr

integer :: Parser Char Int
integer = (const negate <$> (symbol ’-’)) ‘option‘ id <∗> natural

term :: Parser Char Expr
term = chainl fact

( const (:∗:) <$> symbol ’*’
<|> const (:/:) <$> symbol ’/’
)

expr :: Parser Char Expr
expr = chainl term

( const (:+:)<$> symbol ’+’
<|> const (:−:)<$> symbol ’-’
)

Listing 3.7: ExpressionParser.hs
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This example clearly shows the strength of parsing with parser combinators. There is
no need for a separate formalism for grammars; the production rules of the grammar
are combined with higher-order functions. Also, there is no need for a separate
parser generator (like ‘yacc’); the functions can be viewed both as description of the
grammar and as an executable parser.

Exercise 3.28. 1. Give the parse tree for the expressions "abc", "(abc)", "a*b+1",
"a*(b+1)", "-1-a", and "a(1,b)"

2. Why is the parse tree for the expression "a(1,b)" not the first solution of the parser?
Modify the functions in Listing 3.7 in such way that it will be.

Exercise 3.29. A function with no arguments such as "f()" is not accepted by the parser.
Explain why and modify the parser in such way that it will be.

Exercise 3.30. Modify the functions in Listing 3.7, in such a way that + is parsed as a
right-associative operator, and - is parsed as a left-associative operator.

3.6. Generalised expressions

This section generalises the parser in the previous section with respect to priorities.
Arithmetical expressions in which operators have more than two levels of priority can
be parsed by writing more auxiliary functions between term and expr . The function
chainl is used in each definition, with as first argument the function of one priority
level lower.

If there are nine levels of priority, we obtain nine copies of almost the same text. This
is not as it should be. Functions that resemble each other are an indication that we
should write a generalised function, where the differences are described using extra
arguments. Therefore, let us inspect the differences in the definitions of term and
expr again. These are:

• The operators and associated tree constructors that are used in the second
argument of chainl
• The parser that is used as first argument of chainl

The generalised function will take these two differences as extra arguments: the first
in the form of a list of pairs, the second in the form of a parse function:

type Op a = (Char , a → a → a)

gen :: [Op a]→ Parser Char a → Parser Char a
gen ops p = chainl p (choice (map f ops))

where f (s, c) = const c <$> symbol s

If furthermore we define as shorthand:
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multis = [(’*’, (:∗:)), (’/’, (:/:))]
addis = [(’+’, (:+:)), (’-’, (:−:))]

then expr and term can be defined as partial parametrisations of gen:

expr = gen addis term
term = gen multis fact

By expanding the definition of term in that of expr we obtain:

expr = addis ‘gen‘ (multis ‘gen‘ fact)

which an experienced functional programmer immediately recognises as an applica-
tion of foldr :

expr = foldr gen fact [addis,multis]

From this definition a generalisation to more levels of priority is simply a matter of
extending the list of operator-lists.

The very compact formulation of the parser for expressions with an arbitrary number
of priority levels is possible because the parser combinators can be used together with
the existing mechanisms for generalisation and partial parametrisation in Haskell.

Contrary to conventional approaches, the levels of priority need not be coded expli-
citly with integers. The only thing that matters is the relative position of an operator
in the list of ‘list with operators of the same priority’. Also, the insertion of new
priority levels is very easy. The definitions are summarised in Listing 3.8.

Summary

This chapter shows how to construct parsers from simple combinators. It shows
how a small parser combinator library can be a powerful tool in the construction of
parsers. Furthermore, this chapter gives a rather basic implementation of the parser
combinator library. More advanced implementations are discussed elsewhere.

3.7. Exercises

Exercise 3.31. How should the parser of Section 3.6 be adapted to also allow raising an
expression to the power of an expression?

Exercise 3.32. Prove the following laws

h <$> (f <$> p) = (h . f )<$> p (3.1)

h <$> (p <|> q) = (h <$> p)<|> (h <$> q) (3.2)

h <$> (p <∗> q) = ((h.)<$> p)<∗> q (3.3)
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— Parser for expressions with aribitrary many priorities

type Op a = (Char , a → a → a)

fact ′ :: Parser Char Expr
fact ′ = Con <$> integer

<|>Var <$> identifier
<|> Fun <$> identifier <∗> parenthesised (commaList expr ′)
<|> parenthesised expr ′

gen :: [Op a]→ Parser Char a → Parser Char a
gen ops p = chainl p (choice (map f ops))

where f (s, c) = const c <$> symbol s

expr ′ :: Parser Char Expr
expr ′ = foldr gen fact ′ [addis,multis]

multis = [(’*’, (:∗:)), (’/’, (:/:))]
addis = [(’+’, (:+:)), (’-’, (:−:))]

Listing 3.8: GExpressionParser.hs

Exercise 3.33. Consider your answer to Exercise 2.23. Define a combinator parser pMir
that transforms a concrete representation of a mirror-palindrome into an abstract one. Test
your function with the concrete mirror-palindromes cMir1 and cMir2.

Exercise 3.34. Consider your answer to Exercise 2.25. Assuming the comma is an associa-
tive operator, we can give the following abstract syntax for bit-lists:

data BitList = SingleB Bit | ConsB Bit BitList

Define a combinator parser pBitList that transforms a concrete representation of a bit-list
into an abstract one. Test your function with the concrete bit-lists cBitList1 and cBitList2.

Exercise 3.35. Define a parser for fixed-point numbers, that is numbers like 12.34 and
-123.456. Also integers are acceptable. Notice that the part following the decimal point
looks like an integer, but has a different semantics!

Exercise 3.36. Define a parser for floating point numbers, which are fixed point numbers
followed by an optional E and an (positive or negative, integer) exponent.

Exercise 3.37. Define a parser for Java assignments that consist of a variable, an = sign,
an expression and a semicolon.

Exercise 3.38 (no answer provided). Define a parser for (simplified) Java statements.

Exercise 3.39 (no answer provided). Outline the construction of a parser for Java programs.
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The previous chapters have introduced many concepts related to grammars and
parsers. The goal of this chapter is to review these concepts, and to show how
they are used in the design of grammars and parsers.

The design of a grammar and parser for a language consists of several steps: you
have to

1. give example sentences of the language for which you want to design a grammar
and a parser;

2. give a grammar for the language for which you want to have a parser;

3. test that the grammar can indeed describe the example sentences;

4. analyse this grammar to find out whether or not it has some desirable proper-
ties;

5. possibly transform the grammar to obtain some of these desirable properties;

6. decide on the type of the parser: Parser a b, that is, decide on both the input
type a of the parser (which may be the result type of a scanner), and the result
type b of the parser.

7. construct a basic parser;

8. add semantic functions;

9. test that the parser can parse the example sentences you have given in the first
step, and that the parser returns what you expect.

We will describe and exemplify each of these steps in detail in the rest of this sec-
tion.

As a running example we will construct a grammar and parser for travelling schemes
for day trips, of the following form:

Groningen 8:37 9:44 Zwolle 9:49 10:15 Utrecht 10:21 11:05 Den Haag

We might want to do several things with such a schema, for example:

1. compute the net travel time, i. e., the travel time minus the waiting time (2
hours and 17 minutes in the above example);
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2. compute the total time one has to wait on the intermediate stations (11 min-
utes).

This chapter defines functions to perform these computations.

4.1. Step 1: Example sentences for the language

We have already given an example sentence above:

Groningen 8:37 9:44 Zwolle 9:49 10:15 Utrecht 10:21 11:05 Den Haag

Other example sentences are:

Utrecht Centraal 10:25 10:58 Amsterdam Centraal

Assen

4.2. Step 2: A grammar for the language

The starting point for designing a parser for your language is to define a grammar that
describes the language as precisely as possible. It is important to convince yourself
from the fact that the grammar you give really generates the desired language, since
the grammar will be the basis for grammar transformations, which might turn the
grammar into a set of incomprehensible productions.

For the language of travelling schemes, we can give several grammars. The following
grammar focuses on the fact that a trip consists of zero or more departures and
arrivals.

TS → TS Departure Arrival TS | Station
Station → Identifier+

Departure → Time
Arrival → Time
Time → Nat : Nat

where Identifier and Nat have been defined in Section 2.3.1. So a travelling scheme is
a sequence of departure and arrival times, separated by stations. Note that a single
station is also a travelling scheme with this grammar.

Another grammar focuses on changing at a station:

TS → Station Departure (Arrival Station Departure)∗ Arrival Station
| Station

So each travelling scheme starts and ends at a station, and in between there is a list
of intermediate stations.
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4.3. Step 3: Testing the grammar

Both grammars we have given in step 2 describe the example sentences given in
step 1. The derivation of these sentences using these grammars is easy.

4.4. Step 4: Analysing the grammar

To parse sentences of a language efficiently, we want to have a unambiguous grammar
that is left-factored and not left recursive. Depending on the parser we want to obtain,
we might desire other properties of our grammar. So a first step in designing a parser
is analysing the grammar, and determining which properties are (not) satisfied. We
have not yet developed tools for grammar analysis (we will do so in the chapter on
LL(1) parsing) but for some grammars it is easy to detect some properties.

The first example grammar is left and right recursive: the first production for TS
starts and ends with TS . Furthermore, the sequence Departure Arrival is an asso-
ciative separator in the generated language.

These properties may be used for transforming the grammar. Since we don’t mind
about right recursion, we will not make use of the fact that the grammar is right
recursive. The other properties will be used in grammar transformations in the
following subsection.

4.5. Step 5: Transforming the grammar

Since the sequence Departure Arrival is an associative separator in the generated
language, the productions for TS may be transformed into:

TS → Station | Station Departure Arrival TS (4.1)

Thus we have removed the left recursion in the grammar. Both productions for
TS start with the nonterminal Station, so TS can be left factored. The resulting
productions are:

TS → Station Z
Z → ε |Departure Arrival TS

We can also apply equivalence (2.1) to the two productions for TS from (4.1), and
obtain the following single production:

TS → (Station Departure Arrival)∗ Station (4.2)

So which productions do we take for TS? This depends on what we want to do with
the parsed sentences. We will show several choices in the next section.
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4.6. Step 6: Deciding on the types

We want to write a parser for travel schemes, that is, we want to write a function ts
of type

ts :: Parser ? ?

The question marks should be replaced by the input type and the result type, respec-
tively. For the input type we can choose between at least two possibilities: characters,
Char or tokens Token. The type of tokens can be chosen as follows:

data Token = Station Token Station | Time Token Time

type Station = String
type Time = (Int , Int)

We will construct a parser for both input types in the next subsection. So ts has one
of the following two types.

ts :: Parser Char ?
ts :: Parser Token ?

For the result type we have many choices. If we just want to compute the total
travelling time, Int suffices for the result type. If we want to compute the total
travelling time, the total waiting time, and a nicely printed version of the travelling
scheme, we may do several things:

• define three parsers, with Int (total travelling time), Int (total waiting time),
and String (nicely printed version) as result type, respectively;

• define a single parser with the triple (Int , Int ,String) as result type;

• define an abstract syntax for travelling schemes, say a datatype TS , and define
three functions on TS that compute the desired results.

The first alternative parses the input three times, and is rather inefficient compared
with the other alternatives. The second alternative is hard to extend if we want
to compute something extra, but in some cases it might be more efficient than the
third alternative. The third alternative needs an abstract syntax. There are several
ways to define an abstract syntax for travelling schemes. The first abstract syntax
corresponds to definition (4.1) of grammar TS .

data TS 1 = Single1 Station
| Cons1 Station Time Time TS 1

where Station and Time are defined above. A second abstract syntax corresponds
to the grammar for travelling schemes defined in (4.2).

type TS 2 = ([(Station,Time,Time)],Station)
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So a travelling scheme is a tuple, the first component of which is a list of triples
consisting of a departure station, a departure time, and an arrival time, and the
second component of which is the final arrival station. A third abstract syntax
corresponds to the second grammar defined in Section 4.2:

data TS 3 = Single3 Station
| Cons3 (Station,Time, [(Time,Station,Time)],Time,Station)

Which abstract syntax should we take? Again, this depends on what we want to do
with the abstract syntax. Since TS 2 and TS 1 combine departure and arrival times
in a tuple, they are convenient to use when computing travelling times. TS 3 is useful
when we want to compute waiting times since it combines arrival and departure times
in one constructor. Often we want to exactly mimic the productions of the grammar
in the abstract syntax, so if we use grammar (4.1) for travelling schemes, we use TS 1

for the abstract syntax. Note that TS 1 is a datatype, whereas TS 2 is a type. TS 1

cannot be defined as a type because of the two alternative productions for TS . TS 2

can be defined as a datatype by adding a constructor. Types and datatypes each
have their advantages and disadvantages; the application determines which to use.
The result type of the parsing function ts may be one of types mentioned earlier (Int ,
etc.), or one of TS 1, TS 2, TS 3.

4.7. Step 7: Constructing the basic parser

Converting a grammar to a parser is a mechanical process that consists of a set
of simple replacement rules. Functional programming languages offer some extra
flexibility that we sometimes use, but usually writing a parser is a simple translation.
We use the following replacement rules.

grammar construct Haskell/parser construct

→ =
| <|>
(space) <∗>
·+ many1

·∗ many
·? option
terminal x symbol x
begin of sequence of symbols undefined<$>

Note that we start each sequence of symbols by undefined<$>. The undefined has
to be replaced by an appropriate semantic function in Step 6, but putting undefined
here ensures type correctness of the parser. Of course, running the parser will result
in an error.
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We construct a basic parser for each of the input types Char and Token.

4.7.1. Basic parsers from strings

Applying these rules to the grammar (4.2) for travelling schemes, we obtain the
following basic parser.

station :: Parser Char Station
station = undefined <$>many1 identifier

time :: Parser Char Time
time = undefined <$> natural <∗> symbol ’:’<∗> natural

departure, arrival :: Parser Char Time
departure = undefined <$> time
arrival = undefined <$> time

tsstring :: Parser Char ?
tsstring = undefined

<$>many ( undefined
<$> spaces
<∗> station
<∗> spaces
<∗> departure
<∗> spaces
<∗> arrival

)
<∗> spaces
<∗> station

spaces :: Parser Char String
spaces = undefined <$>many (symbol ’ ’)

The only thing left to do is to add the semantic glue to the functions. The semantic
glue also determines the type of the function tsstring , which is denoted by ? for the
moment. For the other basic parsers we have chosen some reasonable return types.
The semantic functions are defined in the next and final step.

4.7.2. A basic parser from tokens

To obtain a basic parser from tokens, we first write a scanner that produces a list of
tokens from a string.

scanner :: String → [Token]
scanner = mkTokens . combine . words

combine :: [String ]→ [String ]
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combine [] = []
combine [x ] = [x ]
combine (x : y : xs) = if isAlpha (head x ) ∧ isAlpha (head y)

then combine ((x ++ " " ++ y) : xs)
else x : combine (y : xs)

mkToken :: String → Token
mkToken xs = if isDigit (head xs)

then Time Token (mkTime xs)
else Station Token xs

parse result :: [(a, b)]→ a
parse result xs
| null xs = error "parse_result: could not parse the input"

| otherwise = fst (head xs)

mkTime :: String → Time
mkTime = parse result . time

This is a basic scanner with very basic error messages, but it suffices for now. The
composition of the scanner with the function tstoken1 defined below gives the final
parser.

tstoken1 :: Parser Token ?
tstoken1 = undefined

<$>many ( undefined
<$> tstation
<∗> tdeparture
<∗> tarrival

)
<∗> tstation

tstation :: Parser Token Station
tstation (Station Token s : xs) = [(s, xs)]
tstation = []

tdeparture, tarrival :: Parser Token Time
tdeparture (Time Token (h,m) : xs) = [((h,m), xs)]
tdeparture = []

tarrival (Time Token (h,m) : xs) = [((h,m), xs)]
tarrival = []

where again the semantic functions remain to be defined. Note that functions
tdeparture and tarrival are the same functions. Their presence reflects their pres-
ence in the grammar.

Another basic parser from tokens is based on the second grammar of Section 4.2.

tstoken2 :: Parser Token ?
tstoken2 = undefined
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<$> tstation
<∗> tdeparture
<∗> many ( undefined

<$> tarrival
<∗> tstation
<∗> tdeparture

)
<∗> tarrival
<∗> tstation

<|> undefined <$> tstation

4.8. Step 8: Adding semantic functions

Once we have the basic parsing functions, we need to add the semantic glue: the
functions that take the results of the elements in the right hand side of a production,
and convert them into the result of the left hand side. The basic rule is: Let the
types do the work!

First we add semantic functions to the basic parsing functions station, time, departure,
arrival , and spaces. Since function many1 identifier returns a list of strings, and we
want to obtain the concatenation of these strings for the station name, we can take
the concatenation function concat for undefined in function station. To obtain a
value of type Time from an integer, a character, and an integer, we have to combine
the two integers in a tuple. So we take the following function

λx y → (x , y)

for undefined in time. Now, since function time returns a value of type Time, we can
take the identity function for undefined in departure and arrival , and then we replace
id <$> time by just time. Finally, the result of many is a string, so for undefined in
spaces we can take the identity function too.

The first semantic function for the basic parser tsstring defined in Section 4.7.1
returns an abstract syntax tree of type TS 2. So the first undefined in tsstring should
return a tuple of a list of things of the correct type (the first component of the type
TS 2) and a Station. Since many returns a list of things, we can construct such a
tuple by means of the function

λx y → (x , y)

provided many returns a value of the desired type: [(Station,Time,Time)]. Note
that this semantic function basically only throws away the value returned by the
spaces parser: we are not interested in the spaces between the components of our
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travelling scheme. The many parser returns a value of the correct type if we replace
the second occurrence of undefined in tsstring by the function

λ x y z → (x , y , z )

Again, the results of spaces are thrown away. This completes a parser for travelling
schemes. The next semantic functions we define compute the net travel time. To
compute the net travel time, we have to compute the travel time of each trip from
a station to a station, and to add the travel times of all of these trips. We obtain
the travel time of a single trip if we replace the second occurrence of undefined in
tsstring by:

λ (xh, xm) (zh, zm)→ (zh − xh) ∗ 60 + zm − xm

and Haskell’s prelude function sum sums these times, so for the first occurrence of
undefined we take:

λx → sum x

The final set of semantic functions we define are used for computing the total waiting
time. Since the second grammar of Section 4.2 combines arrival times and departure
times, we use a parser based on this grammar: the basic parser tstoken2. We have
to give definitions of the three undefined semantic functions. If a trip consists of a
single station, there is now waiting time, so the last occurrence of undefined is the
function const 0. The second occurrence of function undefined computes the waiting
time for one intermediate station:

λ(uh, um) (wh,wm)→ (wh − uh) ∗ 60 + wm − um

Finally, the first occurrence of undefined sums the list of waiting time obtained by
means of the function that replaces the second occurrence of undefined :

λ x → sum x

4.9. Step 9: Did you get what you expected

In the last step you test your parser(s) to see whether or not you have obtained what
you expected, and whether or not you have made errors in the above process.

Summary

This chapter describes the different steps that have to be considered in the design of
a grammar and a language.
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4.10. Exercises

Exercise 4.1. Write a parser floatLiteral for Java float-literals. The EBNF grammar for
float-literals is given by:

FloatLiteral → IntPart . FractPart? ExponentPart? FloatSuffix?
| . FractPart ExponentPart? FloatSuffix?
| IntPart ExponentPart FloatSuffix?
| IntPart ExponentPart? FloatSuffix

IntPart → SignedInteger

FractPart → Digits

ExponentPart → ExponentIndicator SignedInteger

SignedInteger → Sign? Digits

Digits → Digits Digit |Digit

ExponentIndicator → e | E
Sign → + | -
FloatSuffix → f | F | d | D

To keep your parser simple, assume that all nonterminals, except for the nonterminal FloatLiteral ,
are represented by a String in the abstract syntax.

Exercise 4.2. Write an evaluator signedFloat for Java float-literals (the float-suffix may be
ignored).

Exercise 4.3. Up to the definition of the semantic functions, parsers constructed on a (fixed)
abstract syntax have the same shape. Give this parsing scheme for Java float literals.
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Introduction

Many recursive functions follow a common pattern of recursion. These common
patterns of recursion can conveniently be captured by higher order functions. For
example: many recursive functions defined on lists are instances of the higher order
function foldr . It is possible to define a function such as foldr for a whole range of
datatypes other than lists. Such functions are called compositional. Compositional
functions on datatypes are defined in terms of algebras of semantic actions that
correspond to the constructors of the datatype. Compositional functions can typically
be used to define the semantics of programming languages constructs. Such semantics
is referred to as algebraic semantics. Algebraic semantics often uses algebras that
contain functions from tuples to tuples. Such functions can be seen as computations
that read values from a component of the domain and write values to a component of
the codomain. The former values are called inherited attributes and the latter values
are called synthesised attributes. Attributes can be both inherited and synthesised.
As explained in Section 2.6, there is an important relationship between grammars
and compositionality: with every grammar, which describes the concrete syntax of a
language, one can associate a (possibly mutually recursive) datatype, which describes
the abstract syntax of the language. Compositional functions on these datatypes are
called syntax driven.

Goals

After studying this chapter and making the exercises you will

• know how to generalise constructors of a datatype to an algebra;
• know how to write compositional functions, also known as folds, on (possibly

mutually recursive) datatypes;
• understand the advantages of using folds, and have seen that many problems

can be solved with a fold;
• know that a fold applied to the constructors algebra is the identity function;
• have seen the notions of fusion and deforestation;
• know how to write syntax driven code;
• understand the connection between datatypes, abstract syntax and concrete

syntax;
• understand the notions of synthesised and inherited attributes;
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• be able to associate inherited and synthesised attributes with the different alter-
natives of (possibly mutually recursive) datatypes (or the different nonterminals
of grammars);
• be able to define algebraic semantics in terms of compositional (or syntax

driven) code that is defined using algebras of computations which make use
of inherited and synthesised attributes.

Organisation

The chapter is organised as follows. Section 5.1 shows how to define compositional
recursive functions on built-in lists using a function which is similar to foldr and shows
how to do the same thing with user-defined lists and streams. Section 5.2 shows how
to define compositional recursive functions on several kinds of trees. Section 5.3
defines algebraic semantics. Section 5.4 shows the usefulness of algebraic semantics
by presenting an expression evaluator, an expression interpreter which makes use of
a stack and expression compiler to a stack machine. They only differ in the way
they handle basic expressions (variables and local definitions are handled in the same
way). All three examples use an algebra of computations which can read values from
and write values to an environment which binds names to values. In a second version
of the expression evaluator the use of inherited and synthesised attributes is made
more explicit by using tuples. Section 5.5 presents a relatively complex example of
the use of tuples in combination with compositionality. It deals with the problem of
variable scope when compiling block structured languages.

5.1. Lists

This section introduces compositional functions on the well known datatype of lists.
Compositional functions are defined on the built-in datatype [a] for lists (Section
5.1.1), on a user-defined datatype List a for lists (Section 5.1.2), and on streams or
infinite lists (Section 5.1.3). We also show how to construct an algebra that directly
corresponds to a datatype.

5.1.1. Built-in lists

The datatype of lists is perhaps the most important example of a datatype. A list is
either the empty list [] or a nonempty list (x : xs) consisting of an element x at the
head of the list, followed by a tail xs which itself is again a list. Thus, the type [x ]
is recursive. In Haskell the type [x ] for lists is built-in. The informal definition of
above corresponds to the following (pseudo) datatype.

data [x ] = x : [x ] | []
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Many recursive functions on lists look very similar. Computing the sum of the el-
ements of a list of integers (sumL, where the L denotes that it is a sum function
defined on lists) is very similar to computing the product of the elements of a list of
integers (prodL).

sumL, prodL :: [Int ]→ Int

sumL (x : xs) = x + sumL xs
sumL [] = 0

prodL (x : xs) = x ∗ prodL xs
prodL [] = 1

The function sumL replaces the list constructor (:) by (+) and the list constructor
[] by 0 and the function prodL replaces the list constructor (:) by (∗) and the list
constructor [] by 1. Note that we have replaced the constructor (:) (a constructor
with two arguments) by binary operators (+) and (∗) (i.e. functions with two argu-
ments) and the constructor [] (a constructor with zero variables) by constants 0 and
1 (i.e. ‘functions’ with zero variables). The similarity between the definitions of the
functions sumL and prodL can be captured by the following higher order recursive
function foldL, which is nothing else but an uncurried version of the well known func-
tion foldr . Don’t confuse foldL with Haskell’s prelude function foldl , which works
the other way around.

foldL :: (x → l → l , l)→ [x ]→ l
foldL (op, c) = fold

where
fold (x : xs) = op x (fold xs)
fold [] = c

The function foldL recursively replaces the constructor (:) by an operator op and
the constructor [] by a constant c. We can now use foldL to compute the sum and
product of the elements of a list of integers as follows.

? foldL ((+),0) [1,2,3,4]

10

? foldL ((*),1) [1,2,3,4]

24

The pair (op, c) is often referred to as a list-algebra. More precisely, a list-algebra
consists of a type l (the carrier of the algebra), a binary operator op of type x → l → l
and a constant c of type l . Note that a type (like Int) can be the carrier of a list-
algebra in more than one way (for example using ((+), 0) and ((∗), 1)). Here is
another example of how to turn Int into a list-algebra.

? foldL (\_ n -> n+1,0) [1,2,3,4]

4
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This list-algebra ignores the value at the head of a list, and increments the result
obtained thus far with one. It corresponds to the function sizeL defined by:

sizeL :: [x ]→ Int
sizeL ( : xs) = 1 + sizeL xs
sizeL [] = 0

Note that the type of sizeL is more general than the types of sumL and prodL. The
type of the elements of the list does not play a role.

5.1.2. User-defined lists

In this subsection we present an example of a fold function defined on another
datatype than built-in lists. To keep things simple we redo the list example for
user-defined lists.

data List x = Cons x (List x ) |Nil

User-defined lists are defined in the same way as built-in ones. The constructors
(:) and [] are replaced by constructors Cons and Nil . Here are the types of the
constructors Cons and Nil .

? :t Cons

Cons :: a -> List a -> List a

? :t Nil

Nil :: List a

A algebra type ListAlgebra corresponding to the datatype List directly follows the
structure of that datatype.

type ListAlgebra x l = (x → l → l , l)

The left hand side of the type definition is obtained from the left hand side of the
datatype as follows: a postfix Algebra is added at the end of the name List and a type
variable l is added at the end of the whole left hand side of the type definition. The
right hand side of the type definition is obtained from the right hand side of the data
definition as follows: all List x valued constructors are replaced by l valued functions
which have the same number of arguments (if any) as the corresponding constructors.
The types of recursive constructor arguments (i.e. arguments of type List x ) are
replaced by recursive function arguments (i.e. arguments of type l). The types of the
other arguments are simply left unchanged. In a similar way, the definition of a fold
function can be generated automatically from the data definition.

foldList :: ListAlgebra x l → List x → l
foldList (cons,nil) = fold
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where
fold (Cons x xs) = cons x (fold xs)
fold Nil = nil

The constructors Cons and Nil in the left hand sides of the definition of the local
function fold are replaced by functions cons and nil in the right hand sides. The
function fold is applied recursively to all recursive constructor arguments of type
List x to return a value of type l as required by the functions of the algebra (in this
case Cons and cons have one such recursive argument). The other arguments are
left unchanged. Recursive functions on user-defined lists which are defined by means
of foldList are called compositional. Every algebra defines a unique compositional
function. Here are three examples of compositional functions. They correspond to
the examples of Section 5.1.1.

sumList , prodList :: List Int → Int
sumList = foldList ((+), 0)
prodList = foldList ((∗), 1)

sizeList :: List x → Int
sizeList = foldList (const (1+), 0)

It is worth mentioning one particular ListAlgebra: the trivial ListAlgebra that re-
places Cons by Cons and Nil by Nil . This algebra defines the identity function on
user-defined lists.

idListAlgebra :: ListAlgebra x (List x )
idListAlgebra = (Cons,Nil)

idList :: List x → List x
idList = foldList idListAlgebra

? idList (Cons 1 (Cons 2 Nil))

Cons 1 (Cons 2 Nil)

5.1.3. Streams

In this section we consider streams (or infinite lists).
streams

data Stream x = And x (Stream x )

Here is a standard example of a stream: the infinite list of fibonacci numbers.

fibStream :: Stream Int
fibStream = And 0 (And 1 (restOf fibStream))

where
restOf (And x stream@(And y )) = And (x + y) (restOf stream)
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The algebra type StreamAlgebra, and the fold function foldStream can be generated
automatically from the datatype Stream.

type StreamAlgebra x s = x → s → s

foldStream :: StreamAlgebra x s → Stream x → s
foldStream and = fold

where
fold (And x xs) = and x (fold xs)

Note that the algebra has only one component because Stream has only one construc-
tor. For the same reason the fold function is defined using only one equation. Here is
an example of using a compositional function on user defined streams. It computes
the first element of a monotone stream that is greater or equal than a given value.

firstGreaterThan :: Ord x ⇒ x → Stream x → x
firstGreaterThan n = foldStream (λx y → if x > n then x else y)

5.2. Trees

Now that we have seen how to generalise the foldr function on built-in lists to compo-
sitional functions on user-defined lists and streams we proceed by explaining another
common class of datatypes: trees. We will treat four different kinds of trees in the
subsections below:

• binary trees;
• trees for matching parentheses;
• expression trees;
• general trees.

Furthermore, we will briefly mention the concepts of fusion and deforestation.

5.2.1. Binary trees

A binary tree is either a node where the tree splits into two subtrees or a leaf which
holds a value.

data BinTree x = Bin (BinTree x ) (BinTree x ) | Leaf x

One can generate the corresponding algebra type BinTreeAlgebra and fold function
foldBinTree from the datatype automatically. Note that Bin has two recursive argu-
ments and that Leaf has one non-recursive argument.

type BinTreeAlgebra x t = (t → t → t , x → t)
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foldBinTree :: BinTreeAlgebra x t → BinTree x → t
foldBinTree (bin, leaf ) = fold

where
fold (Bin l r) = bin (fold l) (fold r)
fold (Leaf x ) = leaf x

In the BinTreeAlgebra type, the bin part of the algebra has two arguments of type
t and the leaf part of the algebra has one argument of type x . Similarly, in the
foldBinTree function, the local fold function is applied recursively to both arguments
of bin and is not called on the argument of leaf . We can now define compositional
functions on binary trees much in the same way as we defined them on lists. Here is
an example: the function sizeBinTree computes the size of a binary tree.

sizeBinTree :: BinTree x → Int
sizeBinTree = foldBinTree ((+), const 1)

? sizeBinTree (Bin (Bin (Leaf 3) (Leaf 7)) (Leaf 11))

3

If a tree consists of a leaf, then sizeBinTree ignores the value at the leaf and returns
1 as the size of the tree. If a tree consists of two subtrees, then sizeBinTree returns
the sum of the sizes of those subtrees as the size of the tree. Functions for computing
the sum and the product of the integers at the leafs of a binary tree can be defined
in a similar way. It suffices to define appropriate semantic actions bin and leaf on a
type t (in this case Int) that correspond to the syntactic constructs Bin and Leaf of
the datatype BinTree.

5.2.2. Trees for matching parentheses

Section 3.3.1 defines the datatype Parentheses for matching parentheses.

data Parentheses = Match Parentheses Parentheses
| Empty

For example, the sentence ()() of the concrete syntax for matching parentheses
is represented by the value Match Empty (Match Empty Empty) in the abstract
syntax Parentheses. Remember that the abstract syntax ignores the terminal bracket
symbols of the concrete syntax.

We can now define, in the same way as we did for lists and binary trees, an algebra
type ParenthesesAlgebra and a fold function foldParentheses, which can be used to
compute the depth (depthParentheses) and the width (widthParentheses) of match-
ing parenthesis in a compositional way. The depth of a string of matching parentheses
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s is the largest number of unmatched parentheses that occurs in a substring of s. For
example, the depth of the string ((()))() is 3. The width of a string of matching
parentheses s is the the number of substrings that are matching parentheses them-
selves, which are not a substring of a surrounding string of matching parentheses.
For example, the width of the string ((()))() is 2. Compositional functions on
datatypes that describe the abstract syntax of a language are called syntax driven.

type ParenthesesAlgebra m = (m → m → m,m)

foldParentheses :: ParenthesesAlgebra m → Parentheses → m
foldParentheses (match, empty) = fold

where
fold (Match l r) = match (fold l) (fold r)
fold Empty = empty

depthParenthesesAlgebra :: ParenthesesAlgebra Int
depthParenthesesAlgebra = (λx y → max (1 + x ) y , 0)

widthParenthesesAlgebra :: ParenthesesAlgebra Int
widthParenthesesAlgebra = (λ y → 1 + y , 0)

depthParentheses,widthParentheses :: Parentheses → Int
depthParentheses = foldParentheses depthParenthesesAlgebra
widthParentheses = foldParentheses widthParenthesesAlgebra

parenthesesExample = Match (Match (Match Empty Empty) Empty)
(Match Empty

(Match (Match Empty Empty)
Empty

) )

? depthParentheses parenthesesExample

3

? widthParentheses parenthesesExample

3

Our example reveals that abstract syntax is not very well suited for interpretation
by human beings. What is the concrete representation of the matching parenthesis
example represented by parenthesesExample? It happens to be ((()))()(()). For-
tunately, we can easily write a program that computes the concrete representation
from the abstract one. We know exactly which terminals we have deleted when go-
ing from the concrete syntax to the abstract one. The algebra used by the function
a2cParentheses simply reinserts those terminals that we have deleted. Note that
a2cParentheses does not deal with layout such as blanks, indentation and newlines.
For a simple example layout does not really matter. For large examples layout is
very important: it can be used to let concrete representations look pretty.
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a2cParenthesesAlgebra :: ParenthesesAlgebra String
a2cParenthesesAlgebra = (λxs ys → "(" ++ xs ++ ")" ++ ys, "")

a2cParentheses :: Parentheses → String
a2cParentheses = foldParentheses a2cParenthesesAlgebra

? a2cParentheses parenthesesExample

((()))()(())

This example illustrates that a computer can easily interpret abstract syntax (some-
thing human beings have difficulties with). Strangely enough, human beings can
easily interpret concrete syntax (something computers have difficulties with). What
we would really like is that computers can interpret concrete syntax as well. This
is the place where parsing enters the picture: computing an abstract representation
from a concrete one is precisely what parsers are used for.

Consider the functions parens and nesting of Section 3.3.1 again.

open = symbol ’(’
close = symbol ’)’

parens :: Parser Char Parentheses
parens = (λ x y → Match x y)

<$> open <∗> parens <∗> close <∗> parens
<|> succeed Empty

nesting :: Parser Char Int
nesting = (λ x y → max (1 + x ) y)

<$> open <∗> nesting <∗> close <∗> nesting
<|> succeed 0

Function nesting could have been defined by means of function parens and a fold:

nesting ′ :: Parser Char Int
nesting ′ = depthParentheses <$> parens

(Remember that depthParentheses has been defined as a fold.) Functions nesting
and nesting ′ compute exactly the same result. The function nesting is the fusion of
the fold function with the parser parens from the function nesting ′. Using laws for
parsers and folds (not shown here) we can prove that the two functions are equal.

Note that function nesting ′ first builds a tree by means of function parens, and then
flattens it by means of the fold. Function nesting never builds a tree, and is thus
preferable for reasons of efficiency. On the other hand: in function nesting ′ we reuse
the parser parens and the function depthParentheses, in function nesting we have
to write our own parser, and convince ourselves that it is correct. So for reasons of
‘programming efficiency’ function nesting ′ is preferable. To obtain the best of both
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worlds, we would like to write function nesting ′ and have our compiler figure out that
it is better to use function nesting in computations. The automatic transformation
of function nesting ′ into function nesting is called deforestation (trees are removed).

deforestation
Some (very few) compilers are clever enough to perform this transformation auto-
matically.

5.2.3. Expression trees

The matching parentheses grammar has only one nonterminal. Therefore its ab-
stract syntax is described by a single datatype. In this section we look again at the
expression grammar of Section 3.5:

E → T
E → E + T
T → F
T → T * F
F → ( E )

F → Digs

This grammar has three nonterminals, E , T , and F . Using the approach from
Section 2.6 we transform the nonterminals to datatypes:

data E = E1 T | E2 E T
data T = T1 F | T2 T F
data F = F1 E | F2 Int

where we have translated Digs by the type Int . Note that this is a rather inconvenient
and clumsy abstract syntax for expressions; the following abstract syntax is more
convenient.

data Expr = Con Int |Add Expr Expr |Mul Expr Expr

However, to illustrate the concept of mutual recursive datatypes, we will study the
datatypes E , T , and F defined above. Since E uses T , T uses F , and F uses E ,
these three types are mutually recursive. The main datatype of the three datatypes
is the one corresponding to the start symbol E . Since the datatypes are mutually
recursive, the algebra type EAlgebra consists of three tuples of functions and three
carriers (the main carrier is, as always, the one corresponding to the main datatype
and is therefore the one corresponding to the start-symbol).

type EAlgebra e t f = ((t → e, e → t → e)
, (f → t , t → f → t)
, (e → f , Int → f )
)
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The fold function foldE for E also folds over T and F , so it uses three mutually
recursive local functions.

foldE :: EAlgebra e t f → E → e
foldE ((e1, e2), (t1, t2), (f1, f2)) = fold

where
fold (E1 t) = e1 (foldT t)
fold (E2 e t) = e2 (fold e) (foldT t)
foldT (T1 f ) = t1 (foldF f )
foldT (T2 t f ) = t2 (foldT t) (foldF f )
foldF (F1 e) = f1 (fold e)
foldF (F2 n) = f2 n

We can now use foldE to write a syntax driven expression evaluator evalE . In the
algebra that is used in the foldE , all type variables e, f , and t are instantiated with
Int .

evalE :: E → Int
evalE = foldE ((id , (+)), (id , (∗)), (id , id))

exE = E2 (E1 (T2 (T1 (F2 2)) (F2 3))) (T1 (F2 1))

? evalE exE

7

Once again our example shows that abstract syntax cannot easily be interpreted by
human beings. Here is a function a2cE which does this job for us.

a2cE :: E → String
a2cE = foldE ((e1, e2), (t1, t2), (f1, f2))

where e1 = λt → t
e2 = λe t → e ++ "+" ++ t
t1 = λf → f
t2 = λt f → t ++ "*" ++ f
f1 = λe → "(" ++ e ++ ")"

f2 = λn → show n

? a2cE exE

"2*3+1"
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5.2.4. General trees

A general tree consist of a node, holding a value, where the tree splits into a list of
subtrees. Notice that this list may be empty (in which case, of course, only the value
at the node is of interest). As usual, the type TreeAlgebra and the function foldTree
can be generated automatically from the data definition.

data Tree x = Node x [Tree x ]

type TreeAlgebra x a = x → [a]→ a

foldTree :: TreeAlgebra x a → Tree x → a
foldTree node = fold

where
fold (Node x gts) = node x (map fold gts)

Notice that the constructor Node has a list of recursive arguments. Therefore the
node function of the algebra has a corresponding list of recursive arguments. The local
fold function is recursively called on all elements of a list using the map function.

One can compute the sum of the values at the nodes of a general tree as follows:

sumTree :: Tree Int → Int
sumTree = foldTree (λx xs → x + sum xs)

Computing the product of the values at the nodes of a general tree and computing
the size of a general tree can be done in a similar way.

5.2.5. Efficiency

A fold takes a value of a datatype, and replaces its constructors by functions. If
the evaluation of each of these functions on their arguments takes constant time,
evaluation of the fold takes time linear in the number of constructors in its argument.
However, some functions require more than constant evaluation time. For example,
list concatenation is linear in its left argument, and it follows that if we define the
function reverse by

reverse :: [a]→ [a]
reverse = foldL (λx xs → xs ++ [x ], [])

then function reverse takes time quadratic in the length of its argument list. So,
folds are often efficient functions, but if the functions in the algebra are not constant,
the fold is usually not linear. Often such a nonlinear fold can be transformed into
a more efficient function. A technique that often can be used in such a case is the
accumulating parameter technique. For example, for the reverse function we have

reverse x = reverse ′ x []
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reverse ′ :: [a]→ [a]→ [a]
reverse ′ [] ys = ys
reverse ′ (x : xs) ys = reverse ′ xs (x : ys)

The evaluation of reverse ′ xs takes time linear in the length of xs.

Exercise 5.1. Define an algebra type and a fold function for the following datatype.

data LNTree a b = Leaf a
| Node (LNTree a b) b (LNTree a b)

Exercise 5.2. Define the following functions as folds on the datatype BinTree, see Sec-
tion 5.2.1.

1. height , which returns the height of a tree.

2. flatten, which returns the list of leaf values in left-to-right order.

3. maxBinTree, which returns the maximal value at the leaves.

4. sp, which returns the length of a shortest path.

5. mapBinTree, which maps a function over the elements at the leaves.

Exercise 5.3. A path through a binary tree describes the route from the root of the tree to
some leaf. We choose to represent paths by sequences of Direction’s:

data Direction = L | R

in such a way that taking the left subtree in an internal node will be encoded by L and
taking the right subtree will be encoded by R. Define a compositional function allPaths
which produces all paths of a given tree. Define this function first using explicit recursion,
and then using a fold.

Exercise 5.4. This exercise deals with resistors. There are some basic resistors with a fixed
(floating point) resistance and, given two resistors, they can be put in parallel (:|:) or in
sequence (:∗:).

1. Define the datatype Resist to represent resistors. Also, define the type ResistAlgebra
and the corresponding function foldResist .

2. Define a compositonal function result which determines the resistance of a resistors.
(Recall the rules 1

r = 1
r1

+ 1
r2

and r = r1 + r2.)

5.3. Algebraic semantics

This section summarizes what we have seen before, and establishes terminology.

In the previous section, we have seen how to associate an algebra type and a fold
function with every datatype, or family of mutually recursive datatypes. The algebra
is a tuple (one component per datatype) of tuples (one component per constructor
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of the datatype) of semantic actions. The algebra is parameterized over the result
type of the computation, also called the carrier of the algebra. If we work with a

carrier
family of mutually recursive datatypes, we need one carrier per datatype, and the
algebra is parameterized over all of them. We call the carrier corresponding to the
main datatype of the family the main carrier, and the others auxiliary carriers.

The fold function traverses a value and recursively replaces syntactic constructors
of the datatypes by the corresponding semantic actions of the algebra. Functions
which are defined in terms of a fold function and an algebra are called compositional

compositional
functions.

There is one special algebra: the one whose components are the constructor functions
of the datatypes we operate on. This algebra, when applied via a fold, defines the
identity function, and is called the initial algebra.

initial algebra

The function resulting from applying an algebra to a fold function is sometimes also
called an algebra homomorphism, and the compositional function is said to define

algebra
homomorphism

algebraic semantics.

algebraic semantics

5.4. Expressions

The first part of this section presents a basic expression evaluator. The evaluator
is extended with variables in the second part and with local definitions in the third
part.

5.4.1. Evaluating expressions

In this subsection we start with a more involved example: an expression evaluator.
We will use another datatype for expressions than the one introduced in Section 5.2.3:
here we will use a single, and hence non mutual recursive datatype for expressions.
We restrict ourselves to float valued expressions on which addition, subtraction, mul-
tiplication and division are defined. The datatype and the corresponding algebra
type and fold function are as follows:

infixl 7 ‘Mul ‘
infix 7 ‘Dvd ‘
infixl 6 ‘Add ‘, ‘Min‘

data Expr = Expr ‘Add ‘ Expr
| Expr ‘Min‘ Expr
| Expr ‘Mul ‘ Expr
| Expr ‘Dvd ‘ Expr
| Num Float

type ExprAlgebra a = (a → a → a — add
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, a → a → a — min
, a → a → a — mul
, a → a → a — dvd
,Float → a) — num

foldExpr :: ExprAlgebra a → Expr → a
foldExpr (add ,min,mul , dvd ,num) = fold

where
fold (expr1 ‘Add ‘ expr2) = fold expr1 ‘add ‘ fold expr2

fold (expr1 ‘Min‘ expr2) = fold expr1 ‘min‘ fold expr2

fold (expr1 ‘Mul ‘ expr2) = fold expr1 ‘mul ‘ fold expr2

fold (expr1 ‘Dvd ‘ expr2) = fold expr1 ‘dvd ‘ fold expr2

fold (Num n) = num n

There is nothing special to notice about these definitions except, perhaps, the fact
that Expr does not have an extra parameter x like the list and tree examples. Com-
puting the result of an expression now simply consists of replacing the constructors
by appropriate functions.

resultExpr :: Expr → Float
resultExpr = foldExpr ((+), (−), (∗), (/), id)

5.4.2. Adding variables

Our next goal is to extend the evaluator of the previous subsection such that it
can handle variables as well. The values of variables are typically looked up in an
environment which binds the names of the variables to values. We implement an
environment as a list of name-value pairs. For our purposes names are strings and
values are floats. In the following programs we will use the following functions and
types:

type Env name value = [(name, value)]

(?) :: Eq name ⇒ Env name value → name → value
env ? x = head [v | (y , v)← env , x = = y ]

type Name = String
type Value = Float

The datatype and the corresponding algebra type and fold function are now as follows.
Note that we use the same name (Expr) for the datatype, although it differs from
the previous Expr datatype.

data Expr = Expr ‘Add ‘ Expr
| Expr ‘Min‘ Expr
| Expr ‘Mul ‘ Expr
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| Expr ‘Dvd ‘ Expr
| Num Value
| Var Name

type ExprAlgebra a = (a → a → a — add
, a → a → a — min
, a → a → a — mul
, a → a → a — dvd
,Value → a — num
,Name → a) — var

foldExpr :: ExprAlgebra a → Expr → a
foldExpr (add ,min,mul , dvd ,num, var) = fold

where
fold (expr1 ‘Add ‘ expr2) = fold expr1 ‘add ‘ fold expr2

fold (expr1 ‘Min‘ expr2) = fold expr1 ‘min‘ fold expr2

fold (expr1 ‘Mul ‘ expr2) = fold expr1 ‘mul ‘ fold expr2

fold (expr1 ‘Dvd ‘ expr2) = fold expr1 ‘dvd ‘ fold expr2

fold (Num n) = num n
fold (Var x ) = var x

The datatype Expr now has an extra constructor: the unary constructor Var . Sim-
ilarly, the argument of foldExpr now has an extra component: the unary function
var which corresponds to the unary constructor Var . Computing the result of an
expression somehow needs to use an environment. Here is a first, bad way of doing
this: one can use it as an argument of a function that computes an algebra (we will
explain why this is a bad choice in the next subsection; the basic idea is that we use
the environment as a global variable here).

resultExprBad :: Env Name Value → Expr → Value
resultExprBad env = foldExpr ((+), (−), (∗), (/), id , (env?))

? resultExprBad [("x",3)] (Var "x" ‘Mul‘ Num 2)

6

The good way of using an environment is the following: instead of working with a
computation which, given an environment, yields an algebra of values it is better
to turn the computation itself into an algebra. Thus we turn the environment in a
‘local’ variable.

(|+|), (|−|), (|∗|), (|/|) :: (Env Name Value → Value)→
(Env Name Value → Value)→
(Env Name Value → Value)

f |+| g = λenv → f env + g env
f |−| g = λenv → f env − g env
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f |∗| g = λenv → f env ∗ g env
f |/| g = λenv → f env / g env

resultExprGood :: Expr → (Env Name Value → Value)
resultExprGood = foldExpr ((|+|), (|−|), (|∗|), (|/|), const ,flip (?))

? resultExprGood (Var "x" ‘Mul‘ Num 2) [("x",3)]

6

The actions (+), (−), (∗) and (/) on values are now replaced by corresponding actions
(|+|), (|−|), (|∗|) and (|/|) on computations. Computing the result of the sum of two
subexpressions within a given environment consists of computing the result of the
subexpressions within this environment and adding both results to yield a final result.
Computing the result of a constant does not need the environment at all. Computing
the result of a variable consists of looking it up in the environment. Thus, the
algebraic semantics of an expression is a computation which yields a value.

In this case the computation is of the form env → val . The value type is an example
of a synthesised attribute. The value of an expression is synthesised from values of its

synthesised attribute
subexpressions. The environment type is an example of an inherited attribute. The

inherited attributeenvironment which is used by the computation of a subexpression of an expression
is inherited from the computation of the expression. Since we are working with
abstract syntax we say that the synthesised and inherited attributes are attributes
of the datatype Expr . If Expr is one of the mutually recursive datatypes which are
generated from the nonterminals of a grammar, then we say that the synthesised and
inherited attributes are attributes of the nonterminal.

5.4.3. Adding definitions

Our next goal is to extend the evaluator of the previous subsection such that it can
handle definitions as well. A (local) definition is an expression of the form

Def name expr1 expr2

which should be interpreted as: let the value of name be equal to expr1 in expres-
sion expr2. Variables are typically defined by updating the environment with an
appropriate name-value pair.

The datatype (called Expr again) and the corresponding algebra type and eval func-
tion are now as follows:

data Expr = Expr ‘Add ‘ Expr
| Expr ‘Min‘ Expr
| Expr ‘Mul ‘ Expr
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| Expr ‘Dvd ‘ Expr
| Num Value
| Var Name
| Def Name Expr Expr

type ExprAlgebra a = (a → a → a — add
, a → a → a — min
, a → a → a — mul
, a → a → a — dvd
,Value → a — num
,Name → a — var
,Name → a → a → a) — def

foldExpr :: ExprAlgebra a → Expr → a
foldExpr (add ,min,mul , dvd ,num, var , def ) = fold

where
fold (expr1 ‘Add ‘ expr2) = fold expr1 ‘add ‘ fold expr2

fold (expr1 ‘Min‘ expr2) = fold expr1 ‘min‘ fold expr2

fold (expr1 ‘Mul ‘ expr2) = fold expr1 ‘mul ‘ fold expr2

fold (expr1 ‘Dvd ‘ expr2) = fold expr1 ‘dvd ‘ fold expr2

fold (Num n) = num n
fold (Var x ) = var x
fold (Def x value body) = def x (fold value) (fold body)

Expr now has an extra constructor: the ternary constructor Def , which can be used
to introduce a local variable. For example, the following expression can be used to
compute the number of seconds per year.

seconds = Def "days_per_year" (Num 365) (
Def "hours_per_day" (Num 24) (
Def "minutes_per_hour" (Num 60) (
Def "seconds_per_minute" (Num 60) (

Var "days_per_year" ‘Mul ‘
Var "hours_per_day" ‘Mul ‘
Var "minutes_per_hour" ‘Mul ‘
Var "seconds_per_minute" ))))

Similarly, the parameter of foldExpr now has an extra component: the ternary func-
tion def which corresponds to the ternary constructor Def . Notice that the last two
arguments are recursive ones. We can now explain why the first use of environments
is inferior to the second one. Trying to extend the first definition gives something
like:

resultExprBad :: Env Name Value → Expr → Value
resultExprBad env =

foldExpr ((+), (−), (∗), (/), id , (env?), error "def")
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The last component causes a problem: a body that contains a local definition has to
be evaluated in an updated environment. We cannot update the environment in this
setting: we can read the environment but afterwards it is not accessible any more
in the algebra (which consists of values). Extending the second definition causes
no problems: the environment is now accessible in the algebra (which consists of
computations). We can easily add a new action which updates the environment.
The computation corresponding to the body of an expression with a local definition
can now be evaluated in the updated environment.

f |+| g = λenv → f env + g env
f |−| g = λenv → f env − g env
f |∗| g = λenv → f env ∗ g env
f |/| g = λenv → f env / g env
x |=| f = λg env → g ((x , f env) : env)

resultExprGood :: Expr → (Env Name Value → Value)
resultExprGood =

foldExpr ((|+|), (|−|), (|∗|), (|/|), const ,flip (?), (|=|))

? resultExprGood seconds []

31536000

Note that by prepending a pair (x , y) to an environment (in the definition of the
operator |=|), we add the pair to the environment. By definition of (?), the binding
for x hides possible other bindings for x .

5.4.4. Compiling to a stack machine

In this section we compile expressions to instructions on a stack machine. We can
then use this stack machine to evaluate compiled expressions. This section is inspired
by an example in the textbook by Bird and Wadler [3].

Imagine a simple computer for evaluating arithmetic expressions. This computer has
a ‘stack’ and can execute ‘instructions’ which change the value of the stack. The
class of possible instructions is defined by the following datatype.

data MachInstr v = Push v |Apply (v → v → v)
type MachProgr v = [MachInstr v ]

An instruction either pushes a value of type v on the stack, or it executes an operator
that takes the two top values of the stack, applies the operator, and pushes the result
back on the stack. A stack (a value of type Stack v for some value type v) is a list of
values, from which you can pop values, on which you can push values, and from which
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you can take the top value. A module Stack for stacks can be found in Appendix A.
The effect of executing an instruction of type MachInstr is defined by

execute :: MachInstr v → Stack v → Stack v
execute (Push x ) s = push x s
execute (Apply op) s = let a = top s

t = pop s
b = top t
u = pop t

in push (op a b) u

A sequence of instructions is executed by the function run defined by

run :: MachProgr v → Stack v → Stack v
run [] s = s
run (x : xs) s = run xs (execute x s)

It follows that run can be defined as a foldl .

An expression can be translated (or compiled) into a list of instructions by the func-
tion compile, defined by:

compileExpr :: Expr →
Env Name (MachProgr Value)→
MachProgr Value

compileExpr = foldExpr (add ,min,mul , dvd ,num, var , def )
where

f ‘add ‘ g = λenv → f env ++ g env ++ [Apply (+)]
f ‘min‘ g = λenv → f env ++ g env ++ [Apply (−)]
f ‘mul ‘ g = λenv → f env ++ g env ++ [Apply (∗)]
f ‘dvd ‘ g = λenv → f env ++ g env ++ [Apply (/)]
num v = λenv → [Push v ]
var x = λenv → env ? x
def x fd fb = λenv → fb ((x , fd env) : env)

Exercise 5.5. Define the following functions as folds on the datatype Expr that contains
definitions.

1. isSum, which determines whether or not an expression is a sum.

2. vars, which returns the list of variables that occur in the expression.

Exercise 5.6. This exercise deals with expressions without definitions. The function der is
defined by

der (e1 ‘Add ‘ e2) dx = der e1 dx ‘Add ‘ der e2 dx
der (e1 ‘Min‘ e2) dx = der e1 dx ‘Min‘ der e2 dx
der (e1 ‘Mul ‘ e2) dx = (e1 ‘Mul ‘ der e2 dx ) ‘Add ‘ (der e1 dx ‘Mul ‘ e2)
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der (e1 ‘Dvd ‘ e2) dx = ((e2 ‘Mul ‘ der e1 dx ) ‘Min‘ (e1 ‘Mul ‘ der e2 dx ))
‘Dvd ‘ (e2 ‘Mul ‘ e2)

der (Num f ) dx = Num 0
der (Var s) dx = if s = = dx then Num 1 else Num 0

1. Give an informal description of the function der .

2. Why is the function der not compositional ?

3. Define a datatype Exp to represent expressions consisting of (floating point) constants,
variables, addition and substraction. Also, define the type ExpAlgebra and the corre-
sponding foldExp.

4. Define the function der on Exp and show that this function is compositional.

Exercise 5.7. Define the function replace, which given a binary tree and an element m
replaces the elements at the leaves by m as a fold on the datatype BinTree, see Section 5.2.1.
It is easy to write a function with the required functionality if you swap the arguments, but
then it is impossible to write replace as a fold. Note that the fold returns a function, which
when given m replaces all the leaves by m.

Exercise 5.8. Consider the datatype of paths introduced in Exercise 5.3. A path in a tree
leads to a unique leaf. Define a compositonal function path2Value which, given a tree and a
path in the tree, yields the element at the unique leaf.

5.5. Block structured languages

This section presents a more complex example of the use of tuples in combination
with compositionality. The example deals with the scope of variables in a block
structured language. A variable from a global scope is visible in a local scope only if
it is not hidden by a variable with the same name in the local scope.

5.5.1. Blocks

A block is a list of statements. A statement is a variable declaration, a variable
usage or a nested block. The concrete representation of an example block of our
block structured language looks as follows (dcl stands for declaration, use stands for
usage and x, y and z are variables).

use x ; dcl x ;

(use z ; use y ; dcl x ; dcl z ; use x) ;

dcl y ; use y
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Statements are separated by semicolons. Nested blocks are surrounded by paren-
theses. The usage of z refers to the local declaration (the only declaration of z).
The usage of y refers to the global declaration (the only declaration of y). The lo-
cal usage of x refers to the local declaration and the global usage of x refers to the
global declaration. Note that it is allowed to use variables before they are declared.
Here are some mutually recursive (data)types, which describe the abstract syntax of
blocks, corresponding to the grammar that describes the concrete syntax of blocks
which is used above. We use meaningful names for data constructors and we use
built-in lists instead of user-defined lists for the block algebra. As usual, the algebra
type BlockAlgebra, which consists of two tuples of functions, and the fold function
foldBlock , which uses two mutually recursive local functions, can be generated from
the two mutually recursive (data)types.

type Block = [Statement ]
data Statement = Dcl Idf |Use Idf | Blk Block
type Idf = String

type BlockAlgebra b s = ((s → b → b, b)
, (Idf → s, Idf → s, b → s)
)

foldBlock :: BlockAlgebra b s → Block → b
foldBlock ((cons, empty), (dcl , use, blk)) = fold

where
fold (s : b) = cons (foldS s) (fold b)
fold [] = empty
foldS (Dcl x ) = dcl x
foldS (Use x ) = use x
foldS (Blk b) = blk (fold b)

5.5.2. Generating code

The goal of this section is to generate code from a block. The code consists of a
sequence of instructions. There are three types of instructions.

• Enter (l , c): enters the l ’th nested block in which c local variables are declared.

• Leave (l , c): leaves the l ’th nested block in which c local variables were declared.

• Access (l , c): accesses the c’th variable of the l ’th nested block.

The code generated for the above example looks as follows.

[Enter (0, 2),Access (0, 0)
,Enter (1, 2),Access (1, 1),Access (0, 1),Access (1, 0),Leave (1, 2)
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,Access (0, 1),Leave (0, 2)
]

Note that we start numbering levels (l) and counts (c) (which are sometimes called
displacements) from 0. The abstract syntax of the code to be generated is described
by the following datatype.

type Count = Int
type Level = Int

type Variable = (Level ,Count)
type BlockInfo = (Level ,Count)

data Instruction = Enter BlockInfo
| Leave BlockInfo
| Access Variable

type Code = [Instruction]

The function ab2ac, which generates abstract code (a value of type Code) from an
abstract block (a value of type Block), uses a compositional function block2Code.
For all syntactic constructs of Statement and Block we define appropriate semantic
actions on an algebra of computations. Here is a, somewhat simplified, description
of these semantic actions.

• Dcl : Every time we declare a local variable x we have to update the local
environment le of the block we are in by associating with x the current pair of
level and local-count (l , lc). Moreover we have to increment the local variable
count lc to lc + 1. Note that we do not generate any code for a declaration
statement. Instead we perform some computations which make it possible to
generate appropriate code for other statements.

dcl x (le, l , lc) = (le ′, lc′)
where

le ′ = le ‘update‘ (x , (l , lc))
lc′ = lc + 1

where function update is defined in the AssociationList module.

• Use: Every time we use a local variable x we have to generate code cd ′ for it.
This code is of the form [Access (l , lc)]. The level–local-count pair (l , lc) of the
variable is looked up in the global environment e.

use x e = cd ′

where
cd ′ = [Access (l , c)]
(l , c) = e ? x
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• Blk : Every time we enter a nested block we increment the global level l to l +1,
start with a fresh local variable count 0 and set the local environment of the
nested block we enter to the current global environment e. The computation for
the nested block results in a local variable count lcB and a local environment
leB . Furthermore we need to make sure that the global environment (the one
in which we look up variables) which is used by the computation for the nested
block is equal to leB . The code which is generated for the block is surrounded
by an appropriate [Enter lcB ]-[Leave lcB ] pair.

blk fB (e, l) = cd ′

where
l ′ = l + 1
(leB , lcB , cdB) = fB (leB , l ′, e, 0)
cd ′ = [Enter (l ′, lcB)] ++ cdB ++ [Leave (l ′, lcB)]

• []: No action need to be performed for an empty block.

• (:): For every nonempty block we perform the computation of the first state-
ment of the block which, given a local environment le and local variable count
lc, results in a local environment leS and local variable count lcS . This
environment-count pair is then used by the computation of the rest of the
block to result in a local environment le ′ and local variable count lc′. The code
cd ′ which is generated is the concatenation cdS ++ cdB of the code cdS which is
generated for the first statement and the code cdB which is generated for the
rest of the block.

cons fS fB (le, lc) = (le ′, lc′, cd ′)
where

(leS , lcS , cdS ) = fS (le, lc)
(le ′, lc′, cdB) = fB (leS , lcS )
cd ′ = cdS ++ cdB

What does our actual computation type look like? For dcl we need three inherited
attributes: a global level, a local block environment and a local variable count. Two
of them: the local block environment and the local variable count are also synthesised
attributes. For use we need one inherited attribute: a global block environment, and
we compute one synthesised attribute: the generated code. For blk we need two
inherited attributes: a global block environment and a global level, and we com-
pute two synthesised attributes: the local variable count and the generated code.
Moreover there is one extra attribute: a local block environment which is both inher-
ited and synthesised. When processing the statements of a nested block we already
make use of the global block environment which we are synthesising (when looking
up variables). For cons we compute three synthesised attributes: the local block
environment, the local variable count and the generated code. Two of them, the
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local block environment and the local variable count are also needed as inherited
attributes. It is clear from the considerations above that the following types fulfill
our needs.

type BlockEnv = [(Idf ,Variable)]
type GlobalEnv = (BlockEnv ,Level)
type LocalEnv = (BlockEnv ,Count)

The implementation of block2Code is now a straightforward translation of the actions
described above. Attributes which are not mentioned in those actions are added as
extra components which do not contribute to the functionality.

block2Code :: Block → GlobalEnv → LocalEnv → (LocalEnv ,Code)
block2Code = foldBlock ((cons, empty), (dcl , use, blk))

where

cons fS fB (e, l) (le, lc) = ((le ′, lc′), cd ′)
where

((leS , lcS ), cdS ) = fS (e, l) (le, lc)
((le ′, lc′), cdB) = fB (e, l) (leS , lcS )
cd ′ = cdS ++ cdB

empty (e, l) (le, lc) = ((le, lc), [])

dcl x (e, l) (le, lc) = ((le ′, lc′), [])
where

le ′ = (x , (l , lc)) : le
lc′ = lc + 1

use x (e, l) (le, lc) = ((le, lc), cd ′)
where

cd ′ = [Access (l , c)]
(l , c) = e ? x

blk fB (e, l) (le, lc) = ((le, lc), cd ′)
where

((leB , lcB), cdB) = fB (leB , l ′) (e, 0)
l ′ = l + 1
cd ′ = [Enter (l ′, lcB)] ++ cdB ++ [Leave (l ′, lcB)]

The code generator starts with an empty local environment, a fresh level and a fresh
local variable count. The code is a synthesised attribute. The global environment
is an attribute which is both inherited and synthesised. When processing a block
we already use the global environment which we are synthesising (when looking up
variables).

ab2ac :: Block → Code
ab2ac b = [Enter (0, c)] ++ cd ++ [Leave (0, c)]

where

101



5. Compositionality

((e, c), cd) = block2Code b (e, 0) ([], 0)

aBlock
= [ Use "x",Dcl "x"
,Blk [Use "z",Use "y",Dcl "x",Dcl "z",Use "x"]
,Dcl "y",Use "y"]

? ab2ac aBlock

[Enter (0,2),Access (0,0)

,Enter (1,2),Access (1,1),Access (0,1),Access (1,0),Leave (1,2)

,Access (0,1),Leave (0,2)]

5.6. Exercises

Exercise 5.9. Consider your answer to Exercise 2.22, which gives an abstract syntax for
palindromes.

1. Define a type PalAlgebra that describes the type of the semantic actions that corre-
spond to the syntactic constructs of Pal .

2. Define the function foldPal , which describes how the semantics actions that correspond
to the syntactic constructs of Pal should be applied.

3. Define the functions a2cPal and aCountPal as foldPal ’s.
4. Define the parser pfoldPal which interprets its input in an arbitrary semantic PalAlgebra

without building the intermediate abstract syntax tree.
5. Describe the parsers pfoldPal m1 and pfoldPal m2 where m1 and m2 correspond to the

algebras of a2cPal and aCountPal respectively.

Exercise 5.10. Consider your answer to Exercise 2.23, which gives an abstract syntax for
mirror-palindromes.

1. Define the type MirAlgebra that describes the semantic actions that correspond to the
syntactic constructs of Mir .

2. Define the function foldMir , which describes how semantic actions that correspond to
the syntactic constructs of Mir should be applied.

3. Define the functions a2cMir and m2pMir as foldMir ’s.
4. Define the parser pfoldMir , which interprets its input in an arbitrary semantic MirAlgebra

without building the intermediate abstract syntax tree.
5. Describe the parsers pfoldMir m1 and pfoldMir m2 where m1 and m2 correspond to

the algebras of a2cMir and m2pMir , respectively.

Exercise 5.11. Consider your answer to exercise 2.24, which gives an abstract syntax for
parity-sequences.

1. Define the type ParityAlgebra that describes the semantic actions that correspond to
the syntactic constructs of Parity .

2. Define the function foldParity , which describes how the semantic actions that corre-
spond to the syntactic constructs of Parity should be applied.

3. Define the function a2cParity as foldParity .
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Exercise 5.12. Consider your answer to Exercise 2.25, which gives an abstract syntax for
bit-lists.

1. Define the type BitListAlgebra that describes the semantic actions that correspond to
the syntactic constructs of BitList .

2. Define the function foldBitList , which describes how the semantic actions that corre-
spond to the syntactic constructs of BitList should be applied.

3. Define the function a2cBitList as a foldBitList .
4. Define the parser pfoldBitList , which interprets its input in an arbitrary semantic

BitListAlgebra without building the intermediate abstract syntax tree.

Exercise 5.13. The following grammar describes the concrete syntax of a simple block-
structured programming language

B → S R (block)
R → ; S R | ε (rest)
S → D |U |N (statement)
D → x | y (declaration)
U → X | Y (usage)
N → ( B ) (nested block)

1. Define a datatype Block that describes the abstract syntax that corresponds to the
grammar. What is the abstract representation of x;(y;Y);X?

2. Define the type BlockAlgebra that describes the semantic actions that correspond to
the syntactic constructs of Block .

3. Define the function foldBlock , which describes how the semantic actions corresponding
to the syntactic constructs of Block should be applied.

4. Define the function a2cBlock , which converts an abstract block into a concrete one.
Write a2cBlock as a foldBlock

5. The function checkBlock tests whether or not each variable of a given abstract block
is declared before use (declared in the same or in a surrounding block).
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6. Computing with parsers

Parsers produce results. For example, the parsers for travelling schemes given in
Chapter 4 return an abstract syntax, or an integer that represents the net travelling
time in minutes. The net travelling time is computed directly by inserting the cor-
rect semantic functions. Another way to compute the net travelling time is by first
computing the abstract syntax, and then applying a function to the abstract syntax
that computes the net travelling time. This section shows several ways to compute
results using parsers:

• insert a semantic function in the parser;
• apply a fold to the abstract syntax;
• use a class instead of abstract syntax;
• pass an algebra to the parser.

6.1. Insert a semantic function in the parser

In Chapter 4 we have defined two parsers: a parser that computes the abstract syntax
for a travelling schema, and a parser that computes the net travelling time. These
functions are obtained by inserting different functions in the basic parser. If we want
to compute the total travelling time, we have to insert different functions in the basic
parser. This approach works fine for a small parser, but it has some disadvantages
when building a larger parser:

• semantics is intertwined with the parsing process;
• it is difficult to locate all positions where semantic functions have to be inserted

in the parser.

6.2. Apply a fold to the abstract syntax

Instead of inserting operations in a basic parser, we can write a parser that parses
the input to an abstract syntax, and computes the desired result by applying a fold
to the abstract syntax.

An example of such an approach has been given in Section 5.2.2, where we defined
two functions with the same functionality: nesting and nesting’; both compute
the maximum nesting depth in a string of parentheses. Function nesting is defined
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by inserting functions in the basic parser. Function nesting’ is defined by applying
a fold to the abstract syntax. Each of these definitions has its own merits; we repeat
the main arguments below.

parens :: Parser Char Parentheses

parens = (\_ b _ d -> Match b d) <$>

open <*> parens <*> close <*> parens

<|> succeed Empty

nesting :: Parser Char Int

nesting = (\_ b _ d -> max (1+b) d) <$>

open <*> nesting <*> close <*> nesting

<|> succeed 0

nesting’ :: Parser Char Int

nesting’ = depthParentheses <$> parens

The first definition (nesting) is more efficient, because it does not build an inter-
mediate abstract syntax tree. On the other hand, it might be more difficult to write
because we have to insert functions in the correct places in the basic parser. The ad-
vantage of the second definition (nesting’) is that we reuse both the parser parens,
which returns an abstract syntax tree, and the function depthParentheses (or the
function foldParentheses, which is used in the definition of depthParentheses),
which does recursion over an abstract syntax tree. The only thing we have to write
ourselves in the second definition is the depthParenthesesAlgebra. The disadvan-
tage of the second definition is that it builds an intermediate abstract syntax tree,
which is ‘flattened’ by the fold. We want to avoid building the abstract syntax
tree altogether. To obtain the best of both worlds, we would like to write function
nesting’ and have our compiler figure out that it is better to use function nesting

in computations. The automatic transformation of function nesting’ into function
nesting is called deforestation (trees are removed). Some (very few) compilers are
clever enough to perform this transformation automatically.

6.3. Deforestation

Deforestation removes intermediate trees in computations. The previous section gives
an example of deforestation on the datatype Parentheses. This section sketches the
general idea.

Suppose we have a datatype AbstractTree

data AbstractTree = ...
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From this datatype we construct an algebra and a fold, see Chapter 5.

type AbstractTreeAlgebra a = ...

foldAbstractTree :: AbstractTreeAlgebra a -> AbstractTree -> a

A parser for the datatype AbstractTree (which returns a value of AbstractTree)
has the following type:

parseAbstractTree :: Parser Symbol AbstractTree

where Symbol is some type of input symbols (for example Char). Suppose now that
we define a function p that parses an AbstractTree, and then computes some value
by folding with an algebra f over this tree:

p = foldAbstractTree f . parseAbstractTree

Then deforestation says that p is equal to the function parseAbstractTree in which
occurrences of the constructors of the datatype AbstractTree have been replaced
by the corresponding components of the algebra f. The following two sections each
describe a way to implement such a deforestated function.

6.4. Using a class instead of abstract syntax

Classes can be used to implement the deforestated or fused computation of a fold
with a parser. This gives a solution of the desired efficiency.

For example, for the language of parentheses, we define the following class:

class Parens a where

match :: a -> a -> a

empty :: a

Note that types of the functions in the class Parens correspond exactly to the two
types that occur in the type ParenthesesAlgebra. This class is used in a parser for
parentheses:

parens :: Parens a => Parser Char a

parens = (\_ b _ d -> match b d) <$>

open <*> parens <*> close <*> parens

<|> succeed empty
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The algebra is implicit in this function: the only thing we know is that there exist
functions empty and match of the correct type; we know nothing about their imple-
mentation. To obtain a function parens that returns a value of type Parentheses

we create the following instance of the class Parens.

instance Parens Parentheses where

match = Match

empty = Empty

Now we can write:

?(parens :: Parser Char Parentheses) "()()"

[(Match Empty (Match Empty Empty), "")

,(Match Empty Empty, "()")

,(Empty, "()()")

]

Note that we have to supply the type of parens in this expression, otherwise Haskell
doesn’t know which instance of Parens to use. This is how we turn the implicit
‘class’ algebra into an explicit ‘instance’ algebra. Another instance of Parens can be
used to compute the nesting depth of parentheses:

instance Parens Int where

match b d = max (1+b) d

empty = 0

And now we can write:

?(parens :: Parser Char Int) "()()"

[(1, ""), (1, "()"), (0, "()()")]

So the answer depends on the type we want our function parens to have. This
also immediately shows a problem of this, otherwise elegant, approach: it does not
work if we want to compute two different results of the same type, because Haskell
doesn’t allow you to define two (or more) instances with the same type. So once we
have defined the instance Parens Int as above, we cannot use function parens to
compute, for example, the width (also an Int) of a string of parentheses.
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6.5. Passing an algebra to the parser

The previous section shows how to implement a parser with an implicit algebra. Since
this approach fails when we want to define different parsers with the same result type,
we make the algebras explicit. Thus we obtain the following definition of parens:

parens :: ParenthesesAlgebra a -> Parser Char a

parens (match,empty) = par where

par = (\_ b _ d -> match b d) <$>

open <*> par <*> close <*> par

<|> succeed empty

Note that it is now easy to define different parsers with the same result type:

nesting, breadth :: Parser Char Int

nesting = parens (\b d -> max (1+b) d,0)

breadth = parens (\b d -> d+1,0)
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7. Programming with
higher-order folds

Introduction

In the previous chapters we have seen that algebras play an important role when
describing the meaning of a recognised structure (a parse tree). For each recursive
datatype T we have a function foldT, and for each constructor of the datatype we
have a corresponding function as a component in the algebra. Chapter 5 introduces
a language in which local declarations are permitted. Evaluating expressions in this
language can be done by choosing an appropriate algebra. The domain of that algebra
is a higher order (data)type (a (data)type that contains functions). Unfortunately,
the resulting code comes as a surprise to many. In this chapter we will illustrate a
related formalism, which will make it easier to construct such involved algebras. This
related formalism is the attribute grammar formalism. We will not formally define
attribute grammars, but instead illustrate the formalism with some examples, and
give an informal definition.

We start with developing a somewhat unconventional way of looking at functional
programs, and especially those programs that use functions that recursively descend
over datatypes a lot. In our case one may think about these datatypes as abstract
syntax trees. When computing a property of such a recursive object (for example, a
program) we define two sets of functions: one set that describes how to recursively
visit the nodes of the tree, and one set of functions (an algebra) that describes what
to compute at each node when visited.

One of the most important steps in this process is deciding what the carrier type
of the algebras is going to be. Once this step has been taken, these types are a
guideline for further design steps. We will see that such carrier types may be functions
themselves, and that deciding on the type of such functions may not always be simple.
In this chapter we will present a view on recursive computations that will enable us
to “design” the carrier type in an incremental way. We will do so by constructing
algebras out of other algebras. In this way we define the meaning of a language in a
semantically compositional way.

We will start with the rep min example, which looks a bit artificial, and deals with
a non-interesting, highly specific problem. However, it has been chosen for its sim-
plicity, and to not distract our attention to specific, programming language related,
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data Tree = Leaf Int

| Bin Tree Tree deriving Show

type TreeAlgebra a = (Int -> a, a -> a -> a)

foldTree :: TreeAlgebra a -> Tree -> a

foldTree alg@(leaf, _ ) (Leaf i) = leaf i

foldTree alg@(_ , bin) (Bin l r) = bin (foldTree alg l)

(foldTree alg r)

Listing 7.1: rm.start.hs

semantic issues. The second example of this chapter demonstrates the techniques on
a larger example: a small compiler for part of a programming language.

Goals

In this chapter you will learn:

• how to write ‘circular’ functional programs, or ‘higher-order folds’;
• how to combine algebras;
• (informally) the concept of an attribute grammar.

7.1. The rep min problem

One of the famous examples in which the power of lazy evaluation is demonstrated is
the so-called rep min problem [2]. Many have wondered how this program achieves
its goal, since at first sight it seems that it is impossible to compute anything with
this program. We will use this problem, and a sequence of different solutions, to
build up an understanding of a whole class of such programs.

In Listing 7.1 we present the datatype Tree, together with its associated algebra.
The carrier type of an algebra is the type that describes the objects of the algebra.
We represent it by a type parameter of the algebra type:

type TreeAlgebra a = (Int -> a, a -> a -> a)

The associated evaluation function foldTree systematically replaces the constructors
Leaf and Bin by corresponding operations from the algebra alg that is passed as an
argument.

112



7.1. The rep min problem

minAlg :: TreeAlgebra Int

minAlg = (id, min :: Int->Int->Int)

rep_min :: Tree -> Tree

rep_min t = foldTree repAlg t

where m = foldTree minAlg t

repAlg = (const (Leaf m), Bin)

Listing 7.2: rm.sol1.hs

We now want to construct a function rep_min :: Tree -> Tree that returns a Tree

with the same “shape” as its argument Tree, but with the values in its leaves replaced
by the minimal value occurring in the original tree. For example,

?rep_min (Bin (Bin (Leaf 1) (Leaf 7)) (Leaf 11))

Bin (Bin (Leaf 1) (Leaf 1)) (Leaf 1)

7.1.1. A straightforward solution

A straightforward solution to the rep min problem consists of a function in which
foldTree is used twice: once for computing the minimal value of the leaf values,
and once for constructing the resulting Tree. The function rep_min that solves the
problem in this way is given in Listing 7.2. Notice that the variable m is a global
variable of the repAlg-algebra, that is used in the tree constructing call of foldTree.
One of the disadvantages of this solution is that in the course of the computation the
pattern matching associated with the inspection of the tree nodes is performed twice
for each node in the tree.

Although this solution as such is no problem, we will try to construct a solution that
calls foldTree only once.

7.1.2. Lambda lifting

We want to obtain a program for the rep min problem in which pattern matching is
used only once. Program Listing 7.3 is an intermediate step towards this goal. In
this program the global variable m has been removed and the second call of foldTree
does not construct a Tree anymore, but instead a function constructing a tree of type
Int -> Tree, which takes the computed minimal value as an argument. Notice how
we have emphasized the fact that a function is returned through some superfluous
notation: the first lambda in the function definitions constituting the algebra repAlg

is required by the signature of the algebra, the second lambda, which could have been
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repAlg = ( \_ -> \m -> Leaf m

,\lfun rfun -> \m -> let lt = lfun m

rt = rfun m

in Bin lt rt

)

rep_min’ t = (foldTree repAlg t) (foldTree minAlg t)

Listing 7.3: rm.sol2.hs

infix 9 ‘tuple‘

tuple :: TreeAlgebra a -> TreeAlgebra b -> TreeAlgebra (a,b)

(leaf1, bin1) ‘tuple‘ (leaf2, bin2) = (\i -> (leaf1 i, leaf2 i)

,\l r -> (bin1 (fst l) (fst r)

,bin2 (snd l) (snd r)

)

)

min_repAlg :: TreeAlgebra (Int, Int -> Tree)

min_repAlg = (minAlg ‘tuple‘ repAlg)

rep_min’’ t = r m

where (m, r) = foldTree min_repAlg t

Listing 7.4: rm.sol3.hs

omitted, is there because the carrier set of the algebra contains functions of type Int

-> Tree. This process is done routinely by functional compilers and is known as
lambda-lifting.

7.1.3. Tupling computations

We are now ready to formulate a solution in which foldTree is called only once. Note
that in the last solution the two calls of foldTree don’t interfere with each other.
As a consequence we may perform both the computation of the tree constructing
function and the minimal value in one go, by tupling the results of the computations.
The solution is given in Listing 7.4. First a function tuple is defined. This function
takes two TreeAlgebras as arguments and constructs a third one, which has as its
carrier tuples of the carriers of the original algebras.
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7.1.4. Merging tupled functions

In the next step we transform the type of the carrier set in the previous example,
(Int, Int->Tree), into an equivalent type Int -> (Int, Tree). This transforma-
tion is not essential here, but we use it to demonstrate that if we compute a cartesian
product of functions, we may transform that type into a new type in which we com-
pute only one function, which takes as its arguments the cartesian product of all
the arguments of the functions in the tuple, and returns as its result the cartesian
product of the result types. In our example the computation of the minimal value
may be seen as a function of type ()->Int. As a consequence the argument of the
new type is ((), Int), which is isomorphic to just Int, and the result type becomes
(Int, Tree).

We want to mention here too that the reverse is in general not true; given a function
of type (a, b) -> (c, d), it is in general not possible to split this function into two
functions of type a -> c and b -> d, which together achieve the same effect. The
new version is given in Listing 7.5.

Notice how we have, in an attempt to make the different rôles of the parameters
explicit, again introduced extra lambdas in the definition of the functions of the
algebra. The parameters after the second lambda are there because we construct
values in a higher order carrier set. The parameters after the first lambda are there
because we deal with a TreeAlgebra. A curious step taken here is that part of
the result, in our case the value m, is passed back as an argument to the result of
(foldTree mergedAlg t). Lazy evaluation makes this work.

That such programs were possible came originally as a great surprise to many func-
tional programmers, especially to those who used to program in LISP or ML, lan-
guages that require arguments to be evaluated completely before a call is evaluated
(so-called strict evaluation in contrast to lazy evaluation). Because of this surprising
behaviour this class of programs became known as circular programs. Notice however
that there is nothing circular in this program. Each value is defined in terms of other
values, and no value is defined in terms of itself (as in ones=1:ones).

Finally, Listing 7.6 shows the version of this program in which the function foldTree

has been unfolded. Thus we obtain the original solution as given in Bird [2].

Concluding, we have systematically transformed a program that inspects each node
twice into an equivalent program that inspects each node only once. The resulting
solution passes back part of the result of a call as an argument to that same call.
Lazy evaluation makes this possible.

Exercise 7.1. The deepest front problem is the problem of finding the so-called front of a
tree. The front of a tree is the list of all nodes that are at the deepest level. As in the
rep min problem, the trees involved are elements of the datatype Tree, see Listing 7.1. A
straightforward solution is to compute the height of the tree and passing the result of this
function to a function frontAtLevel :: Tree -> Int -> [Int].
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mergedAlg :: TreeAlgebra (Int -> (Int,Tree))

mergedAlg = (\i -> \m -> (i, Leaf m)

,\lfun rfun -> \m -> let (lm,lt) = lfun m

(rm,rt) = rfun m

in (lm ‘min‘ rm

, Bin lt rt

)

)

rep_min’’’ t = r

where (m, r) = (foldTree mergedAlg t) m

Listing 7.5: rm.sol4.hs

rep_min’’’’ t = r

where (m, r) = tree t m

tree (Leaf i) = \m -> (i, Leaf m)

tree (Bin l r) = \m -> let (lm, lt) = tree l m

(rm, rt) = tree r m

in (lm ‘min‘ rm, Bin lt rt)

Listing 7.6: rm.sol5.hs
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1. Define the functions height and frontAtLevel

2. Give the four different solutions as defined in the rep min problem.

Exercise 7.2. Redo the previous exercise for the highest front problem.

7.2. A small compiler

This section constructs a small compiler for (a part of) a small language. The com-
piler compiles this code into code for a hypothetical stack machine.

7.2.1. The language

The language we consider in this section has integers, booleans, function application,
and an if-then-else expression. A language with just these constructs is useless, and
you will extend the language in the exercises with some other constructs, which make
the language a bit more interesting. We take the following context-free grammar for
the concrete syntax of the language.

Expr0 → if Expr1 then Expr1 else Expr1 | Expr1
Expr1 → Expr2 Expr2∗

Expr2 → Int | Bool

where Int generates integers, and Bool booleans. An abstract syntax for our language
is given in Listing 7.7. Note that we use a single datatype for the abstract syntax
instead of three datatypes (one for each nonterminal); this simplifies the code a bit.
The Listing 7.7 also contains a definition of a fold and an algebra type for the abstract
syntax.

A parser for expressions is given in Listing 7.8.

7.2.2. A stack machine

In section 5.4.4 we have defined a stack machine with which simple arithmetic ex-
pressions can be evaluated. Here we define a stack machine that has some more
instructions. The language of the previous section wil be compiled into code for this
stack machine in the following section.

The stack machine we will use has the following instructions:

• it can load an integer;
• it can load a boolean;
• given an argument and a function on the stack, it can call the function on the

argument;
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data ExprAS = If ExprAS ExprAS ExprAS

| Apply ExprAS ExprAS

| ConInt Int

| ConBool Bool deriving Show

type ExprASAlgebra a = (a -> a -> a -> a

,a -> a -> a

,Int -> a

,Bool -> a

)

foldExprAS :: ExprASAlgebra a -> ExprAS -> a

foldExprAS (iff,apply,conint,conbool) = fold

where fold (If ce te ee) = iff (fold ce) (fold te) (fold ee)

fold (Apply fe ae) = apply (fold fe) (fold ae)

fold (ConInt i) = conint i

fold (ConBool b) = conbool b

Listing 7.7: ExprAbstractSyntax.hs

• it can set a label in the code;
• given a boolean on the stack, it can jump to a label provided the boolean is

false;
• it can jump to a label (unconditionally).

The datatype for instructions is given in Listing 7.9.

7.2.3. Compiling to the stackmachine

How do we compile the different expressions to stack machine code? We want to
define a function compile of type

compile :: ExprAS -> [InstructionSM]

• A ConInt i is compiled to a LoadInt i.

compile (ConInt i) = [LoadInt i]

• A ConBool b is compiled to a LoadBool b.

compile (ConBool b) = [LoadBool b]
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sptoken :: String -> Parser Char String

sptoken s = (\_ b _ -> b) <$>

many (symbol ’ ’) <*> token s <*> many1 (symbol ’ ’)

boolean = const True <$> token "True" <|> const False <$> token "False"

parseExpr :: Parser Char ExprAS

parseExpr = expr0

where expr0 = (\a b c d e f -> If b d f) <$>

sptoken "if"

<*> parseExpr

<*> sptoken "then"

<*> parseExpr

<*> sptoken "else"

<*> parseExpr

<|> expr1

expr1 = chainl expr2 (const Apply <$> many1 (symbol ’ ’))

<|> expr2

expr2 = ConBool <$> boolean

<|> ConInt <$> natural

Listing 7.8: ExprParser.hs

data InstructionSM = LoadInt Int

| LoadBool Bool

| Call

| SetLabel Label

| BrFalse Label

| BrAlways Label

type Label = Int

Listing 7.9: InstructionSM.hs
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• An application Apply f x is compiled by first compiling the argument x, then
the ‘function’ f (at the moment it is impossible to define functions in our
language, hence the quotes around ‘function’), and finally putting a Call on
top of the stack.

compile (Apply f x) = compile x ++ compile f ++ [Call]

• An if-then-else expression If ce te ee is compiled by first compiling the con-
ditional expression ce. Then we jump to a label (which will be set before the
code of the else expression ee later) if the resulting boolean is false. Then we
compile the then expression te. After the then expression we always jump to
the end of the code of the if-then-else expression, for which we need another la-
bel. Then we set the label for the else expression, we compile the else expression
ee, and, finally, we set the label for the end of the if-then-else expression.

compile (If ce te ee) = compile ce

++ [BrFalse ?lab1]

++ compile te

++ [BrAlways ?lab2]

++ [SetLabel ?lab1]

++ compile ee

++ [SetLabel ?lab2]

Note that we use labels here, but where do these labels come from?

From the above description we see that we also need labels when compiling an ex-
pression. We add a label argument (an integer, used for the first label in the compiled
code) to function compile, and we want function compile to return the first unused
label. We change the type of function compile as follows:

compile :: ExprAS -> Label -> ([InstructionSM],Label)

type Label = Int

The four cases in the definition of compile have to take care of the labels. We obtain
the following definition of compile:

compile (ConInt i) = \l -> ([LoadInt i],l)

compile (ConBool b) = \l -> ([LoadBool b],l)

compile (Apply f x) = \l -> let (xc,l’) = compile x l

(fc,l’’) = compile f l’

in (xc ++ fc ++ [Call],l’’)

compile (If ce te ee) = \l -> let (cc,l’) = compile ce (l+2)

(tc,l’’) = compile te l’

(ec,l’’’) = compile ee l’’
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compile = foldExprAS compileAlgebra

compileAlgebra :: ExprASAlgebra (Label -> ([InstructionSM],Label))

compileAlgebra = (\cce cte cee -> \l ->

let (cc,l’) = cce (l+2)

(tc,l’’) = cte l’

(ec,l’’’) = cee l’’

in ( cc

++ [BrFalse l]

++ tc

++ [BrAlways (l+1)]

++ [SetLabel l]

++ ec

++ [SetLabel (l+1)]

,l’’’

)

,\cf cx -> \l -> let (xc,l’) = cx l

(fc,l’’) = cf l’

in (xc ++ fc ++ [Call],l’’)

,\i -> \l -> ([LoadInt i],l)

,\b -> \l -> ([LoadBool b],l)

)

Listing 7.10: CompileExpr.hs

in ( cc

++ [BrFalse l]

++ tc

++ [BrAlways (l+1)]

++ [SetLabel l]

++ ec

++ [SetLabel (l+1)]

,l’’’

)

Function compile is a fold, the carrier type of its algebra is a function of type Label

-> ([InstructionSM],Label). The definition of function compile as a fold is given
in Listing 7.10.

Exercise 7.3 (no answer provided). Extend the code generation example by adding variables
to the datatype Expr.

Exercise 7.4 (no answer provided). Extend the code generation example by adding defini-
tions to the datatype Expr too.
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7.3. Attribute grammars

In Section 7.1 we have written a program that solves the rep min problem. This
program computes the minimum of a tree, and it computes the tree in which all the
leaf values are replaced by the minimum value. The minimum is computed bottom-
up: it is synthesized from its children. The minimum value is then passed on to the
functions that build the tree with the minimum value in its leaves. These functions
receive the minimum value from their parent tree node: they inherit the minimum
value from their parent.

We can see the rep min computation as a computation on a value of type Tree,
on which two attributes are defined: the minimum and result tree attributes. The
minimum is computed bottom-up, and is then passed down to the result tree, and is
therefore a synthesized and inherited attribute. The result tree is computed bottom-
up, and is hence a synthesized attribute.

The formalism in which it is possible to specify such attributes and computations
on datatypes or grammars is called attribute grammars, and was originally proposed
by Donald Knuth in [9]. Attribute grammars provide a solution for the systematic
description of the phases of the compiler that come after scanning and parsing. Al-
though they look different from what we have encountered thus far and are probably
a little easier to write, they can straightforwardly be mapped onto a functional pro-
gram. The programs you have seen in this chapter could also have been obtained
by means of such a mapping from an attribute grammar specification. Traditionally
such attribute grammars are used as the input of a compiler generator. Just as we
have seen how by introducing a suitable set of parsing combinators one may avoid
the use of a special parser generator and even gain a lot of flexibility in extending
the grammatical formalism by introducing more complicated combinators, we have
shown how one can do without a special purpose attribute grammar processing sys-
tem. But, just as the concept of a context free grammar was useful in understanding
the fundamentals of parser combinators, understanding attribute grammars will help
significantly in describing the semantic part of the recognition and compilation pro-
cess. This chapter does not further introduce attribute grammars, but they will
appear again in the course in implementing programming languages.
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Introduction

The first phase of a compiler takes an input program, and splits the input into a
list of terminal symbols: keywords, identifiers, numbers, punctuation, etc. Regular
expressions are used for the description of the terminal symbols. A regular grammar
is a particular kind of context-free grammar that can be used to describe regular
expressions. Finite-state automata can be used to recognise sentences of regular
grammars. This chapter discusses all of these concepts, and is organised as follows.
Section 8.1 introduces finite-state automata. Finite-state automata appear in two
versions, nondeterministic and deterministic ones. Section 8.1.4 shows that a non-
deterministic finite-state automaton can be transformed into a deterministic finite-
state automaton, so you don’t have to worry about whether or not your automaton is
deterministic. Section 8.2 introduces regular grammars (context-free grammars of a
particular form), and regular languages. Furthermore, it shows their equivalence with
finite-state automata. Section 8.3 introduces regular expressions as finite descriptions
of regular languages and shows that such expressions are another, equivalent, tool
for regular languages. Finally, Section 8.4 gives some of the proofs of the results of
the previous sections.

Goals

After you have studied this chapter you will know that

• regular languages are a subset of context-free languages;
• it is not always possible to give a regular grammar for a context-free grammar;
• regular grammars, finite-state automata and regular expressions are three dif-

ferent tools for regular languages;
• regular grammars, finite-state automata and regular expressions have the same

expressive power;
• finite-state automata appear in two, equally expressive, versions: deterministic

and nondeterministic.

8.1. Finite-state automata

The classical approach to recognising sentences from a regular language uses finite-
state automata. A finite-state automaton can be viewed as a simple form of digital
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computer with only a finite number of states, no temporary storage, an input file but
only the possibility to read it, and a control unit which records the state transitions.
A rather limited medium, but a useful tool in many practical subproblems. A finite-
state automaton can easily be implemented by a function that takes time linear in
the length of its input, and constant space. This implies that problems that can be
solved by means of a finite-state automaton, can be implemented by means of very
efficient programs.

8.1.1. Deterministic finite-state automata

Finite-state automata come in two flavours: deterministic and nondeterministic. We
start with a description of deterministic finite-state automata, the simplest form of
automata.

Definition 8.1 (Deterministic finite-state automaton, DFA). A deterministic finite-
state automaton (DFA) is a 5-tuple (X,Q, d, S, F ) where

deterministic
finite-state
automaton

• X is the input alphabet,
• Q is a finite set of states,
• d :: Q→ X → Q is the state transition function,
• S ∈ Q is the start state,
• F ⊆ Q is the set of accepting states.

As an example, consider the DFA M0 = (X,Q, d, S, F ) with

X = {a, b, c}
Q = {S,A,B,C}
F = {C}

where state transition function d is defined by

d S a = C

d S b = A

d S c = S

d A a = B

d B c = C

For human beings, a finite-state automaton is more comprehensible in a graphical
representation. The following representation is customary: states are depicted as
the nodes in a graph; accepting states get a double circle; start states are explicitly
mentioned or indicated otherwise. The transition function is represented by the
edges: whenever d Qi x is a state Qj , then there is an arrow labelled x from Qi to Qj .
The input alphabet is implicit in the labels. For automaton M0 above, the pictorial
representation is:
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S

c

// a //

b

��

C

A
a //

B

c

OO

Note that d is a partial function: for example d B a is not defined. We can make d
into a total function by introducing a new ‘sink’ state, the result state of all undefined
transitions. For example, in the above automaton we can introduce a sink state D
with d D x = D for all terminals x, and d E x = D for all states E and terminals
x for which d E x is undefined. The sink state and the transitions from/to it are
almost always omitted.

The action of a DFA on an input string is described as follows: given a sequence w
of input symbols, w can be ‘processed’ symbol by symbol (from left to right) and —
depending on the specific input symbol — the DFA (initially in the start state) moves
to the state as determined by its state transition function. If no move is possible, the
automaton blocks. When the complete input has been processed and the DFA is in
one of its accepting states, then we say that w is accepted by the automaton.

accept

To illustrate the action of an DFA, we will show that the sentence bac is accepted
by M0. We do so by recording the successive configurations, i.e. the pairs of current
state and remaining input values.

(S, bac)
7→

(A, ac)
7→

(B, c)
7→

(C, ε)

Because of the deterministic behaviour of a DFA the definition of acceptance by
a DFA is relatively easy. Informally, a sequence w ∈ X∗ is accepted by a DFA
(X,Q, d, S, F ), if it is possible, when starting the DFA in S, to end in an accepting
state after processing w. This operational description of acceptance is formalised in
the predicate dfa accept . The predicate will be derived in a top-down fashion, i.e. we
formulate the predicate in terms of (“smaller”) subcomponents and afterwards we
give solutions to the subcomponents.
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Suppose dfa is a function that reflects the behaviour of the DFA, i.e. a function which
given a transition function, a start state and a string, returns the unique state that is
reached after processing the string starting from the start state. Then the predicate
dfa accept is defined by:

dfa accept :: X∗ → (Q→ X → Q,Q, {Q})→ Bool

dfa accept w (d, S, F ) = (dfa d S w) ∈ F

It remains to construct a definition of function dfa that takes a transition function,
a start state, and a list of input symbols, and reflects the behaviour of a DFA. The
definition of dfa is straightforward

dfa :: (Q→ X → Q)→ Q→ X∗ → Q
dfa d q ε = q
dfa d q (ax) = dfa d (d q a) x

Note that both the type and the definition of dfa match the pattern of the function
foldl , and it follows that the function dfa is actually identical to foldl .

dfa d q = foldl d q.

Definition 8.2 (Acceptance by a DFA). The sequence w ∈ X∗ is accepted by DFA
(X,Q, d, S, F ) if

dfa accept w (d, S, F )

where

dfa accept w (d, qs, fs) = dfa d qs w ∈ fs
dfa d qs = foldl d qs

Using the predicate dfa accept , the language of a DFA is defined as follows.

Definition 8.3 (Language of a DFA). For DFA M = (X,Q, d, S, F ), the language
of M , Ldfa(M), is defined by

Ldfa(M) = {w ∈ X∗ | dfa accept w (d, S, F )}

8.1.2. Nondeterministic finite-state automata

This subsection introduces nondeterministic finite-state automata and defines their
semantics, i.e. the language of a nondeterministic finite-state automaton.

The transition function of a DFA returns a state, which implies that for all terminal
symbols x and for all states t there can only be one edge starting in t labelled with
x. Sometimes it is convenient to have two or more edges labelled with the same
terminal symbol from a state. In these cases one can use a nondeterministic finite-
state automaton. Nondeterministic finite state automata are defined as follows.
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Definition 8.4 (Nondeterministic finite-state automaton, NFA). A nondeterministic
finite-state automaton (NFA) is a 5-tuple (X,Q, d,Q0, F ), where

nondeterministic
finite-state
automaton

• X is the input alphabet,
• Q is a finite set of states,
• d :: Q→ X → {Q} is the state transition function,
• Q0 ⊆ Q is the set of start states,
• F ⊆ Q is the set of accepting states.

An NFA differs from a DFA in that there may be more than one start state and that
there may be more than one possible move for each state and input symbol. Here is
an example of an NFA:

S

c

// a //

b

��

C

A
a //

a

oo

B

c

OO

Note that this NFA is very similar to the DFA in the previous section: the only
difference is that there are two outgoing arrows labelled with a from state A. Thus
the DFA becomes an NFA.

Formally, this NFA is defined as M1 = (X,Q, d,Q0, F ) with

X = {a, b, c}
Q = {S,A,B,C}
Q0 = {S}
F = {C}

where state transition function d is defined by

d S a = {C}
d S b = {A}
d S c = {S}
d A a = {S,B}
d B c = {C}

Again d is a partial function, which can be made total by adding d D x = { } for all
states D and all terminal symbols x for which d D x is undefined.
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Since an NFA can make an arbitrary (nondeterministic) choice for one of its possible
moves, we have to be careful in defining what it means that a sequence is accepted
by an NFA. Informally, sequence w ∈ X∗ is accepted by NFA (X,Q, d,Q0, F ), if it
is possible, when starting the NFA in a state from Q0, to end in an accepting state
after processing w. This operational description of acceptance is formalised in the
predicate nfa accept .

Assume that we have a function, say nfa, which reflects the behaviour of the NFA.
That is a function which given a transition function, a set of start states and a string,
returns all possible states that can be reached after processing the string starting in
some start state. Then the predicate nfa accept can be expressed as

nfa accept :: X∗ → (Q→ X → {Q}, {Q}, {Q})→ Bool
nfa accept w (d,Q0, F ) = nfa d Q0 w ∩ F 6= ∅

Now it remains to find a function nfa d qs of type X∗ → {Q} that reflects the
behaviour of the NFA. For lists of length 1 such a function, called deltas, is defined
by

deltas :: (Q→ X → {Q})→ {Q} → X → {Q}
deltas d qs a = {r | q ∈ qs, r ∈ d q a}

The behaviour of the NFA on X-sequences of arbitrary length follows from this “one
step” behaviour:

nfa :: (Q→ X → {Q})→ {Q} → X∗ → {Q}
nfa d qs ε = qs
nfa d qs (ax) = nfa d (deltas d qs a) x

Again, it follows that nfa can be written as a foldl.

nfa d qs = foldl (deltas d) qs

This concludes the definition of predicate nfa accept . In summary we have derived

Definition 8.5 (Acceptance by an NFA). The sequence w ∈ X∗ is accepted by NFA
(X,Q, d,Q0, F ) if

nfa accept w (d,Q0, F )

where

nfa accept w (d, qs, fs) = nfa d qs w ∩ fs 6= ∅
nfa d qs = foldl (deltas d) qs
deltas d qs a = {r | q ∈ qs, r ∈ d q a}

Using the nfa accept-predicate, the language of an NFA is defined by
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Definition 8.6 (Language of an NFA). For NFA M = (X,Q, d,Q0, F ), the language
of M , Lnfa(M), is defined by

Lnfa(M) = {w ∈ X∗ | nfa accept w (d,Q0, F )}

Note that it is computationally expensive to determine whether or not a list is an
element of the language of a nondeterministic finite-state automaton. This is due to
the fact that all possible transitions have to be tried in order to determine whether or
not the automaton can end in an accepting state after reading the input. Determining
whether or not a list is an element of the language of a deterministic finite-state
automaton can be done in time linear in the length of the input list, so from a
computational view, deterministic finite-state automata are preferable. Fortunately,
for each nondeterministic finite-state automaton there exists a deterministic finite-
state automaton that accepts the same language. We will show how to construct a
DFA from an NFA in subsection 8.1.4.

8.1.3. Implementation

This section describes how to implement finite state machines. We start with imple-
menting DFA’s. Given a DFA M = (X,Q, d, S, F ), we define two datatypes:

data StateM = ... deriving Eq

data SymbolM = ...

where the states of M (the elements of the set Q) are listed as constructors of StateM,
and the symbols of M (the elements of the setX) are listed as constructors of SymbolM.
Furthermore, we define three values (one of which a function):

start :: StateM

delta :: SymbolM -> StateM -> StateM

finals :: [StateM]

Note that the first two arguments of delta have changed places: this has been done in
order to be able to apply ‘partial evaluation’ later. The extended transition function
dfa and the accept function dfaAccept are now defined by:

dfa :: [SymbolM] -> StateM

dfa = foldl (flip delta) start

dfaAccept :: [SymbolM] -> Bool

dfaAccept xs = elem (dfa xs) finals
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Given a list of symbols [x1,x2,...,xn], the computation of dfa [x1,x2,...,xn]

uses the following intermediate states:

start, delta x1 start, delta x2 (delta x1 start),...

This list of states is determined uniquely by the input [x1,x2,...,xn] and the start
state.

Since we want to use the same function names for different automata, we introduce
the following class:

class Eq a => DFA a b where

start :: a

delta :: b -> a -> a

finals :: [a]

dfa :: [b] -> a

dfa = foldl (flip delta) start

dfaAccept :: [b] -> Bool

dfaAccept xs = elem (dfa xs) finals

Note that the functions dfa and dfaAccept are defined once and for all for all in-
stances of the class DFA.

As an example, we give the implementation of the example DFA (called MEX here)
given in the previous subsection.

data StateMEX = A | B | C | S deriving Eq

data SymbolMEX = SA | SB | SC

So the state A is represented by A, and the symbol a is represented by SA, and similar
for the other states and symbols. The automaton is made an instance of class DFA

as follows:

instance DFA StateMEX SymbolMEX where

start = S

delta x S = case x of SA -> C

SB -> A

SC -> S

delta SA A = B

delta SC B = C

finals = [C]
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We can improve the performance of the automaton (function) dfa by means of partial
evaluation. The main idea of partial evaluation is to replace computations that

partial evaluation
are performed often at run-time by a single computation that is performed only
once at compile-time. A very simple example is the replacement of the expression
if True then f1 else f2 by the expression f1. Partial evaluation applies to finite
automatons in the following way.

dfa [x1,x2,...,xn]

=

foldl (flip delta) start [x1,x2,...,xn]

=

foldl (flip delta) (delta x1 start) [x2,...,xn]

=

case x1 of

SA -> foldl (flip delta) (delta SA start) [x2,...,xn]

SB -> foldl (flip delta) (delta SB start) [x2,...,xn]

SC -> foldl (flip delta) (delta SC start) [x2,...,xn]

All these equalities are simple transformation steps for functional programs. Note
that the first argument of foldl is always flip delta, and the second argument is
one of the four states S, A, B, or C (the result of delta). Since there are only a finite
number of states (four, to be precise), we can define a transition function for each
state:

dfaS, dfaA, dfaB, dfaC :: [Symbol] -> State

Each of these functions is a case expression over the possible input symbols.

dfaS [] = S

dfaS (x:xs) = case x of SA -> dfaC xs

SB -> dfaA xs

SC -> dfaS xs

dfaA [] = A

dfaA (x:xs) = case x of SA -> dfaB xs

dfaB [] = B

dfaB (x:xs) = case x of SC -> dfaC xs

dfaC [] = C

With this definition of the finite automaton, the number of steps required for com-
puting the value of dfaS xs for some list of symbols xs is reduced considerably.
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The implementation of NFA’s is similar to the implementation of DFA’s. The only
difference is that the transition and accept functions have to take care of sets (lists)
of states now. We will use the following class, in which we use some names that
also appear in the class DFA. This is a problem if the two classes appear in the same
module.

class Eq a => NFA a b where

start :: [a]

delta :: b -> a -> [a]

finals :: [a]

nfa :: [b] -> [a]

nfa = foldl (flip deltas) start

deltas :: b -> [a] -> [a]

deltas a = union . map (delta a)

nfaAccept :: [b] -> Bool

nfaAccept xs = intersect (nfa xs) finals /= []

Here, functions union and intersect are implemented as follows:

union :: Eq a => [[a]] -> [a]

union = nub . concat

nub :: Eq a => [a] -> [a]

nub = foldr (\x xs -> x:filter (/=x) xs) []

intersect :: Eq a => [a] -> [a] -> [a]

intersect xs ys = intersect’ (nub xs)

where intersect’ =

foldr (\x xs -> if x ‘elem‘ ys then x:xs else xs) []

8.1.4. Constructing a DFA from an NFA

Is it possible to express more languages by means of nondeterministic finite-state
automata than by deterministic finite-state automata? For each nondeterministic
automaton it is possible to give a deterministic finite-state automaton such that
both automata accept the same language, so the answer to the above question is no.
Before we give the formal proof of this claim, we illustrate the construction of a DFA
for an NFA in an example.
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Consider the nondeterministic finite-state automaton corresponding with the example
grammar of the previous subsection.

S

c

// a //

b

��

C

A
a //

a

oo

B

c

OO

The nondeterminicity of this automaton appears in state A: two outgoing arcs of A
are labelled with an a. Suppose we add a new state D, with an arc from A to D
labelled a, and we remove the arcs labelled a from A to S and from A to B. Since D
is a merge of the states S and B we have to merge the outgoing arcs from S and B
into outgoing arcs of D. We obtain the following automaton.

S

c

// a //

b

��

C

A
a //

D

b

��

c

__

a,c

??

B

c

OO

We omit the proof that the language of the latter automaton is equal to the language
of the former one. Although there is just one outgoing arc from A labelled with a,
this automaton is still nondeterministic: there are two outgoing arcs labelled with
c from D. We apply the same procedure as above. Add a new state E and an arc
labelled c from D to E, and remove the two outgoing arcs labelled c from D. Since
E is a merge of the states C and S we have to merge the outgoing arcs from C and
S into outgoing arcs of E. We obtain the following automaton.

S

c

// a //

b

��

C

A
a //

D

b

��

a

==

c //
E

a

FF

c

ee

b�� B

c

OO
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Again, we do not prove that the language of this automaton is equal to the language
of the previous automaton, provided we add the state E to the set of accepting
states, which until now consisted just of state C. State E is added to the set of
accepting states because it is the merge of a set of states among which at least one
belongs to the set of accepting states. Note that in this automaton for each state, all
outgoing arcs are labelled differently, i.e. this automaton is deterministic. The DFA
constructed from the NFA above is the 5-tuple (X,Q, d, S, F ) with

X = {a, b, c}
Q = {S,A,B,C,D,E}
F = {C,E}

where transition function d is defined by

d S a = C

d S b = A

d S c = S

d A a = D

d B c = C

d D a = C

d D b = A

d D c = E

d E a = C

d E b = A

d E c = S

This construction is called the ‘subset construction’. In general, the construction
works as follows. Suppose M = (X,Q, d,Q0, F ) is a nondeterministic finite-state au-
tomaton. Then the finite-state automaton M ′ = (X ′, Q′, d′, Q′0, F

′), the components
of which are defined below, accepts the same language.

X ′ = X

Q′ = subs Q

where subs returns all subsets of a set. subs Q is also called the powerset of Q. For
example,

subs :: {X} → {{X}}
subs {A,B} = {{ }, {A}, {A,B}, {B}}

For the other components of M ′ we define

d′ q a = {t | t ∈ d r a, r ∈ q}
Q′0 = {Q0}
F ′ = {p | p ∩ F 6= ∅, p ∈ Q′}
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The proof of the following theorem is given in Section 8.4.

Theorem 8.7 (DFA for NFA). For every nondeterministic finite-state automaton M
there exists a finite-state automaton M ′ such that

Lnfa(M) = Ldfa(M ′)

Theorem 8.7 enables us to freely switch between NFA’s and DFA’s. Equipped with
this knowledge we continue the exploration of regular languages in the following
section. But first we show that the transformation from an NFA to a DFA is an
instance of partial evaluation.

8.1.5. Partial evaluation of NFA’s

Given a nondeterministic finite state automaton we can obtain a deterministic finite
state automaton not just by means of the above construction, but also by means of
partial evaluation.

Just as for function dfa, we can calculate as follows with function nfa.

nfa [x1,x2,...,xn]

=

foldl (flip deltas) start [x1,x2,...,xn]

=

foldl (flip deltas) (deltas x1 start) [x2,...,xn]

=

case x1 of

SA -> foldl (flip deltas) (deltas SA start) [x2,...,xn]

SB -> foldl (flip deltas) (deltas SB start) [x2,...,xn]

SC -> foldl (flip deltas) (deltas SC start) [x2,...,xn]

Note that the first argument of foldl is always flip deltas, and the second argu-
ment is one of the six sets of states [S], [A], [B], [C], [B,S], [C,S] (the possible
results of deltas). Since there are only a finite number of results of deltas (six, to
be precise), we can define a transition function for each state:

nfaS, nfaA, nfaB, nfaC, nfaBS, nfaCS :: [Symbol] -> [State]

For example,

nfaA [] = A

nfaA (x:xs) = case x of

SA -> nfaBS xs

_ -> error "no transition possible"
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Each of these functions is a case expression over the possible input symbols. By
partially evaluating the function nfa we have obtained a function that is the imple-
mentation of the deterministic finite state automaton corresponding to the nondeter-
ministic finite state automaton.

8.2. Regular grammars

This section defines regular grammars, a special kind of context-free grammars. Sub-
section 8.2.1 gives the correspondence between nondeterministic finite-state automata
and regular grammars.

Definition 8.8 (Regular Grammar). A regular grammar G is a context free grammar
regular grammar

(T,N,R, S) in which all production rules in R are of one of the following two forms:

A → xB

A → x

with x ∈ T ∗ and A,B ∈ N . So in every rule there is at most one nonterminal, and
if there is a nonterminal present, it occurs at the end.

The regular grammars as defined here are sometimes called right-regular grammars.
There is a symmetric definition for left-regular grammars.

Definition 8.9 (Regular Language). A regular language is a language that is gen-
regular language

erated by a regular grammar.

From the definition it is clear that each regular language is context-free. The question
is now: Is each context-free language regular? The answer is: No. There are context-
free languages that are not regular; an example of such a language is {anbn | n ∈ N}.
To understand this, you have to know how to prove that a language is not regular.
Because of its subtlety, we postpone this kind of proofs until Chapter 9. Here it
suffices to know that regular languages form a proper subset of context-free languages
and that we will profit from their speciality in the recognition process.

A first similarity between regular languages and context-free languages is that both
are closed under union, concatenation and Kleene-star.

Theorem 8.10. Let L and M be regular languages, then

L ∪M is regular

LM is regular

L∗ is regular
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Proof. Let GL = (T,NL, RL, SL) and GM = (T,NM , RM , SM ) be regular grammars
for L and M respectively, then

• for regular grammars, the well-known union construction for context-free gram-
mars is a regular grammar again;
• we obtain a regular grammar for LM if we replace, in GL, each production of

the form T → x and T → ε by T → xSM and T → SM , respectively;
• since L∗ = {ε} ∪ LL∗, it follows from the above that there exists a regular

grammar for L∗.

In addition to these closure properties, regular languages are closed under intersection
and complement too. See the exercises. This is remarkable because context-free
languages are not closed under these operations. Recall the language L = L1 ∩ L2

where L1 = {anbncm | n,m ∈ N} and L2 = {anbmcm | n,m ∈ N}.

As for context-free languages, there may exist more than one regular grammar for
a given regular language and these regular grammars may be transformed into each
other.

We conclude this section with a grammar transformation:

Theorem 8.11. For each regular grammar G there exists a regular grammar G′ with
start-symbol S′ such that

L(G) = L(G′)

and such that G′ has no productions of the form U → V and W → ε, with V a single
nonterminal and W 6= S′.
In other words: every regular grammar can be transformed to a form where every
production has a nonempty terminal string in its right hand side (with a possible
exception for S → ε).

The proof of this transformation is omitted, we only briefly describe the construction
of such a regular grammar, and illustrate the construction with an example.

Given a regular grammar G, a regular grammar with the same language but without
productions of the form U → V and W → ε for all U , V , and all W 6= S is obtained
as follows. First, consider all pairs Y , Z of nonterminals of G such that Y

∗⇒ Z.
Add productions Y → z to the grammar, with Z → z a production of the original
grammar, and z not a single nonterminal. Remove all productions U → V from
G. Finally, remove all productions of the form W → ε for W 6= S, and for each
production U → xW add the production U → x. The following example illustrates
this construction.
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Consider the following regular grammar G.

S → aA

S → bB

S → A

S → C

A → bB

A → S

A → ε

B → bB

B → ε

C → c

The grammar G′ of the desired form is constructed in 3 steps.

Step 1
Let G′ equal G.

Step 2
Consider all pairs of nonterminals Y and Z. If Y

∗⇒Z, add the productions Y → z to
G′, with Z → z a production of the original grammar, and z not a single nonterminal.
Furthermore, remove all productions of the form U → V from G′. In the example
we remove the productions S → A, S → C, A → S, and we add the productions
S → bB and S → ε since S

∗⇒ A, and the production S → c since S
∗⇒ C, and the

productions A → aA and A → bB since A
∗⇒ S, and the production A → c since

A
∗⇒ C. We obtain the grammar with the following productions.

S → aA

S → bB

S → c

S → ε

A → bB

A → aA

A → c

A → ε

B → bB

B → ε

C → c

This grammar generates the same language as G, and has no productions of the form
U → V . It remains to remove productions of the form W → ε for W 6= S.
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Step 3
Remove all productions of the form W → ε for W 6= S, and for each production
U → xW add the production U → x. Applying this transformation to the above
grammar gives the following grammar.

S → aA

S → bB

S → a

S → b

S → c

S → ε

A → bB

A → aA

A → a

A → b

A → c

B → bB

B → b

C → c

Each production in this grammar is of one of the desired forms: U → x or U → xV ,
and the language of the grammar G′ we thus obtain is equal to the language of
grammar G.

8.2.1. Equivalence of Regular grammars and Finite automata

In the previous section, we introduced finite-state automata. Here we show that
regular grammars and nondeterministic finite-state automata are two sides of one
coin.

We will prove the equivalence using theorem 8.7. The equivalence consists of two
parts, formulated in the theorems 8.12 and 8.13 below. The basis for both theorems
is the direct correspondence between a production A→ xB and a transition

A
x //

B

Theorem 8.12 (Regular grammar for NFA). For each NFA M there exists a regular
grammar G such that

Lnfa(M) = L(G)
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Proof. We will just sketch the construction, the formal proof can be found in the
literature. Let (X,Q, d, S, F ) be a DFA for NFA M . Construct the grammar G =
(X,Q,R, S) where

• the terminals of the grammar are the input alphabet of the automaton;
• the nonterminals of the grammar are the states of the automaton;
• the start state of the grammar is the start state of the automaton;
• the productions of the grammar correspond to the automaton transitions:

a rule A→ xB for each transition

A
x //

B

a rule A→ ε for each terminal state A.
In formulae:

R = {A→ xB | A,B ∈ Q, x ∈ X, d A x = B}
∪ {A→ ε | A ∈ F}

Theorem 8.13 (NFA for regular grammar). For each regular grammar G there exists
a nondeterministic finite-state automaton M such that

L(G) = Lnfa(M)

Proof. Again, we will just sketch the construction, the formal proof can be found in
the literature. The construction consists of two steps: first we give a direct translation
of a regular grammar to an automaton and then we transform the automaton into a
suitable shape.

From a grammar to an automaton. Let G = (T,N,R, S) be a regular grammar
without productions of the form U → V and W → ε for W 6= S.
Construct NFA M = (X,Q, d, {S}, F ) where

• The input alphabet of the automaton are the nonempty terminal strings (!)
that occur in the rules of the grammar:

X = {x ∈ T+ | A,B ∈ N,A→ xB ∈ R}
∪ {x ∈ T+ | A ∈ N,A→ x ∈ R}

• The states of the automaton are the nonterminals of the grammar extended
with a new state Nf .

Q = N ∪ {Nf}
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• The transitions of the automaton correspond to the grammar productions:
for each rule A→ xB we get a transition

A
x //

B

for each rule A→ x with nonempty x, we get a transition

A
x // Nf

In formulae: For all A ∈ N and x ∈ X:

d A x = {B | B ∈ N,A→ xB ∈ R}
∪ {Nf | A→ x ∈ R}

• The final states of the automaton are Nf and possibly S, if S → ε is a grammar
production.

F = {Nf} ∪ {S | S → ε ∈ R}

Lnfa(M) = L(G), because of the direct correspondence between derivation steps in
G and transitions in M .

Transforming the automaton to a suitable shape. There is a minor flaw in the au-
tomaton given above: the grammar and the automaton have different alphabets.
This shortcoming will be remedied by an automaton transformation which yields an
equivalent automaton with transitions labelled by elements of T (instead of T ∗). The
transformation is relatively easy and is depicted in the diagram below. In order to
eliminate transition d q x = q′ where x = x1x2 . . . xk+1 with k > 0 and xi ∈ T for
all i, add new (nonfinal) states p1, . . . , pk to the existing ones and new transitions
d q x1 = p1, d p1 x2 = p2, . . . , d pk xk+1 = q′.

b
q

x1x2...xk+1

b
q′

b
q

x1

b
p1

x2

b
p2

b
pk

xk+1

b
q′

- - - p p p p p p p p p p p p p p p p p p -

It is intuitively clear that the resulting automaton is equivalent to the original one.
Carry out this transformation for each M -transition d q x = q′ with |x| > 1 in order
to get an automaton for G with the same input alphabet T .
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8.3. Regular expressions

Regular expressions are a classical and convenient way to describe, for example, the
structure of terminal words. This section defines regular expressions, defines the
language of a regular expression, and shows that regular expressions and regular
grammars are equally expressive formalisms. We do not discuss implementations of
(datatypes and functions for matching) regular expressions; implementations can be
found in the literature [8, 6].

Definition 8.14 (RET , regular expressions over alphabet T ). The set RET of regular
expressions over alphabet T is inductively defined as follows: for regular expressions

regular expression
R,S

∅ ∈ RET

ε ∈ RET

a ∈ RET

R+ S ∈ RET

RS ∈ RET

R∗ ∈ RET

(R) ∈ RET

where a ∈ T . The operator + is associative, commutative, and idempotent; the
concatenation operator, written as juxtaposition (so x concatenated with y is denoted
by xy), is associative, and ε is the unit of it. In formulae this reads, for all regular
expressions R, S, and V ,

R+ (S + U) = (R+ S) + U

R+ S = S +R

R+R = R

R (S U) = (RS)U

R ε = R (= εR)

Furthermore, the star operator, ∗, binds stronger than concatenation, and concate-
nation binds stronger than +. Examples of regular expressions are:

(bc)∗+ ∅
ε+ b(ε∗)

The language (i.e. the “semantics”) of a regular expression over T is a set of T -
sequences compositionally defined on the structure of regular expressions. As fol-
lows.
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Definition 8.15 (Language of a regular expression). Function Lre :: RET → {T ∗}
returns the language of a regular expression. It is defined inductively by:

Lre(∅) = ∅
Lre(ε) = {ε}
Lre(b) = {b}

Lre(x+ y) = Lre(x) ∪ Lre(y)

Lre(xy) = Lre(x) Lre(y)

Lre(x∗) = (Lre (x))∗

Since ∪ is associative, commutative, and idempotent, set concatenation is associative
with {ε} as its unit, and function Lre is well defined. Note that the language Lreb∗
is the set consisting of zero, one or more concatenations of b, i.e., Lre(b∗) = ({b})∗.
As an example of a language of a regular expression, we compute the language of the
regular expression (ε+ bc)d.

Lre((ε+ bc)d)
=

(Lre(ε+ bc)) (Lre(d))
=

(Lre(ε) ∪ Lre(bc)){d}
=

({ε} ∪ (Lre(b))(Lre(c))){d}

=
{ε, bc} {d}

=

{d, bcd}

Regular expressions are used to describe the tokens of a language. For example, the
list

if p then e1 else e2

contains six tokens, three of which are identifiers. An identifier is an element in the
language of the regular expression

letter(letter + digit)∗

where

letter = a + b + . . .+ z +

A + B + . . .+ Z

digit = 0 + 1 + . . .+ 9
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see subsection 2.3.1.

In the beginning of this section we claimed that regular expressions and regular
grammars are equivalent formalisms. We will prove this claim later, but first we
illustrate the construction of a regular grammar out of a regular expressions in an
example. Consider the following regular expression.

R = a∗+ ε+ (a + b)∗

We aim at a regular grammar G such that Lre(R) = L(G) and again we take a
top-down approach.

Suppose that nonterminal A generates the language Lre(a∗), nonterminal B generates
the language Lre(ε), and nonterminal C generates the language Lre((a + b)∗). Sup-
pose furthermore that the productions for A, B, and C satisfy the conditions imposed
upon regular grammars. Then we obtain a regular grammar G with L(G) = Lre(R)
by defining

S → A

S → B

S → C

where S is the start-symbol of G. It remains to construct productions for nontermi-
nals A, B, and C.

• The nonterminal A with productions

A → aA

A → ε

generates the language Lre(a∗).

• Since Lre(ε) = {ε}, the nonterminal B with production

B → ε

generates the language {ε}.

• Nonterminal C with productions

C → aC

C → bC

C → ε

generates the language Lre((a + b)∗).

For a specific example it is not difficult to construct a regular grammar for a regular
expression. We now give the general result.
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Theorem 8.16 (Regular Grammar for Regular Expression). For each regular ex-
pression R there exists a regular grammar G such that

Lre(R) = L(G)

The proof of this theorem is given in Section 8.4.

To obtain a regular expression that generates the same language as a given regular
grammar we go via an automaton. Given a regular grammar G, we can use the
theorems from the previous sections to obtain a DFA D such that

L(G) = Ldfa(D)

So if we can obtain a regular expression for a DFA D, we have found a regular ex-
pression for a regular grammar. To obtain a regular expression for a DFA D, we
interpret each state of D as a regular expression defined as the sum of the concate-
nation of outgoing terminal symbols with the resulting state. For our example DFA
we obtain:

S = aC + bA+ cS

A = aB

B = cC

C = ε

It is easy to merge these four regular expressions into a single regular expression,
partially because this is a simple example. Merging the regular expressions obtained
from a DFA that may loop is more complicated, as we will briefly explain in the proof
of the following theorem. In general, we have:

Theorem 8.17 (Regular Expression for Regular Grammar). For each regular gram-
mar G there exists a regular expression R such that

L(G) = Lre(R)

The proof of this theorem is given in Section 8.4.

8.4. Proofs

This section contains the proofs of some of the theorems given in this chapter.
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8.4.1. Proof of Theorem 8.7

Suppose M = (X,Q, d,Q0, F ) is a nondeterministic finite-state automaton. Define
the finite-state automaton M ′ = (X ′, Q′, d′, Q′0, F

′) as follows.

X ′ = X

Q′ = subs Q

where subs returns the powerset of a set. For example,

subs {A,B} = {{ }, {A}, {A,B}, {B}}

For the other components of M ′ we define

d′ q a = {t | t ∈ d r a, r ∈ q}
Q′0 = Q0

F ′ = {p | p ∩ F 6= ∅, p ∈ Q′}

We have

Lnfa(M)

= definition of Lnfa

{w | w ∈ X∗,nfa accept w (d,Q0, F )}
= definition of nfa accept

{w | w ∈ X∗, (nfa d Q0 w ∩ F ) 6= ∅}
= definition of F ′

{w | w ∈ X∗,nfa d Q0 w ∈ F ′}
= assume nfa d Q0 w = dfa d′ Q′0 w

{w | w ∈ X∗, dfa d′ Q′0 w ∈ F ′}
= definition of dfa accept

{w | w ∈ X∗, dfa accept w (d′, Q′0, F
′)}

= definition of Ldfa

Ldfa(M ′)

It follows that Lnfa(M) = Ldfa(M ′) provided

nfa d Q0 w = dfa d′ Q′0 w (8.1)

We prove this equation as follows.
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nfa d Q0 w

= definition of nfa

foldl (deltas d) Q0 w

= Q0 = Q′0 ; assume deltas d = d′

foldl d′ Q′0 w

= definition of dfa

dfa d′ Q′0 w

So if

deltas d = d′

equation (8.1) holds. This equality follows from the following calculation.

d′ q a

= definition of d′

{t | r ∈ q, t ∈ d r a}
= definition of deltas

deltas d q a

8.4.2. Proof of Theorem 8.16

The proof of this theorem is by induction to the structure of regular expressions. For
the three base cases we argue as follows.

The regular grammar without productions generates the language Lre(∅). The regu-
lar grammar with the production S → ε generates the language Lre(ε). The regular
grammar with production S → b generates the language Lre(b).

For the other three cases the induction hypothesis is that there exist a regular gram-
mar with start-symbol S1 that generates the language Lre(x), and a regular grammar
with start-symbol S2 that generates the language Lre(y).

We obtain a regular grammar with start-symbol S that generates the language
Lre(x+ y) by defining

S → S1

S → S2

We obtain a regular grammar with start-symbol S that generates the language
Lre(xy) by replacing, in the regular grammar that generates the language Lre(x),
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each production of the form T → a and T → ε by T → aS2 and T → S2, respec-
tively.

We obtain a regular grammar with start-symbol S that generates the language
Lre(x∗) by replacing, in the regular grammar that generates the language Lre(x),
each production of the form T → a and T → ε by T → aS and T → S, and by
adding the productions S → S1 and S → ε, where S1 is the start-symbol of the
regular grammar that generates the language Lre(x).

8.4.3. Proof of Theorem 8.17

In sections 8.1.4 and 8.2.1 we have shown that there exists a DFA D = (X,Q, d, S, F )
such that

L(G) = Ldfa(D)

So, if we can show that there exists a regular expression R such that

Ldfa(D) = Lre(R)

then the theorem follows.

Let D = (X,Q, d, S, F ) be a DFA such that L(G) = Ldfa(D). We define a regular
expression R such that

Lre(R) = Ldfa(D)

For each state q ∈ Q we define a regular expression q̄, and we let R be S̄. We obtain
the definition of q̄ by combining all pairs c and C such that d q c = C.

q̄ = if q /∈ F
then foldl (+) ∅ [cC | d q c = C]

else ε+ foldl (+) ∅ [cC | d q c = C]

This gives a set of possibly mutually recursive equations, which we have to solve. In
solving these equations we use the fact that concatenation distributes over the sum
operator:

z(x+ y) = zx+ zy

and that recursion can be removed by means of the star operator ∗:

A = xA+ z (where A /∈ z) ≡ A = x∗z

The algorithm for solving such a set of equations is omitted.

We prove Ldfa(D) = Lre(S̄).
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Ldfa(D)

= definition of Ldfa

{w | w ∈ X∗, dfa accept w (d, S, F )}
= definition of dfa accept

{w | w ∈ X∗, (dfa d S w) ∈ F}
= definition of dfa

{w | w ∈ X∗, (foldl d S w) ∈ F}
= assumption

{w | w ∈ Lre(S̄)}
= equality for set-comprehensions

Lre(S̄)

It remains to prove the assumption in the above calculation: for w ∈ X∗,

(foldl d S w) ∈ F ≡ w ∈ Lre(S̄)

We prove a generalisation of this equation, namely, for arbitrary q,

(foldl d q w) ∈ F ≡ w ∈ Lre(q̄)

This equation is proved by induction to the length of w. For the base case w = ε we
calculate as follows.

(foldl d q ε) ∈ F
≡ definition of foldl

q ∈ F
≡ definition of q̄, E abbreviates the fold expression

q̄ = ε+ E

≡ definition of Lre, definition of q̄

ε ∈ Lre(q̄)

The induction hypothesis is that for all lists w with |w| 6 n we have (foldl d q w) ∈
F ≡ w ∈ Lre(q̄). Suppose ax is a list of length n+1.

(foldl d q (ax)) ∈ F
≡ definition of foldl

(foldl d (d q a) x) ∈ F
≡ induction hypothesis

x ∈ Lre( ¯d q a)

≡ definition of q̄, D is deterministic

ax ∈ Lre(q̄)
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Summary

This chapter discusses methods for recognising sentences from regular languages, and
introduces several concepts related to describing and recognising regular languages.
Regular languages are used for describing simple languages like ‘the language of
identifiers’ and ‘the language of keywords’ and regular expressions are convenient for
the description of regular languages. The straightforward translation of a regular
expression into a recogniser for the language of that regular expression results in a
recogniser that is often very inefficient. By means of (non)deterministic finite-state
automata we construct a recogniser that requires time linear in the length of the
input list for recognising an input list.

8.5. Exercises

Exercise 8.1. Given a regular grammar G for language L, construct a regular grammar for
L∗.

Exercise 8.2. Transform the grammar with the following productions to a grammar without
productions of the form U → V and W → ε with W 6= S.

S → aA
S → A
A → aS
A → B
B → C
B → ε
C → cC
C → a

Exercise 8.3. Suppose that the state transition function d in the definition of a nondeter-
ministic finite-state automaton has the following type

d :: {Q} → X → {Q}

Function d takes a set of states V and an element a, and returns the set of states that are
reachable from V with an arc labelled a. Define a function ndfsa of type

({Q} → X → {Q})→ {Q} → X∗ → {Q}

which given a function d, a set of start states, and an input list, returns the set of states in
which the nondeterministic finite-state automaton can end after reading the input list.

Exercise 8.4. Prove the converse of Theorem 8.7: show that for every deterministic finite-
state automaton M there exists a nondeterministic finite-state automaton M ′ such that

Lda(M) = Lna(M ′)

Exercise 8.5. Regular languages are closed under complementation. Prove this claim. Hint:
construct a finite automaton for L out of an automaton for regular language L.
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Exercise 8.6. Regular languages are closed under intersection.

1. Prove this claim using the result from the previous exercise.
2. A direct proof form this claim is the following:

Let M1 = (X,Q1, d1, S1, F1) and M2 = (X,Q2, d2, S2, F2) be DFA’s for the regular
languages L1 and L2 respectively. Define the (product) automaton M = (X,Q1 ×
Q2, d, (S1, S2), F1×F2) by d (q1, q2) x = (d1 q1 x, d2 q2 x) Now prove that Ldfa(M) =
Ldfa(M1) ∩ Ldfa(M2)

Exercise 8.7. Define nondeterministic finite-state automata that accept languages equal to
the languages of the following regular grammars.

1.


S → (A
S → ε
S → )A
A → )
A → (

2.



S → 0A
S → 0B
S → 1A
A → 1
A → 0
B → 0
B → ε

Exercise 8.8. Describe the language of the following regular expressions.

1. ε+ b(ε∗)

2. (bc)∗+ ∅

3. a(b∗) + c∗

Exercise 8.9. Prove that for arbitrary regular expressions R, S, and T the following equiv-
alences hold.

Lre(R(S + T )) = Lre(RS +RT )

Lre((R+ S)T ) = Lre(RT + ST )

Exercise 8.10. Give regular expressions S and R such that

Lre(RS) = Lre(SR)

Lre(RS) 6= Lre(SR)

Exercise 8.11. Give regular expressions V and W , with Lre(V ) 6= Lre(W ), such that for
all regular expressions R and S with S 6= ∅

Lre(R(S + V )) = Lre(R(S +W ))

V and W may be expressed in terms of R and S.

Exercise 8.12. Give a regular expression for the language that consists of all lists of zeros
and ones such that the segment 01 occurs nowhere in a list. Examples of sentences of this
language are 1110, and 000.
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Exercise 8.13. Give regular grammars that generate the language of the following regular
expressions.

1. ((a + bb)∗+ c)∗

2. a∗+ b∗+ ab

Exercise 8.14. Give regular expressions of which the language equals the language of the
following regular grammars.

1.



S → bA
S → aC
S → ε
A → bA
A → ε
B → aC
B → bB
B → ε
C → bB
C → b

2.


S → 0S
S → 1T
S → ε
T → 0T
T → 1S

Exercise 8.15. Construct for each of the following regular expressions a nondeterministic
finite-state automaton that accepts the sentences of the language. Transform the nondeter-
ministic finite-state automata into deterministic finite-state automata.

1. a∗+ b∗+ (ab)

2. (1 + (12) + 0)∗(30)∗

Exercise 8.16. Define regular expressions for the languages of the following deterministic
finite-state automata.

1. Start state is S.

S
a //

b

//
A

b //

a

//
B

a,b

//

2. Start state is S.

S
a //

b

//
A

b //

b

�� B

b

��
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9. Pumping Lemmas:
the expressive power of languages

Introduction

In these lecture notes we have presented several ways to show that a language is
regular or context-free, but until now we did not give any means to show the non-
regularity or noncontext-freeness of a language. In this chapter we fill this gap by
introducing the so-called Pumping Lemmas. For example, the pumping lemma for
regular languages says

IF language L is regular,

THEN it has the following property P : each sufficiently long sentence w ∈ L has
a substring that can be repeated any number of times, every time yielding
another word of L

In applications, pumping lemmas are used in the contrapositive way. In the regular
case this means that one may conclude that L is not regular, if P does not hold.
Although the ideas behind pumping lemmas are very simple, a precise formulation
is not. As a consequence, it takes some effort to get familiar with applying pumping
lemmas. Regular grammars and context-free grammars are part of the Chomsky
hierarchy, which consists of four different kinds of grammars and their corresponding
languages. Pumping lemmas are used to show that the expressive power of the
different elements of the Chomsky hierarchy is different.

Goals

After you have studied this chapter you will be able to

• prove that a language is not regular;
• prove that a language is not context-free;
• identify languages and grammars as regular, context-free or none of these;
• give examples of languages that are not regular, and/or not context-free;
• explain the Chomsky hierarchy.
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9. Pumping Lemmas: the expressive power of languages

9.1. The Chomsky hierarchy

In the preceding chapters we have seen contex-free grammars and regular grammars.
You may now wonder: is it possible to express any language with these grammars?
And: is it possible to obtain any context-free language from a regular grammar? The
answer to these questions is no. The Chomsky hierarchy explains why the answer
is no. The Chomsky hierarchy consists of four elements, each of which is explained
below.

9.1.1. Type-0 grammars

The most powerful grammars are the type-0 grammars, in which a production has
the form φ → ψ, where φ ∈ V +, ψ ∈ V ∗, where V is the set of symbols of the
grammar. So the left-hand side of a production may consist of a list of nonterminal
and terminal symbols, instead of a single nonterminal as in context-free grammars.
Type-0 grammars have the same expressive power as Turing machines, and the lan-
guages described by these grammars are the recursive enumerable languages. This
expressive power comes at a cost though: it is very difficult to parse sentences from
type-0 grammars.

9.1.2. Type-1 grammars

We can slightly restrict the form of the productions to obtain type-1 grammars. In
a type-1, or context-sensitive grammar, each production has the form φAψ → φδψ,
where φ, ψ ∈ V ∗, δ ∈ V +. So a production describes how to rewrite a nonterminal
A, in the context of lists of symbols φ and ψ. A language generated by a context-
sensitive grammar is called a context-sensitive language. Although context-sensitive
grammars are less expressive than type-0 grammars, parsing is still very difficult for
context-sensitive grammars.

9.1.3. Type-2 grammars

The type-2 grammars are the context-free grammars which you have seen a lot in the
preceding chapters. As the name says, in a context-free grammar you can rewrite
nonterminals without looking at the context in which they appear. Actually, it is
impossible to look at the context when rewriting symbols. Context-free grammars
are less expressive than context-sensitive grammars. This statement can be proved
using the pumping lemma for context-free languages.

However, it is much easier to parse sentences from context-free languages. In fact, a
sentence of length n can be parsed in time at most O(n3) (or even a bit less than this)
for any sentence of a context-free language. And if we put some more restrictions
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on context-free grammars (for example LL(1)), we obtain linear-time algorithms for
parsing sentences of such grammars.

9.1.4. Type-3 grammars

The type-3 grammars in the Chomsky hierarchy are the regular grammars. Any sen-
tence from a regular language can be processed by means of a finite-state automaton,
which takes linear time and constant space in the size of its input. The set of regular
languages is strictly smaller than the set of context-free languages, a fact we will
prove below by means of the pumping lemma for regular languages.

9.2. The pumping lemma for regular languages

In this section we give the pumping lemma for regular languages. The lemma gives
a property that is satisfied by all regular languages. The property is a statement
of the form: in sentences longer than a certain length a substring can be identified
that can be duplicated while retaining a sentence. The idea behind this property
is simple: regular languages are accepted by finite automata. Given a DFA for a
regular language, a sentence of the language describes a path from the start state to
some finite state. When the length of such a sentence exceeds the number of states,
then at least one state is visited twice; consequently the path contains a cycle that
can be repeated as often as desired. The proof of the following lemma is given in
Section 9.4.

Theorem 9.1 (Regular Pumping Lemma). Let L be a regular language. Then

there exists n ∈ N :
for all x, y, z : xyz ∈ L and |y| > n :
there exist u, v, w : y = uvw and |v| > 0 :
for all i ∈ N : xuv iwz ∈ L

Note that |y| denotes the length of the string y. Also remember that ‘for all x ∈ X : · · · ’
is true if X = ∅, and ‘there exists x ∈ X : · · · ’ is false if X = ∅.
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9. Pumping Lemmas: the expressive power of languages

For example, consider the following automaton.

S
a //

A
b //

B

c

��
C

a

__

d

��
D

This automaton accepts: abcabcd, abcabcabcd, and, in general, a(bca)∗bcd. The
statement of the pumping lemma amounts to the following. Take for n the number
of states in the automaton (5). Let x, y, z be such that xyz ∈ L, and |y| > n.
Then we know that in order to accept y, the above automaton has to pass at least
twice through state A. The part that is accepted in between the two moments the
automaton passes through state A can be pumped up to create sentences that contain
an arbitrary number of copies of the string v = bca.

This pumping lemma is useful in showing that a language does not belong to the
family of regular languages. Its application is typical of pumping lemmas in general;
they are used negatively to show that a given language does not belong to some
family.

Theorem 9.1 enables us to prove that a language L is not regular by showing that

for all n ∈ N :
there exist x, y, z : xyz ∈ L and |y| > n :
for all u, v, w : y = uvw and |v| > 0 :
there exists i ∈ N : xuv iwz 6∈ L

In all applications of the pumping lemma in this chapter, this is the formulation we
will use.

Note that if n = 0, we can choose y = ε, and since there is no v with |v| > 0 such
that y = uvw, the statement above holds for all such v (namely none!).
As an example, we will prove that language L = {ambm | m > 0} is not regular.
Let n ∈ N.
Take s = anbn with x = ε, y = an, and z = bn.
Let u, v, w be such that y = uvw with v 6= ε, that is, u = ap, v = aq and w = ar with
p+ q + r = n and q > 0.
Take i = 2, then
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9.3. The pumping lemma for context-free languages

xuv2wz 6∈ L
⇐ defn. x, u, v, w, z, calculus

ap+2q+rbn 6∈ L
⇐ p+ q + r = n

n+ q 6= n

⇐ arithmetic

q > 0

⇐ q > 0

true

Note that the language L = {ambm | m > 0} is context-free, and together with the
fact that each regular grammar is also a context-free grammar it follows immedi-
ately that the set of regular languages is strictly smaller than the set of context-free
languages.

Note that here we use the pumping lemma (and not the proof of the pumping lemma)
to prove that a language is not regular. This kind of proof can be viewed as a kind of
game: ‘for all’ is about an arbitrary element which can be chosen by the opponent;
‘there exists’ is about a particular element which you may choose. Choosing the right
elements helps you ‘win’ the game, where winning means proving that a language is
not regular.

Exercise 9.1. Prove that the following language is not regular

{ak
2

| k > 0}

Exercise 9.2. Show that the following language is not regular.

{x | x ∈ {a, b}∗ ∧ nr a x < nr b x}

where nr a x is the number of occurrences of a in x.

Exercise 9.3. Prove that the following language is not regular

{akbm | k 6 m 6 2k}

Exercise 9.4. Show that the following language is not regular.

{akblam | k > 5 ∧ l > 3 ∧m 6 l}

9.3. The pumping lemma for context-free languages

The Pumping Lemma for context-free languages gives a property that is satisfied by
all context-free languages. This property is a statement of the form: in sentences ex-
ceeding a certain length, two sublists of bounded length can be identified that can be
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duplicated while retaining a sentence. The idea behind this property is the following.
Context-free languages are described by context-free grammars. For each sentence
in the language there exists a derivation tree. When sentences have a derivation tree
that is higher than the number of nonterminals, then at least one nonterminal will
occur twice in a node; consequently a subtree can be inserted as often as desired.

As an example of an application of the Pumping Lemma, consider the context-free
grammar with the following productions.

S → aAb

A → cBd

A → e

B → fAg

The following parse tree represents the derivation of the sentence acfegdb.

S

a A b

c B d

f A g

e

If we replace the subtree rooted by the lower occurrence of nonterminal A by the
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9.3. The pumping lemma for context-free languages

subtree rooted by the upper occurrence of A, we obtain the following parse tree.

S

a A b

c B d

f A g

c B d

f A g

e

This parse tree represents the derivation of the sentence acfcfegdgdb. Thus we ‘pump’
the derivation of sentence acfegdb to the derivation of sentence acfcfegdgdb. Repeat-
ing this step once more, we obtain a parse tree for the sentence

acfcfcfegdgdgdb

We can repeatedly apply this process to obtain derivation trees for all sentences of
the form

a(cf)ie(gd)ib

for i > 0. The case i = 0 is obtained if we replace in the parse tree for the sentence
acfegdb the subtree rooted by the upper occurrence of nonterminal A by the subtree
rooted by the lower occurrence of A:

S

a A b

e

This is a derivation tree for the sentence aeb. This step can be viewed as a negative
pumping step.

The proof of the following lemma is given in Section 9.4.
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Theorem 9.2 (Context-free Pumping Lemma). Let L be a context-free language.
Then

there exist c, d : c, d ∈ N :
for all z : z ∈ L and |z| > c :
there exist u, v, w, x, y : z = uvwxy and |vx | > 0 and |vwx | 6 d :
for all i ∈ N : uv iwx iy ∈ L

The Pumping Lemma is a tool with which we prove that a given language is not
context-free. The proof obligation is to show that the property shared by all context-
free languages does not hold for the language under consideration.

Theorem 9.2 enables us to prove that a language L is not context-free by showing
that

for all c, d : c, d ∈ N :
there exists z : z ∈ L and |z| > c :
for all u, v, w, x, y : z = uvwxy and |vx | > 0 and |vwx | 6 d :
there exists i ∈ N : uv iwx iy 6∈ L

As an example, we will prove that the language T defined by

T = {anbncn | n > 0}

is not context-free.

Proof. Let c, d ∈ N.
Take z = arbrcr with r = max(c, d).
Let u, v, w, x, y be such that z = uvwxy, |vx| > 0 and |vwx | 6 d
Note that our choice for r guarantees that substring vwx has one of the following
shapes:

• vwx consists of just a’s, or just b’s, or just c’s.
• vwx contains both a’s and b’s, or both b’s and c’s.

So vwx does not contain a’s, b’s, and c’s.

Take i = 0, then

• If vwx consists of just a’s, or just b’s, or just c’s, then it is impossible to write
the string uwy as asbscs for some s, since only the number of terminals of one
kind is decreased.

160



9.4. Proofs of pumping lemmas

• If vwx contains both a’s and b’s, or both b’s and c’s it lies somewhere on the
border between a’s and b’s, or on the border between b’s and c’s. Then the
string uwy can be written as

uwy = asbtcr

uwy = arbpcq

for some s, t, p, q, respectively. At least one of s and t or of p and q is less than
r. Again this list is not an element of T .

Exercise 9.5. Why does vwx not contain a’s, b’s, and c’s?

Exercise 9.6. Prove that the following language is not context-free

{ak
2

| k > 0}

Exercise 9.7. Prove that the following language is not context-free

{ai | i is a prime number }

Exercise 9.8. Prove that the following language is not context-free

{ww | w ∈ {a, b}∗}

9.4. Proofs of pumping lemmas

This section gives the proof of the pumping lemmas.

9.4.1. Proof of the Regular Pumping Lemma, Theorem 9.1

Since L is a regular language, there exists a deterministic finite-state automaton D
such that L = Ldfa D.
Take for n the number of states of D.
Let s be an element of L with sublist y such that |y| > n, say s = xyz .
Consider the sequence of states D passes through while processing y. Since |y| > n,
this sequence has more than n entries, hence at least one state, say state A, occurs
twice.
Take u, v, w as follows

• u is the initial part of y processed until the first occurrence of A,
• v is the (nonempty) part of y processed from the first to the second occurrence

of A,
• w is the remaining part of y
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Note that D could have skipped processing v, and hence would have accepted xuwz .
Furthermore, D can repeat the processing in between the first occurrence of A and
the second occurrence of A as often as desired, and hence it accepts xuv iwz for all
i ∈ N. Formally, a simple proof by induction shows that (∀i : i > 0 : xuviwz ∈ L).

9.4.2. Proof of the Context-free Pumping Lemma, Theorem 9.2

Let G = (T,N,R, S) be a context-free grammar such that L = L(G). Let m be the
length of the longest right-hand side of any production, and let k be the number of
nonterminals of G.
Take c = mk. In Lemma 9.3 below we prove that if z is a list with |z| > c, then in
all derivation trees for z there exists a path of length at least k+1.

Let z ∈ L such that |z| > c. Since grammar G has k nonterminals, there is at least
one nonterminal that occurs more than once in a path of length k+1 (which contains
k+2 symbols, of which at most one is a terminal, and all others are nonterminals)
of a derivation tree for z. Consider the nonterminal A that satisfies the following
requirements.

• A occurs at least twice in the path of length k+1 of a derivation tree for z.

Call the list corresponding to the derivation tree rooted at the lower A w, and call
the list corresponding to the derivation tree rooted at the upper A (which contains
the list w) vwx .

• A is chosen such that at most one of v and x equals ε.

• Finally, we suppose that below the upper occurrence of A no other nonterminal
that satisfies the same requirements occurs, that is, the two A’s are the lowest
pair of nonterminals satisfying the above requirements.

First we show that a nonterminal A satisfying the above requirements exists. We
prove this statement by contradiction. Suppose that for all nonterminals A that
occur twice on a path of length at least k+1 both v and x, the border lists of the list
vwx corresponding to the tree rooted at the upper occurrence of A, are both equal to
ε. Then we can replace the tree rooted at the upper A by the tree rooted at the lower
A without changing the list corresponding to the tree. Thus we can replace all paths
of length at least k+1 by a path of length at most k. But this contradicts Lemma
9.3 below, and we have a contradiction. It follows that a nonterminal A satisfying
the above requirements exists.

There exists a derivation tree for z in which the path from the upper A to the leaf
has length at most k+1, since either below A no nonterminal occurs twice, or there is
one or more nonterminal B that occurs twice, but the border lists v′ and x′ from the
list v′w′x′ corresponding to the tree rooted at the upper occurrence of nonterminal
B are empty. Since the lists v′ and x′ are empty, we can replace the tree rooted at
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the upper occurrence of B by the tree rooted at the lower occurrence of B without
changing the list corresponding to the derivation tree. Since we can do this for all
nonterminals B that occur twice below the upper occurrence of A, there exists a
derivation tree for z in which the path from the upper A to the leaf has length at
most k+1. It follows from Lemma 9.3 below that the length of vwx is at most mk+1,
so we define d = mk+1.

Suppose z = uvwxy , that is, the list corresponding to the subtree to the left (right)
of the upper occurrence of A is u (y). This situation is depicted as follows.

S

u A y

v A x

w

We prove by induction that (∀i : i > 0 : uv iwx iy ∈ L). In this proof we apply the
tree substitution process described in the example before the lemma. For i = 0 we
have to show that the list uwy is a sentence in L. The list uwy is obtained if the
tree rooted at the upper A is replaced by the tree rooted at the lower A. Suppose
that for all i 6 n we have uv iwx iy ∈ L. The list uv i+1wx i+1y is obtained if the tree
rooted at the lower A in the derivation tree for uv iwx iy ∈ L is replaced by the tree
rooted above it A. This proves the induction step.

The proof of the Pumping Lemma above frequently refers to the following lemma.

Theorem 9.3. Let G be a context-free grammar, and suppose that the longest right-
hand side of any production has length m. Let t be a derivation tree for a sentence
z ∈ L(G). If height t 6 j, then |z| 6 mj.

Proof. We prove a slightly stronger result: if t is a derivation tree for a list z, but
the root of t is not necessarily the start-symbol, and height t 6 j, then |z| 6 mj . We
prove this statement by induction on j.

For the base case, suppose j = 1. Then tree t corresponds to a single production in
G, and since the longest right-hand side of any production has length m, we have
that |z| 6 m = mj .

For the induction step, assume that for all derivation trees t of height at most j
we have that |z| 6 mj , where z is the list corresponding to t. Suppose we have
a tree t of height j+1. Let A be the root of t, and suppose the top of the tree
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corresponds to the production A → v in G. For all trees s rooted at the symbols of
v we have height s 6 j, so the induction hypothesis applies to these trees, and the
lists corresponding to the trees rooted at the symbols of v all have length at most
mj . Since A → v is a production of G, and since the longest right-hand side of any
production has length m, the list corresponding to the tree rooted at A has length
at most m×mj = mj+1, which proves the induction step.

Summary

This section introduces pumping lemmas. Pumping lemmas are used to prove that
languages are not regular or not context-free.

9.5. Exercises

Exercise 9.9. Show that the following language is not regular.

{x | x ∈ {0, 1}∗ ∧ nr 1 x = nr 0 x}

where function nr takes an element a and a list x, and returns the number of occurrences of
a in x.

Exercise 9.10. Consider the following language:

{aibj | 0 6 i 6 j}

1. Is this language context-free? If it is, give a context-free grammar and prove that this
grammar generates the language. If it is not, why not?

2. Is this language regular? If it is, give a regular grammar and prove that this grammar
generates the language. If it is not, why not?

Exercise 9.11. Consider the following language:

{wcw | w ∈ {a, b}∗}

1. Is this language context-free? If it is, give a context-free grammar and prove that this
grammar generates the language. If it is not, why not?

2. Is this language regular? If it is, give a regular grammar and prove that this grammar
generates the language. If it is not, why not?

Exercise 9.12. Consider the grammar G with the following productions.
S → {A}
S → ε
A → S
A → AA
A → }{

1. Is this grammar
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• Context-free?
• Regular?

Why?

2. Give the language of G without referring to G itself. Prove that your description is
correct.

3. Is the language of G

• Context-free?
• Regular?

Why?

Exercise 9.13. Consider the grammar G with the following productions.
S → ε
S → 0
S → 1
S → S0

1. Is this grammar

• Context-free?
• Regular?

Why?

2. Give the language of G without referring to G itself. Prove that your description is
correct.

3. Is the language of G

• Context-free?
• Regular?

Why?
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10. LL Parsing

Introduction

This chapter introduces LL(1) parsing. LL(1) parsing is an efficient (linear in the
length of the input string) method for parsing that can be used for all LL(1) gram-
mars. A grammar is LL(1) if at each step in a derivation the next symbol in the input
uniquely determines the production that should be applied. In order to determine
whether or not a grammar is LL(1), we introduce several kinds of grammar analyses,
such as determining whether or not a nonterminal can derive the empty string, and
determining the set of symbols that can appear as the first symbol in a derivation
from a nonterminal.

Goals

After studying this chapter you will

• know the definition of LL(1) grammars;

• know how to parse a sentence from an LL(1) grammar;

• be able to apply different kinds of grammar analyses in order to determine
whether or not a grammar is LL(1).

This chapter is organised as follows. Section 10.1 describes the background of LL(1)
parsing, and Section 10.2 describes an implementation in Haskell of LL(1) parsing
and the different kinds of grammar analyses needed for checking whether or not a
grammar is LL(1).

10.1. LL Parsing: Background

In the previous chapters we have shown how to construct parsers for sentences of
context-free languages using combinator parsers. Since these parsers may backtrack,
the resulting parsers are sometimes a bit slow. There are several ways in which we
can put extra restrictions on context-free grammars such that we can parse sentences
of the corresponding languages efficiently. This chapter discusses one such restriction:
LL(1). Other restrictions, not discussed in these lecture notes are LR(1), LALR(1),
SLR(1), etc.
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10.1.1. A stack machine for parsing

This section presents a stack machine for parsing sentences of context-free grammars.
We will use this machine in the following subsections to illustrate why we need
grammar analysis.

The stack machine we use in this section differs from the stack machines introduced
in Sections 5.4.4 and 7.2. A stack machine for a grammar G has a stack and an input,
and performs one of the following two actions.

1. Expand: If the top stack symbol is a nonterminal, it is popped from the stack
and a right-hand side from a production of G for the nonterminal is pushed onto
the stack. The production is chosen nondeterministically.

2. Match: If the top stack symbol is a terminal, then it is popped from the stack
and compared with the next symbol of the input sequence. If they are equal,
then this terminal symbol is ‘read’. If the stack symbol and the next input
symbol do not match, the machine signals an error, and the input sentence
cannot be accepted.

These actions are performed until the stack is empty. A stack machine for G accepts
an input if it can terminate with an empty input when starting with the start-symbol
from G on the stack.

For example, let grammar G be the grammar with the productions:

S → aS | cS | b

The stack machine for G accepts the input string aab because it can perform the
following actions (the first component of the state (before the |in the picture below) is
the symbol stack and the second component of the state (after the |) is the unmatched
(remaining part of the) input string):

stack input

S aab

aS aab

S ab

aS ab

S b

b b

and end with an empty input. However, if the machine had chosen the production
S → cS in its first step, it would have been stuck. So not all possible sequences
of actions from the state (S,aab) lead to an empty input. If there is at least one
sequence of actions that ends with an empty input on an input string, the input
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string is accepted. In this sense, the stack machine is similar to a nondeterministic
finite-state automaton.

10.1.2. Some example derivations

This section gives three examples in which the stack machine for parsing is applied.
It turns out that, for all three examples, the nondeterministic stack machine can act
in a deterministic way by looking ahead one (or two) symbols of the sequence of input
symbols. Each of the examples exemplifies why different kinds of grammar analyses
are useful in parsing.

The first example

Our first example is gramm1. The set of terminal symbols of gramm1 is {a, b, c}, the
set of nonterminal symbols is {S,A,B,C}, the start symbol is S; and the productions
are

S → cA | b
A → cBC | bSA | a
B → cc | Cb
C → aS | ba

We want to know whether or not the string ccccba is a sentence of the language of
this grammar. The stack machine produces, amongst others, the following sequence,
corresponding with a leftmost derivation of ccccba.

stack input

S ccccba

cA ccccba

A cccba

cBC cccba

BC ccba

ccC ccba

cC cba

C ba

ba ba

a a

Starting with S the machine chooses between two productions:

S → cA | b
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but, since the first symbol of the string ccccba to be recognised is c, the only ap-
plicable production is the first one. After expanding S a match-action removes the
leading c from ccccba and cA. So now we have to derive the string cccba from A.
The machine chooses between three productions:

A → cBC | bSA | a

and again, since the next symbol of the remaining string cccba to be recognised is
c, the only applicable production is the first one. After expanding A a match-action
removes the leading c from cccba and cBC. So now we have to derive the string
ccba from BC. The top stack symbol of BC is B. The machine chooses between
two productions:

B → cc | Cb

The next symbol of the remaining string ccba to be recognised is, once again, c. The
first production is applicable, but the second production may be applicable as well.
To decide whether it also applies we have to determine the symbols that can appear
as the first element of a string derived from B starting with the second production.
The first symbol of the alternative Cb is the nonterminal C. From the productions

C → aS | ba

it is immediately clear that a string derived from C starts with either an a or a b.
The set {a, b} is called the first set of the nonterminal C. Since the next symbol
in the remaining string to be recognised is a c, the second production cannot be
applied. After expanding B and performing two match-actions it remains to derive
the string ba from C. The machine chooses between two productions C → aS and
C → ba. Clearly, only the second one applies, and, after two match-actions, leads to
success.

From the above derivation we conclude the following.

Deriving the sentence ccccba using gramm1 is a deterministic computa-
tion: at each step of the derivation there is only one applicable alternative
for the nonterminal on top of the stack.

Determinicity is obtained by looking at the set of firsts of the nonterminals.

The second example

A second example is the grammar gramm2 whose productions are

S → abA | aa
A → bb | bS

Now we want to know whether or not the string abbb is a sentence of the language of
this grammar. The stack machine produces, amongst others, the following sequence
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stack input

S abbb

abA abbb

bA bbb

A bb

bb bb

b b

Starting with S the machine chooses between two productions:

S → abA | aa

since both alternatives start with an a, it is not sufficient to look at the first symbol a
of the string to be recognised. The problem is that the lookahead sets (the lookahead
set of a production N → α is the set of terminal symbols that can appear as the first
symbol of a string that can be derived from N starting with the production N → α,
the definition is given in the following subsection) of the two productions for S both
contain a. However, if we look at the first two symbols ab, then we find that the
only applicable production is the first one. After expanding and matching it remains
to derive the string bb from A. Again, looking ahead one symbol in the input string
does not give sufficient information for choosing one of the two productions

A → bb | bS

for A. If we look at the first two symbols bb of the input string, then we find that the
first production applies (and, after matching, leads to success). Each string derived
from A starting with the second production starts with a b and, since it is not possible
to derive a string starting with another b from S, the second production does not
apply.

From the above derivation we conclude the following.

Deriving the string abbb using gramm2 is a deterministic computation: at
each step of the derivation there is only one applicable alternative for the
nonterminal on the top of the stack.

Again, determinicity is obtained by analysing the set of firsts (of strings of length
2) of the nonterminals. Alternatively, we can left-factor the grammar to obtain a
grammar in which all productions for a nonterminal start with a different terminal
symbol.
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The third example

A third example is grammar gramm3 with the following productions:

S → AaS | B
A → cS | ε
B → b

Now we want to know whether or not the string acbab is an element of the language
of this grammar. The stack machine produces the following sequence

stack input

S acbab

AaS acbab

aS acbab

Starting with S the machine chooses between two productions:

S → AaS | B

since each nonempty string derived from A starts with a c, and each nonempty string
derived from B starts with a b, there does not seem to be a candidate production
to start a leftmost derivation of acabb with. However, since A can also derive the
empty string, we can apply the first production, and then apply the empty string for
A, producing aS which, as required, starts with an a. We do not explain the rest of
the leftmost derivation since it does not use any empty strings any more.

Nonterminal symbols that can derive the empty sequence will play a central role in
the grammar analysis problems which we will consider in Section 10.2.

From the above derivation we conclude the following.

Deriving the string acbab using gramm3 is a deterministic computation:
at each step of the derivation there is only one applicable alternative for
the nonterminal on the top of the stack.

Determinicity is obtained by analysing whether or not nonterminals can derive the
empty string, and which terminal symbols can follow upon a nonterminal in a deriva-
tion.
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10.1.3. LL(1) grammars

The examples in the previous subsection show that the derivations of the example
sentences are deterministic, provided we can look ahead one or two symbols in the
input. An obvious question now is: for which grammars are all derivations determin-
istic? Of course, as the second example shows, the answer to this question depends
on the number of symbols we are allowed to look ahead. In the rest of this chapter we
assume that we may look 1 symbol ahead. A grammar for which all derivations are
deterministic with 1 symbol lookahead is called LL(1): Leftmost with a Lookahead
of 1. Since all derivations of sentences of LL(1) grammars are deterministic, LL(1)
is a desirable property of grammars.

To formalise this definition, we define lookAhead sets.

Definition 10.1 (lookAhead set). The lookahead set of a production N → α is
the set of terminal symbols that can appear as the first symbol of a string that can
be derived from Nδ (where Nδ appears as a tail substring in a derivation from the
start-symbol) starting with the production N → α. So

lookAhead (N → α) = {x | S ∗⇒ γNδ ⇒ γαδ
∗⇒ γxβ}

For example, for the productions of gramm1 we have

lookAhead (S → cA) = {c}
lookAhead (S → b) = {b}
lookAhead (A→ cBC) = {c}
lookAhead (A→ bSA) = {b}
lookAhead (A→ a) = {a}
lookAhead (B → cc) = {c}
lookAhead (B → Cb) = {a, b}
lookAhead (C → aS) = {a}
lookAhead (C → ba) = {b}

We use lookAhead sets in the definition of LL(1) grammar.

Definition 10.2 (LL(1) grammar). A grammar G is LL(1) if all pairs of productions
of the same nonterminal have disjoint lookahead sets, that is: for all productions
N → α, N → β of G:

lookAhead (N → α) ∩ lookAhead (N → β) = ∅

Since all lookAhead sets for productions of the same nonterminal of gramm1 are
disjoint, gramm1 is an LL(1) grammar. For gramm2 we have:

lookAhead (S → abA) = {a}
lookAhead (S → aa) = {a}
lookAhead (A→ bb) = {b}
lookAhead (A→ bS) = {b}
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Here, the lookAhead sets for both nonterminals S and A are not disjoint, and it
follows that gramm2 is not LL(1). gramm2 is an LL(2) grammar, where an LL(k)
grammar for k > 2 is defined similarly to an LL(1) grammar: instead of one symbol
lookahead we have k symbols lookahead.

How do we determine whether or not a grammar is LL(1)? Clearly, to answer this
question we need to know the lookahead sets of the productions of the grammar. The
lookAhead set of a production N → α, where α starts with a terminal symbol x, is
simply x. But what if α starts with a nonterminal P , that is α = Pβ, for some β?
Then we have to determine the set of terminal symbols with which strings derived
from P can start. But if P can derive the empty string, we also have to determine
the set of terminal symbols with which a string derived from β can start. As you see,
in order to determine the lookAhead sets of productions, we are interested in

• whether or not a nonterminal can derive the empty string (empty);
• which terminal symbols can appear as the first symbol in a string derived from

a nonterminal (firsts);
• and which terminal symbols can follow upon a nonterminal in a derivation

(follow).

In each of the following definitions we assume that a grammar G is given.

Definition 10.3 (Empty). Function empty takes a nonterminal N , and determines
whether or not the empty string can be derived from the nonterminal:

empty N = N
∗⇒ ε

For example, for gramm3 we have:

empty S = False

empty A = True

empty B = False

Definition 10.4 (First). The set of firsts of a nonterminal N is the set of terminal
symbols that can appear as the first symbol of a string that can be derived from N :

firsts N = {x | N ∗⇒ xβ}

For example, for gramm3 we have:

firsts S = {a, b, c}
firsts A = {c}
firsts B = {b}
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We could have given more restricted definitions of empty and firsts, by only looking
at derivations from the start-symbol, for example,

empty N = S
∗⇒ αNβ

∗⇒ αβ

but the simpler definition above suffices for our purposes.

Definition 10.5 (Follow). The follow set of a nonterminal N is the set of terminal
symbols that can follow on N in a derivation starting with the start-symbol S from
the grammar G:

follow N = {x | S ∗⇒ αNxβ}

For example, for gramm3 we have:

follow S = {a}
follow A = {a}
follow B = {a}

In the following section we will give programs with which lookahead, empty, firsts,
and follow are computed.

Exercise 10.1. Give the results of the function empty for the grammars gramm1 and gramm2.

Exercise 10.2. Give the results of the function firsts for the grammars gramm1 and gramm2.

Exercise 10.3. Give the results of the function follow for the grammars gramm1 and gramm2.

Exercise 10.4. Give the results of the function lookahead for grammar gramm3. Is gramm3
an LL(1) grammar ?

Exercise 10.5. Grammar gramm2 is not LL(1), but it can be transformed into an LL(1)
grammar by left factoring. Give this equivalent grammar gramm2’ and give the results of
the functions empty, first, follow and lookAhead on this grammar. Is gramm2’ an LL(1)
grammar?

Exercise 10.6. A non-leftrecursive grammar for Bit-Lists is given by the following gram-
mar (see your answer to Exercise 2.18):

L → BR

R → ε | ,BR

B → 0 | 1

Give the results of functions empty, firsts, follow and lookAhead on this grammar. Is this
grammar LL(1)?
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10.2. LL Parsing: Implementation

Until now we have written parsers with parser combinators. Parser combinators use
backtracking, and this is sometimes a cause of inefficiency. If a grammar is LL(1) we
do not need backtracking anymore: parsing is deterministic. We can use this fact by
either adjusting the parser combinators so that they don’t use backtracking anymore,
or by writing a special purpose LL(1) parsing program. We present the latter in this
section.

This section describes the implementation of a program that parses sentences of LL(1)
grammars. The program works for arbitrary context-free LL(1) grammars, so we first
describe how to represent context-free grammars in Haskell. Another consequence of
the fact that the program parses sentences of arbitrary context-free LL(1) grammars is
that we need a generic representation of parse trees in Haskell. The second subsection
defines a datatype for parse trees in Haskell. The third subsection presents the
program that parses sentences of LL(1) grammars. This program assumes that the
input grammar is LL(1), so in the fourth subsection we give a function that determines
whether or not a grammar is LL(1). Both this and the LL(1) parsing function
use a function that determines the lookahead of a production. This function is
presented in the fifth subsection. The last subsections of this section define functions
for determining the empty, first, and follow symbols of a nonterminal.

10.2.1. Context-free grammars in Haskell

A context-free grammar may be represented by a pair: its start symbol, and its
productions. How do we represent terminal and nonterminal symbols? There are at
least two possibilities.

• The rigorous approach uses a datatype Symbol:

data Symbol a b = N a | T b

The advantage of this approach is that nonterminals and terminals are strictly
separated, the disadvantage is the notational overhead of constructors that
has to be carried around. However, a rigorous implementation of context-free
grammars should keep terminals and nonterminals apart, so this is the preferred
implementation. But in this section we will use the following implementation:

• class Eq s => Symbol s where

isT :: s -> Bool

isN :: s -> Bool

isT = not . isN

where isN and isT determine whether or not a symbol is a nonterminal or a
terminal, respectively. This notation is compact, but terminals and nontermi-
nals are no longer strictly separated, and symbols that are used as nonterminals
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cannot be used as terminals anymore. For example, the type of characters is
made an instance of this class by defining:

instance Symbol Char where

isN c = ’A’ <= c && c <= ’Z’

that is, capitals are nonterminals, and, by definition, all other characters are
terminals.

A context-free grammar is a value of the type CFG:

type CFG s = (s,[(s,[s])])

where the list in the second component associates nonterminals to right-hand sides.
So an element of this list is a production. For example, the grammar with produc-
tions

S → AaS | B | CB
A→ SC | ε
B → A | b
C → D

D → d

is represented as:

exGrammar :: CFG Char

exGrammar =

(’S’, [(’S’,"AaS"),(’S’,"B"),(’S’,"CB")

,(’A’,"SC"),(’A’,"")

,(’B’,"A"),(’B’,"b")

,(’C’,"D")

,(’D’,"d")

]

)

On this type we define some functions for extracting the productions, nonterminals,
terminals, etc. from a grammar.

start :: CFG s -> s

start = fst

prods :: CFG s -> [(s,[s])]

prods = snd

terminals :: (Symbol s, Ord s) => CFG s -> [s]

terminals = unions . map (filter isT . snd) . snd
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where unions :: Ord s => [[s]] -> [s] returns the union of the ‘sets’ of symbols
in the lists.

nonterminals :: (Symbol s, Ord s) => CFG s -> [s]

nonterminals = nub . map fst . snd

Here, nub :: Ord s => [s] -> [s] removes duplicates from a list.

symbols :: (Symbol s, Ord s) => CFG s -> [s]

symbols grammar =

union (terminals grammar) (nonterminals grammar)

nt2prods :: Eq s => CFG s -> s -> [(s,[s])]

nt2prods grammar s =

filter (\(nt,rhs) -> nt==s) (prods grammar)

where function union returns the set union of two lists (removing duplicates). For
example, we have

?start exGrammar

’S’

? terminals exGrammar

"abd"

10.2.2. Parse trees in Haskell

A parse tree is a tree, in which each internal node is labelled with a nonterminal,
and has a list of children (corresponding with a right-hand side of a production of
the nonterminal). It follows that parse trees can be represented as rose trees with
symbols, where the datatype of rose trees is defined by:

data Rose a = Node a [Rose a] | Nil

The constructor Nil has been added to simplify error handling when parsing: when
a sentence cannot be parsed, the ‘parse tree’ Nil is returned. Strictly speaking it
should not occur in the datatype of rose trees.
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10.2.3. LL(1) parsing

This section defines a function ll1 that takes a grammar and a terminal string as
input, and returns one tuple: a parse tree, and the rest of the inputstring that has
not been parsed. So ll1 takes a grammar, and returns a parser with Rose s as
its result type. As mentioned in the beginning of this section, our parser doesn’t
need backtracking anymore, since parsing with an LL(1) grammar is deterministic.
Therefore, the parser type is adjusted as follows:

type Parser b a = [b] -> (a,[b])

Using this parser type, the type of the function ll1 is:

ll1 :: (Symbol s, Ord s) => CFG s -> Parser s (Rose s)

Function ll1 is defined in terms of two functions. Function isll1 :: CFG s ->

Bool is a function that checks whether or not a grammar is LL(1). And function
gll1 (for generalised LL(1)) produces a list of rose trees for a list of symbols. ll1 is
obtained from gll1 by giving gll1 the singleton list containing the start symbol of
the grammar as argument.

ll1 grammar input =

if isll1 grammar

then let ([rose], rest) = gll1 grammar [start grammar] input

in (rose, rest)

else error "ll1: grammar not LL(1)"

So now we have to implement functions isll1 and gll1. Function isll1 is imple-
mented in the following subsection. Function gll1 also uses two functions. Function
grammar2ll1table takes a grammar and returns the LL(1) table: the association list
that associates productions with their lookahead sets. And function choose takes a
terminal symbol, and chooses a production based on the LL(1) table.

gll1 :: (Symbol s, Ord s) => CFG s -> [s] -> Parser s [Rose s]

gll1 grammar =

let ll1table = grammar2ll1table grammar

-- The LL(1) table.

nt2prods nt = filter (\((n,l),r) -> n==nt) ll1table

-- nt2prods returns the productions for nonterminal

-- nt from the LL(1) table

selectprod nt t = choose t (nt2prods nt)

-- selectprod selects the production for nt from the
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-- LL(1) table that should be taken when t is the next

-- symbol in the input.

in \stack input ->

case stack of

[] -> ([], input)

(s:ss) ->

if isT s

then -- match

let (rts,rest) = gll1 grammar ss (tail input)

in if s == head input

then (Node s []: rts, rest)

-- The parse tree is a leaf (a node with

-- no children).

else ([Nil], input)

-- The input cannot be parsed

else -- expand

let t = head input

(rts,zs) = gll1 grammar (selectprod s t) input

-- Try to parse according to the production

-- obtained from the LL(1) table from s.

(rrs,vs) = gll1 grammar ss zs

-- Parse the rest of the symbols on the

-- stack.

in ((Node s rts): rrs, vs)

Functions grammar2ll1table and choose, which are used in the above function gll1,
are defined as follows. These functions use function lookaheadp, which returns the
lookahead set of a production and is defined in one of the following subsections.

grammar2ll1table :: (Symbol s, Ord s) => CFG s -> [((s,[s]),[s])]

grammar2ll1table grammar =

map (\x -> (x,lookaheadp grammar x)) (prods grammar)

choose :: Eq a => a -> [((b,c),[a])] -> c

choose t l =

let [((s,rhs), ys)] = filter (\((x,p),q) -> t ‘elem‘ q) l

in rhs

Note that function choose assumes that there is exactly one element in the association
list in which the element t occurs.
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10.2.4. Implementation of isLL(1)

Function isll1 checks whether or not a context-free grammar is LL(1). It does this
by computing for each nonterminal of its argument grammar the set of lookahead
sets (one set for each production of the nonterminal), and checking that all of these
sets are disjoint. It is defined in terms of a function lookaheadn, which computes the
lookahead sets of a nonterminal, and a function disjoint, which determines whether
or not all sets in a list of sets are disjoint. All sets in a list of sets are disjoint if
the length of the concatenation of these sets equals the length of the union of these
sets.

isll1 :: (Symbol s, Ord s) => CFG s -> Bool

isll1 grammar =

and (map (disjoint . lookaheadn grammar) (nonterminals grammar))

disjoint :: Ord s => [[s]] -> Bool

disjoint xss = length (concat xss) == length (unions xss)

Function lookaheadn computes the lookahead sets of a nonterminal by computing
all productions of a nonterminal, and computing the lookahead set of each of these
productions by means of function lookaheadp.

lookaheadn :: (Symbol s, Ord s) => CFG s -> s -> [[s]]

lookaheadn grammar =

map (lookaheadp grammar) . nt2prods grammar

10.2.5. Implementation of lookahead

Function lookaheadp takes a grammar and a production, and returns the lookahead
set of the production. It is defined in terms of four functions. Each of the first three
functions will be defined in a separate subsection below, the fourth function is defined
in this subsection.

• isEmpty :: (Ord s,Symbol s) => CFG s -> s -> Bool

Function isEmpty takes a grammar and a nonterminal and determines whether
or not the empty string can be derived from the nonterminal in the grammar.
(This function was called empty in Definition 10.3.)

• firsts :: (Ord s, Symbol s) => CFG s -> [(s,[s])]

Function firsts takes a grammar and computes the set of firsts of each symbol
(the set of firsts of a terminal is the terminal itself).
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• follow :: (Ord s, Symbol s) => CFG s -> [(s,[s])]

Function follow takes a grammar and computes the follow set of each nonter-
minal (so it associates a list of symbols with each nonterminal).

• lookSet :: Ord s =>

(s -> Bool) -> -- isEmpty

(s -> [s]) -> -- firsts?

(s -> [s]) -> -- follow?

(s, [s]) -> -- production

[s] -- lookahead set

Note that we use the operator ?, see Section 5.4.2, on the firsts and follow

association lists. Function lookSet takes a predicate, two functions that given
a nonterminal return the first and follow set, respectively, and a production, and
returns the lookahead set of the production. Function lookSet is introduced
after the definition of function lookaheadp.

Now we define:

lookaheadp :: (Symbol s, Ord s) => CFG s -> (s,[s]) -> [s]

lookaheadp grammar =

lookSet (isEmpty grammar) ((firsts grammar)?) ((follow grammar)?)

We will exemplify the definition of function lookSet with the grammar exGrammar,
with the following productions:

S → AaS | B | CB
A→ SC | ε
B → A | b
C → D

D → d

Consider the production S → AaS. The lookahead set of the production contains
the set of symbols which can appear as the first terminal symbol of a sequence of
symbols derived from A. But, since the nonterminal symbol A can derive the empty
string, the lookahead set also contains the symbol a.

Consider the production A → SC. The lookahead set of the production contains
the set of symbols which can appear as the first terminal symbol of a sequence of
symbols derived from S. But, since the nonterminal symbol S can derive the empty
string, the lookahead set also contains the set of symbols which can appear as the
first terminal symbol of a sequence of symbols derived from C.

Finally, consider the production B → A. The lookahead set of the production con-
tains the set of symbols which can appear as the first terminal symbol of a sequence
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of symbols derived from A. But, since the nonterminal symbol A can derive the
empty string, the lookahead set also contains the set of terminal symbols which can
follow the nonterminal symbol B in some derivation.

The examples show that it is useful to have functions firsts and follow in which,
for every nonterminal symbol n, we can look up the terminal symbols which can
appear as the first terminal symbol of a sequence of symbols in some derivation from
n and the set of terminal symbols which can follow the nonterminal symbol n in a
sequence of symbols occurring in some derivation respectively. It turns out that the
definition of function follow also makes use of a function lasts which is similar to
the function firsts, but which deals with last nonterminal symbols rather than first
terminal ones.

The examples also illustrate a control structure which will be used very often in
the following algorithms: we will fold over right-hand sides. While doing so we
compute sets of symbols for all the symbols of the right-hand side which we encounter
and collect them into a final set of symbols. Whenever such a list for a symbol is
computed, there are always two possibilities:

• either we continue folding and return the result of taking the union of the set
obtained from the current element and the set obtained by recursively folding
over the rest of the right-hand side

• or we stop folding and immediately return the set obtained from the current
element.

We continue if the current symbol is a nonterminal which can derive the empty se-
quence and we stop if the current symbol is either a terminal symbol or a nonterminal
symbol which cannot derive the empty sequence. The following function makes this
statement more precise.

foldrRhs :: Ord s =>

(s -> Bool) ->

(s -> [s]) ->

[s] ->

[s] ->

[s]

foldrRhs p f start = foldr op start

where op x xs = f x ‘union‘ if p x then xs else []

The function foldrRhs is, of course, most naturally defined in terms of the function
foldr. This function is somewhere in between a general purpose and an application
specific function (we could easily have made it more general though). In the exercises
we give an alternative characterisation of foldRhs. We will also need a function
scanrRhs which is like foldrRhs but accumulates intermediate results in a list. The
function scanrRhs is most naturally defined in terms of the function scanr.
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scanrRhs :: Ord s =>

(s -> Bool) ->

(s -> [s]) ->

[s] ->

[s] ->

[[s]]

scanrRhs p f start = scanr op start

where op x xs = f x ‘union‘ if p x then xs else []

Finally, we will also need a function scanlRhs which does the same job as scanrRhs
but in the opposite direction. The easiest way to define scanlRhs is in terms of
scanrRhs and reverse.

scanlRhs p f start = reverse . scanrRhs p f start . reverse

We now return to the function lookSet.

lookSet :: Ord s =>

(s -> Bool) ->

(s -> [s]) ->

(s -> [s]) ->

(s,[s]) ->

[s]

lookSet p f g (nt,rhs) = foldrRhs p f (g nt) rhs

The function lookSet makes use of foldrRhs to fold over a right-hand side. As
stated above, the function foldrRhs continues processing a right-hand side only if
it encounters a nonterminal symbol for which p (so isEmpty in the lookSet in-
stance lookaheadp) holds. Thus, the set g nt (follow?nt in the lookSet instance
lookaheadp) is only important for those right-hand sides for nt that consist of non-
terminals that can all derive the empty sequence. We can now (assuming that the
definitions of the auxiliary functions are given) use the function lookaheadp instance
of lookSet to compute the lookahead sets of all productions.

look nt rhs = lookaheadp exGrammar (nt,rhs)

? look ’S’ "AaS"

dba

? look ’S’ "B"

dba

? look ’S’ "CB"

d

? look ’A’ "SC"
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dba

? look ’A’ ""

ad

? look ’B’ "A"

dba

? look ’B’ "b"

b

? look ’C’ "D"

d

? look ’D’ "d"

d

It is clear from this result that exGrammar is not an LL(1)-grammar. Let us have
a closer look at how these lookahead sets are obtained. We will have to use the
functions firsts and follow and the predicate isEmpty for computing intermediate
results. The corresponding subsections explain how to compute these intermediate
results.

For the lookahead set of the production A → AaS we fold over the right-hand side
AaS. Folding stops at ’a’ and we obtain

firsts? ’A’ ‘union‘ firsts? ’a’

==

"dba" ‘union‘ "a"

==

"dba"

For the lookahead set of the production A → SC we fold over the right-hand side
SC. Folding stops at C since it cannot derive the empty sequence, and we obtain

firsts? ’S’ ‘union‘ firsts? ’C’

==

"dba" ‘union‘ "d"

==

"dba"

Finally, for the lookahead set of the production B → A we fold over the right-hand
side A In this case we fold over the complete (one element) list and and we obtain

firsts? ’A’ ‘union‘ follow? ’B’

==

"dba" ‘union‘ "d"

==

"dba"
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The other lookahead sets are computed in a similar way.

10.2.6. Implementation of empty

Many functions defined in this chapter make use of a predicate isEmpty, which
tests whether or not the empty sequence can be derived from a nonterminal. This
subsection defines this function. Consider the grammar exGrammar. We are now only
interested in deriving sequences which contain only nonterminal symbols (since it is
impossible to derive the empty string if a terminal occurs). Therefore we only have
to consider the productions in which no terminal symbols appear in the right-hand
sides.

S → B | CB
A → SC | ε
B → A

C → D

One can immediately see from those productions that the nonterminal A derives the
empty string in one step. To know whether there are any nonterminals which derive
the empty string in more than one step we eliminate the productions for A and we
eliminate all occurrences of A in the right hand sides of the remaining productions

S → B | CB
B → ε

C → D

One can now conclude that the nonterminal B derives the empty string in two steps.
Doing the same with B as we did with A gives us the following productions

S → ε | C
C → D

One can now conclude that the nonterminal S derives the empty string in three steps.
Doing the same with S as we did with A and B gives us the following productions

C → D

At this stage we can conclude that there are no more new nonterminals which derive
the empty string.

We now give the Haskell implementation of the algorithm described above. The al-
gorithm is iterative: it does the same steps over and over again until some desired
condition is met. For this purpose we use function fixedPoint, which takes a func-
tion and a set, and repeatedly applies the function to the set, until the set does not
change anymore.
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fixedPoint :: Ord a => ([a] -> [a]) -> [a] -> [a]

fixedPoint f xs | xs == nexts = xs

| otherwise = fixedPoint f nexts

where nexts = f xs

fixedPoint f is sometimes called the fixed-point of f. Function isEmpty determines
whether or not a nonterminal can derive the empty string. A nonterminal can derive
the empty string if it is a member of the emptySet of a grammar.

isEmpty :: (Symbol s, Ord s) => CFG s -> s -> Bool

isEmpty grammar = (‘elem‘ emptySet grammar)

The emptySet of a grammar is obtained by the iterative process described in the
example above. We start with the empty set of nonterminals, and at each step n of
the computation of the emptySet as a fixedPoint, we add the nonterminals that
can derive the empty string in n steps. Function emptyStepf adds a nonterminal if
there exists a production for the nonterminal of which all elements can derive the
empty string.

emptySet :: (Symbol s, Ord s) => CFG s -> [s]

emptySet grammar = fixedPoint (emptyStepf grammar) []

emptyStepf :: (Symbol s, Ord s) => CFG s -> [s] -> [s]

emptyStepf grammar set =

nub (map fst (filter (\(nt,rhs) -> all (‘elem‘ set) rhs)

(prods grammar)

) )

10.2.7. Implementation of first and last

Function firsts takes a grammar, and returns for each symbol of the grammar (so
also the terminal symbols) the set of terminal symbols with which a sentence derived
from that symbol can start. The first set of a terminal symbol is the terminal symbol
itself.

The set of firsts each symbol consists of that symbol itself, plus the (first) symbols
that can be derived from that symbol in one or more steps. So the set of firsts can
be computed by an iterative process, just as the function isEmpty.

Consider the grammar exGrammar again. We start the iteration with

[(’S’,"S"),(’A’,"A"),(’B’,"B"),(’C’,"C"),(’D’,"D")

,(’a’,"a"),(’b’,"b"),(’d’,"d")

]
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Using the productions of the grammar we can derive in one step the following lists
of first symbols.

[(’S’,"ABC"),(’A’,"S"),(’B’,"Ab"),(’C’,"D"),(’D’,"d")]

and the union of these two lists is

[(’S’,"SABC"),(’A’,"AS"),(’B’,"BAb"),(’C’,"CD"),(’D’,"Dd")

,(’a’,"a"),(’b’,"b"),(’d’,"d")]

In two steps we can derive

[(’S’,"SAbD"),(’A’,"ABC"),(’B’,"S"),(’C’,"d"),(’D’,"")]

and again we have to take the union of this list with the previous result. We repeat
this process until the list doesn’t change anymore. For exGrammar this happens
when:

[(’S’,"SABCDabd")

,(’A’,"SABCDabd")

,(’B’,"SABCDabd")

,(’C’,"CDd")

,(’D’,"Dd")

,(’a’,"a")

,(’b’,"b")

,(’d’,"d")

]

Function firsts is defined as the fixedPoint of a step function that iterates the
first computation one more step. The fixedPoint starts with the list that contains
all symbols paired with themselves.

firsts :: (Symbol s, Ord s) => CFG s -> [(s,[s])]

firsts grammar =

fixedPoint (firstStepf grammar) (startSingle grammar)

startSingle :: (Ord s, Symbol s) => CFG s -> [(s,[s])]

startSingle grammar = map (\x -> (x,[x])) (symbols grammar)

The step function takes the old approximation and performs one more iteration step.
At each of these iteration steps we have to add the start list with which the iteration
started again.
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firstStepf :: (Ord s, Symbol s) =>

CFG s -> [(s,[s])] -> [(s,[s])]

firstStepf grammar approx = (startSingle grammar)

‘combine‘ (compose (first1 grammar) approx)

combine :: Ord s => [(s,[s])] -> [(s,[s])] -> [(s,[s])]

combine xs = foldr insert xs

where insert (a,bs) [] = [(a,bs)]

insert (a,bs) ((c,ds):rest)

| a == c = (a, union bs ds) : rest

| otherwise = (c,ds) : (insert (a,bs) rest)

compose :: Ord a => [(a,[a])] -> [(a,[a])] -> [(a,[a])]

compose r1 r2 = [(a, unions (map (r2?) bs)) | (a,bs) <- r1]

Finally, function first1 computes the direct first symbols of all productions, taking
into account that some nonterminals can derive the empty string, and combines the
results for the different nonterminals.

first1 :: (Symbol s, Ord s) => CFG s -> [(s,[s])]

first1 grammar =

map (\(nt,fs) -> (nt,unions fs))

(group (map (\(nt,rhs) -> (nt,foldrRhs (isEmpty grammar)

single

[]

rhs

) )

(prods grammar)

) )

where group groups elements with the same first element together

group :: Eq a => [(a,b)] -> [(a,[b])]

group = foldr insertPair []

insertPair :: Eq a => (a,b) -> [(a,[b])] -> [(a,[b])]

insertPair (a,b) [] = [(a,[b])]

insertPair (a,b) ((c,ds):rest) =

if a==c then (c,(b:ds)):rest else (c,ds):(insertPair (a,b) rest)

function single takes an element and returns the set with the element, and unions

returns the union of a set of sets.
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Function lasts is defined using function firsts. Suppose we reverse the right-hand
sides of all productions of a grammar. Then the set of firsts of this reversed grammar
is the set of lasts of the original grammar. This idea is implemented in the following
functions.

reverseGrammar :: Symbol s => CFG s -> CFG s

reverseGrammar =

\(s,al) -> (s,map (\(nt,rhs) -> (nt,reverse rhs)) al)

lasts :: (Symbol s, Ord s) => CFG s -> [(s,[s])]

lasts = firsts . reverseGrammar

10.2.8. Implementation of follow

The final function we have to implement is the function follow, which takes a gram-
mar, and returns an association list in which nonterminals are associated to symbols
that can follow upon the nonterminal in a derivation. A nonterminal n is associ-
ated to a list containing terminal t in follow if n and t follow each other in some
sequence of symbols occurring in some leftmost derivation. We can compute pairs
of such adjacent symbols by splitting up the right-hand sides with length at least 2
and, using lasts and firsts, compute the symbols which appear at the end resp.
at the beginning of strings which can be derived from the left resp. right part of the
split alternative. Our grammar exGrammar has three alternatives with length at least
2: "AaS", "CB" and "SC". Function follow uses the functions firsts and lasts

and the predicate isEmpty for intermediate results. The previous subsections explain
how to compute these functions.

Let’s see what happens with the alternative "AaS". The lists of all nonterminal
symbols that can appear at the end of sequences of symbols derived from "A" and
"Aa" are "ADC" and "" respectively. The lists of all terminal symbols which can
appear at the beginning of sequences of symbols derived from "aS" and "S" are "a"

and "dba" respectively. Zipping together those lists shows that an ’A’, a ’D’ and
a ’C’ can be be followed by an ’a’. Splitting the alternative "CB" in the middle
produces sets of firsts and sets of lasts "CD" and "dba". Splitting the alternative
"SC" in the middle produces sets of firsts and sets of lasts "SDCAB" and "d". From
the first pair we can see that a ’C’ and a ’D’ can be followed by a ’d’, a ’b’ and
an ’a’ From the second pair we see that an ’S’, a ’D’, a ’C’, an ’A’, and a ’B’

can be followed by a ’d’. Combining all these results gives:

[(’S’,"d"),(’A’,"ad"),(’B’,"d"),(’C’,"adb"),(’D’,"adb")]

The function follow uses the functions scanrAlt and scanlAlt. The lists produced
by these functions are exactly the ones we need: using the function zip from the
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standard prelude we can combine the lists. For example: for the alternative "AaS"

the functions scanlAlt and scanrAlt produce the following lists:

[[], "ADC", "DC", "SDCAB"]

["dba", "a", "dba", []]

Only the two middle elements of both lists are important (they correspond to the
nontrivial splittings of "AaS"). Thus, we only have to consider alternatives of length
at least 2. We start the computation of follow with assigning the empty follow set
to each symbol:

follow :: (Symbol s, Ord s) => CFG s -> [(s,[s])]

follow grammar = combine (followNE grammar) (startEmpty grammar)

startEmpty grammar = map (\x -> (x,[])) (symbols grammar)

The real work is done by functions followNE and function splitProds. Function
followNE passes the right arguments on to function splitProds, and removes all
nonterminals from the set of firsts, and all terminals from the set of lasts. Function
splitProds splits the productions of length at least 2, and pairs the last nonterminals
with the first terminals.

followNE :: (Symbol s, Ord s) => CFG s -> [(s,[s])]

followNE grammar = splitProds

(prods grammar)

(isEmpty grammar)

(isTfirsts grammar)

(isNlasts grammar)

where isTfirsts = map (\(x,xs) -> (x,filter isT xs)) . firsts

isNlasts = map (\(x,xs) -> (x,filter isN xs)) . lasts

splitProds :: (Symbol s, Ord s) =>

[(s,[s])] -> -- productions

(s -> Bool) -> -- isEmpty

[(s,[s])] -> -- terminal firsts

[(s,[s])] -> -- nonterminal lasts

[(s,[s])]

splitProds prods p fset lset =

map (\(nt,rhs) -> (nt,nub rhs)) (group pairs)

where pairs = [(l, f)

| rhs <- map snd prods

, length rhs >= 2

, (fs, ls) <- zip (rightscan rhs) (leftscan rhs)
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, l <- ls

, f <- fs

]

leftscan = scanlRhs p (lset?) []

rightscan = scanrRhs p (fset?) []

Exercise 10.7. Give the Rose tree representation of the parse tree corresponding to the
derivation of the sentence ccccba using grammar gramm1.

Exercise 10.8. Give the Rose tree representation of the parse tree corresponding to the
derivation of the sentence abbb using grammar gramm2’ defined in the exercises of the previous
section.

Exercise 10.9. Give the Rose tree representation of the parse tree corresponding to the
derivation of the sentence acbab using grammar gramm3.

Exercise 10.10. In this exercise we will take a closer look at the functions foldrRhs and
scanrRhs which are the essential ingredients of the implementation of the grammar analysis
algorithms. From the definitions it is clear that grammar analysis is easily expressed via
a calculus for (finite) sets. A calculus for finite sets is implicit in the programs for LL(1)
parsing. Since the code in this module is obscured by several implementation details we will
derive the functions foldrRhs and scanrRhs in a stepwise fashion. In this derivation we will
use the following:
A (finite) set is implemented by a list with no duplicates. In order to construct a set, the
following operations may be used:

[] :: [a] the empty set of a-elements
union :: [a] → [a] → [a] the union of two sets
unions :: [[a]] → [a] the generalised union
single :: a → [a] the singleton function

These operations satisfy the well-known laws for set operations.

1. Define a function list2Set :: [a] → [a] which returns the set of elements occurring
in the argument.

2. Define list2Set as a foldr.

3. Define a function pref p :: [a] → [a] which given a list xs returns the set of
elements corresponding to the longest prefix of xs all of whose elements satisfy p.

4. Define a function prefplus p :: [a] → [a] which given a list xs returns the set of
elements in the longest prefix of xs all of whose elements satisfy p together with the
first element of xs that does not satisfy p (if this element exists at all).

5. Define prefplus p as a foldr.

6. Show that prefplus p = foldrRhs p single [].

7. It can be shown that

foldrRhs p f [] = unions . map f . prefplus p

for all set-valued functions f. Give an informal description of the functions foldrRhs

p f [] and foldrRhs p f start.
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8. The standard function scanr is defined by

scanr f q0 = map (foldr f q0) . tails

where tails is a function which takes a list xs and returns a list with all tailsegments
(postfixes) of xs in decreasing length. The function scanrRhs is defined is a similar
way

scanrRhs p f start = map (foldrRhs p f start) . tails

Give an informal description of the function scanrRhs.

Exercise 10.11. The computation of the functions empty and firsts is not restricted to
nonterminals only. For terminal symbols s these functions are defined by

empty s = False

firsts s = {s}

Using the definitions in the previous exercise, compute the following.

1. For the example grammar gramm1 and two of its productions A→ bSA and B → Cb.

a) foldrRhs empty firsts [] bSA

b) foldrRhs empty firsts [] Cb

2. For the example grammar gramm3 and its production S → AaS

a) foldrRhs empty firsts [] AaS

b) scanrRhs empty firsts [] AaS
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The parsers that were constructed using parser combinators in Chapter 3 are non-
deterministic. They can recognize sentences described by ambiguous grammars by
returning a list of solutions, rather than just one solution; each solution contains a
parse tree and the part of the input that was left unprocessed. Nondeterministic
parsers are of the following type:

type Parser a b = [a] -> [ (b, [a]) ]

where a denotes the alphabet type, and b denotes the parse tree type.

In chapter 10 we turned to deterministic parsers. Here, parsers have only one result,
consisting of a parse tree of type b and the remaining part of the input string:

type Parser a b = [a] -> (b, [a])

Ambiguous grammars are not allowed anymore. Also, in the case of parsing input
containing syntax errors, we cannot return an empty list of successes anymore; intead
there should be some mechanism of raising an error.

There are various algorithms for deterministic parsing. They impose some additional
constraints on the form of the grammar: not every context free grammar is allowable
by these algorithms. The parsing algorithms can be modelled by making use of a stack
machine. There are two fundamentally different deterministic parsing algorithms:

• LL parsing, also known as top-down parsing
• LR parsing, also known as bottom-up parsing

The first ‘L’ in these acronyms stands for ‘Left-to-right’, that is, input in processed in
the order it is read. So these algorithms are both suitable for reading an input stream,
e.g. from a file. The second ‘L’ in ‘LL-parsing’ stands for ‘Leftmost derivation’, as
the parsing mimics doing a leftmost derivation of a sentence (see Section 2.4). The
‘R’ in ‘LR-parsing’ stands for ‘Rightmost derivation’ of the sentences. The parsing
algorithms are normally referred to as LL(k) or (LR(k), where k is the number of
unread symbols that the parser is allowed to ‘look ahead’. In most practical cases, k
is taken to be 1.

In Chapter 10 we studied the LL(1) parsing algorithm extensively, including the
so-called LL(1)-property to which grammars must abide. In this chapter we start
with an example application of the LL(1) algorithm. Next, we turn to the LR(1)
algorithm.
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11.1. LL(1) parser example

The LL(1) parsing algorithm was implemented in Section 10.2.3. Function ll1 de-
fined there takes a grammar and an input string, and returns a single result consisting
of a parse tree and rest string. The function was implemented by calling a generalized
function named gll1; generalized in the sense that the function takes an additional
list of symbols that need to be recognized. That generalization is then called with a
singleton list containing only the root nonterminal.

11.1.1. An LL(1) checker

Here, we define a slightly simplified version of the algorithm: it doesn’t return a parse
tree, so it need not be concerned with building it; it merely checks whether or not
the input string is a sentence. Hence the result of the function is simply a boolean
value:

check :: String -> Bool

check input = run [’S’] input

As in chapter 10, the function is implemented by calling a generalized function run

with a singleton containing just the root nonterminal. Now the function run takes,
in addition to the input string, a list of symbols (which is initially called with the
above-mentioned singleton). That list is used as some kind of stack, as elements are
prepended at its front, and removed at the front in other occasions. Therefore we
refer to the whole operation as a stack machine, and that’s why the function is named
run: it runs the stack machine. Function run is defined as follows:

run :: Stack -> String -> Bool

run [] [] = True

run [] (x:xs) = False

run (a:as) input | isT a = not(null input)

&& a==hd input

&& run as (tl input)

| isN a = run (rs++as) input

where rs = select a (hd input)

So, when called with an empty stack and an empty string, the function succeeds. If
the stack is empty, but the input is not, it fails, as there is junk input present. If
the stack is nonempty, case distinction is done on a, the top of the stack. If it is a
terminal, the input should begin with it, and the machine is called recursively for the
rest of the input. In the case of a nonterminal, we push rs on the stack, and leave
the input unchanged in the recursive call. This is a simple tail recursive function,
and could imperatively be implemented in a single loop that runs while the stack is
non-empty.

The new symbols rs that are pushed on the stack is the right hand side of a production
rule for nonterminal a. It is selected from the available alternatives by function
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select. For making the choice, the first input symbol is passed to select as well.
This is where you can see that the algorithm is LL(1): it is allowed to look ahead
one symbol.

This is how the alternative is selected:select a x = (snd . hd . filter ok . prods) gram

where ok p@(n,_) = n==a && x ‘elem‘ lahP gram p

So, from all productions of the grammar returned by prods, the ok ones are taken, of
which there should be only one (this is ensured by the LL(1)-property); that single
production is retrieved by hd, and of it only the right hand side is needed, hence
the call to snd. Now a production is ok, if the nonterminal n is a, the one we are
looking for, and moreover the first input symbol x is member of the lookahead set of
this production.

Determining the lookahead sets of all productions of a grammar is the tricky part
of the LL(1) parsing algorithm. It is described in Sections 10.2.5 to 10.2.8. Though
the general formulation of the algorithm is quite complex, its application in a simple
case is rather intuitive. So let’s study an example grammar: arithmetic expressions
with operators of two levels of precedence.

11.1.2. An LL(1) grammar

The idea for the grammar for arithmetical expressions was given in Section 2.5.7: we
need auxiliary notions of ‘Term’ and ‘Factor’ (actually, we need as much additional
notions as there are levels of precedence). The most straightforward definition of the
grammar is shown in the left column below.

Unfortunately, this grammar doesn’t abide to the LL(1)-property. The reason for
this is that the grammar contains rules with common prefixes on the right hand side
(for E and T ). A way out is the application of a grammar transformation known
as left factoring, as described in Section 2.5.4. The result is a grammar where there
is only one rule for E and T , and the non-common part of the right hand sides is
described by additional nonterminals, P and M . The resulting grammar is shown in
the right column below. For being able to treat end-of-input as if it were a character,
we also add an additional rule, which says that the input consists of an expression
followed by end-of-input (designated as ‘#’ here).
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E → T
E → T + E
T → F
T → F * T
F → N
F → ( E )

N → 1

N → 2

N → 3

S → E #
E → TP
P → ε
P → + E
T → FM
M → ε
M → * T
F → N
F → ( E )

N → 1

N → 2

N → 3

For determining the lookahead sets of each nonterminal, we also need to analyze
whether a nonterminal can produce the empty string, and which terminals can be the
first symbol of any string produced by each nonterminal. These properties are named
empty and first respecively. All properties for the example grammar are summarized
in the table below. Note that empty and first are properties of a nonterminal, whereas
lookahead is a property of a single production rule.

production empty first lookahead

S → E # no ( 1 2 3 first(E) ( 1 2 3

E → TP no ( 1 2 3 first(T) ( 1 2 3

P → ε yes + follow(P) ) #

P → + E immediate +

T → FM no ( 1 2 3 first(F) ( 1 2 3

M → ε yes * follow(M) + ) #

M → * T immediate *

F → N no ( 1 2 3 first(N) 1 2 3

F → ( E ) immediate (

N → 1 no 1 2 3 immediate 1

N → 2 immediate 2

N → 3 immediate 3

11.1.3. Using the LL(1) parser

A sentence of the language described by the example grammar is 1+2*3. Because of
the high precedence of * relative to +, the parse tree should reflect that the 2 and 3

should be multiplied, rather than the 1+2 and 3. Indeed, the parse tree does so:
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Now when we do a step-by-step analysis of how the parse tree is constructed by the
stack machine, we notice that the parse tree is traversed in a depth-first fashion,
where the left subtrees are analysed first. Each node corresponds to the application
of a production rule. The order in which the production rules are applied is a pre-
order traversal of the tree. The tree is constructed top-down: first the root is visited,
an then each time the first remaining nonterminal is expanded. From the table in
Figure 11.1 it is clear that the contents of the stack describes what is still to be
expected on the input. Initially, of course, this is the root nonterminal S. Whenever
a terminal is on top of the stack, the corresponing symbol is read from the input.

11.2. LR parsing

Another algorithm for doing deterministic parsing using a stack machine, is LR(1)-
parsing. Actually, what is described in this section is known as Simple LR parsing
or SLR(1)-parsing. It is still rather complicated, though.

A nice property of LR-parsing is that it is in many ways exactly the opposite, or
dual, of LL-parsing. Some of these ways are:

• LL does a leftmost derivation, LR does a rightmost derivation
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• LL starts with only the root nonterminal on the stack, LR ends with only the
root nonterminal on the stack
• LL ends when the stack is empty, LR starts with an empty stack
• LL uses the stack for designating what is still to be expected, LR uses the stack

for designating what has already been seen
• LL builds the parse tree top down, LR builds the parse tree bottom up
• LL continuously pops a nonterminal off the stack, and pushes a corresponding

right hand side; LR tries to recognize a right hand side on the stack, pops it,
and pushes the corresponding nonterminal
• LL thus expands nonterminals, while LR reduces them
• LL reads terminal when it pops one off the stack, LR reads terminals while it

pushes them on the stack
• LL uses grammar rules in an order which corresponds to pre-order traversal of

the parse tree, LR does a post-order traversal.

11.2.1. A stack machine for SLR parsing

As in Section 10.1.1 a stack machine is used to parse sentences. A stack machine for
a grammar G has a stack and an input. When the parsing starts the stack is empty.
The stack machine performs one of the following two actions.

1. Shift: Move the first symbol of the remaining input to the top of the stack.

2. Reduce: Choose a production rule N → α; pop the sequence α from the top
of the stack; push N onto the stack.

These actions are performed until the stack only contains the start symbol. A stack
machine for G accepts an input if it can terminate with only the start symbol on
the stack when the whole input has been processed. Let us take the example of
Section 10.1.1.

stack input

aab

a ab

aa b

baa

Saa
Sa
S

Note that with our notation the top of the stack is at the left side. To decide which
production rule is to be used for the reduction, the symbols on the stack must be
read in reverse order.
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11.3. LR parse example

The stack machine for G accepts the input string aab because it terminates with the
start symbol on the stack and the input is completely processed. The stack machine
performs three shift actions and then three reduce actions.

The SLR parser only performs a reduction with a grammar rule N → α if the next
symbol on the input is in the follow set of N .

Exercise 11.1. Give for gramm1 of Section 10.1.2 all the states of the stack machine for a
derivation of the input ccccba.

Exercise 11.2. Give for gramm2 of Section 10.1.2 all the states of the stack machine for a
derivation of the input abbb.

Exercise 11.3. Give for gramm3 of Section 10.1.2 all the states of the stack machine for a
derivation of the input acbab.

11.3. LR parse example

11.3.1. An LR checker

for a start, the main function for LR parsing calls a generalized stack function with
an empty stack:

check’ :: String -> Bool

check’ input = run’ [] input

The stack machine terminates when it finds the stack containing just the root non-
terminal. Otherwise it either pushes the first input symbol on the stack (‘Shift’), or
it drops some symbols off the stack (which should be the right hand side of a rule)
and pushes the corresponding nonterminal (‘Reduce’).

run’ :: Stack -> String -> Bool

run’ [’S’] [] = True

run’ [’S’] (x:xs) = False

run’ stack (x:xs) = case action of

Shift -> run’ (x: stack) xs

Reduce a n -> run’ (a:drop n stack) (x:xs)

Error -> False

where action = select’ stack x

In the case of LL-parsing the hard part was selecting the right rule to expand; here
we have the hard decision of whether to reduce according to a (and which?) rule, or
to shift the next symbol. This is done by the select’ function, which is allowed to
inspect the first input symbol x and the entire stack: after all, in needs to find the
right hand side of a rule on the stack.

In the right column in Figure 11.1 the LR derivation of sentence 1+2*3 is shown.
Compare closely to the left column, which shows the LL derivation, and note the
duality of the processes.
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LL derivation

rule read ↓stack remaining

S 1+2*3

S → E E 1+2*3

E → TP TP 1+2*3

T → FM FMP 1+2*3

F → N NMP 1+2*3

N → 1 1MP 1+2*3

read 1 MP +2*3

M → ε 1 P +2*3

P → +E 1 +E +2*3

read 1+ E 2*3

E → TP 1+ TP 2*3

T → FM 1+ FMP 2*3

F → N 1+ NMP 2*3

N → 2 1+ 2MP 2*3

read 1+2 MP *3

M → *T 1+2 *TP *3

read 1+2* TP 3

T → FM 1+2* FMP 3

F → N 1+2* NMP 3

N → 3 1+2* 3MP 3

read 1+2*3 MP
M → ε 1+2*3 P
P → ε 1+2*3

LR derivation

rule read stack↓ remaining

1+2*3

shift 1 1 +2*3

N → 1 1 N +2*3

F → N 1 F +2*3

M → ε 1 FM +2*3

T → FM 1 T +2*3

shift 1+ T+ 2*3

shift 1+2 T+2 *3

N → 2 1+2 T+N *3

F → N 1+2 T+F *3

shift 1+2* T+F* 3

shift 1+2*3 T+F*3
N → 3 1+2*3 T+F*N
F → N 1+2*3 T+F*F
M → ε 1+2*3 T+F*FM
T → FM 1+2*3 T+F*T
M → *T 1+2*3 T+FM
T → FM 1+2*3 T+T
P → ε 1+2*3 T+TP
E → TP 1+2*3 T+E
P → +E 1+2*3 TP
E → TP 1+2*3 E
S → E 1+2*3 S

Figure 11.1.: LL and LR derivations of 1+2*3
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11.3. LR parse example

11.3.2. LR action selection

The choice whether to shift or to reduce is made by function select’. It is defined
as follows:select’ as x

| null items = Error

| null redItems = Shift

| otherwise = Reduce a (length rs)

where items = dfa as

redItems = filter red items

(a,rs,_) = hd redItems

In the selection process a set (list) of so-called items plays a role. If the set is empty,
there is an error. If the set contains at least one item, we filter the red, or reducible
items from it. There should be only one, if the grammar has the LR-property. (Or
rather: it is the LR-property that there is only one element in this situation). The
reducible item is the production rule that can be reduced by the stack machine.

Now what are these items? An item is defined to be a production rule, augmented
with a ‘cursor position’ somewhere in the right hand side of the rule. So for the rule
F → (E), there are four possible items: F → ·(E), F → ( · E), F → (E · ) and
F → (E)·, where · denotes the cursor.

for the rule F → 2 we have two items: one having the cursor in front of the single
symbol, and one with the cursor after it: F → · 2 and F → 2 ·. For epsilon-rules
there is a single item, where the cursor is at position 0 in the right hand side.

In the Haskell representation, the cursor is an integer which is added as a third
element of the tuple, which already contains nonterminal and right hand side of the
rule.

The items thus constructed are taken to be the states of a NFA (Nondeterminis-
tic Finite-state Automaton), as described in Section 8.1.2. We have the following
transition relations in this NFA:

• The cursor can be ‘stepped’ to the next position. This transition is labeled
with the symbol that is hopped over
• If the cursor is on front of a nonterminal, we can jump to an item describing

the application of that nonterminal, where the cursor is at the beginning. This
relation is an epsilon-transition of the NFA.
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11. LL versus LR parsing

As an example, let’s consider an simplification of the arithmetic expression gram-
mar:

E → T
E → T + E
T → N
T → N * T
T → ( E )

it skips the ‘factor’ notion as compared to the grammar earlier in this chapter, so it
misses some well-formed expressions, but it serves only as an example for creating
the states here. There are 18 states in this machine, as depicted here:

Exercise 11.4 (no answer provided). How can you predict the number of states from in-
specting the grammar?

204



11.3. LR parse example

Exercise 11.5 (no answer provided). In the picture, the transition arrow labels are not
shown. Add them.

Exercise 11.6 (no answer provided). What makes this FA nondeterministic?

As was shown in Section 8.1.4, another automaton can be constructed that is de-
terministic (a DFA). That construction involves defining states which are sets of the
original states. So in this case, the states of the DFA are sets of items (where items
are rules with a cursor position). In the worst case we would have 218 states for the
DFA-version of our example NFA, but it turns out that we are in luck: there are only
11 states in the DFA. Its states are rather complicated to depict, as they are sets of
items, but it can be done:

Exercise 11.7 (no answer provided). Check that this FA is indeed deterministic.

Given this DFA, let’s return to our function that selects whether to shift or to re-
duce:

select’ as x

| null items = Error

| null redItems = Shift

| otherwise = Reduce a (length rs)

where items = dfa as

redItems = filter red items

(a,rs,_) = hd redItems

It runs the DFA, using the contents of the stack (as) as input. From the state where
the DFA ends, which is by construction a set of items, the ‘red’ ones are filtered out.
An item is ‘red’ (that is: reducible) if the cursor is at the end of the rule.
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11. LL versus LR parsing

Exercise 11.8 (no answer provided). Which of the states in the picture of the DFA contain
red items? How many?

This is not the only condition that makes an item reducible; the second condition
is that the lookahead input symbol is in the follow set of the nonterminal that is
reduced to. Function follow was also needed in the LL analysis in Section 10.2.8.
Both conditions are in the formal definition:

... where red (a,r,c) = c==length r && x ‘elem‘ follow a

Exercise 11.9 (no answer provided). How does this condition reflect that ‘the cursor is at
the end’?

11.3.3. LR optimizations and generalizations

The stack machine run’, by its nature, pushes and pops the stack continuously, and
does a recursive call afterwards. In each call, for making the shift/reduce decision,
the DFA is run on the (new) stack. In practice, it is considered a waste of time
to do the full DFA transitions each time, as most of the stack remains the same
after some popping and pushing at the top. Therefore, as an optimization, at each
stack position, the corresponding DFA state is also stored. The states of the DFA
can easily be numbered, so this amounts to just storing extra integers on the stack,
tupled with the symbols that used to be on the stack. (An artificial bottom element
should be placed on the stack initially, containing a dummy symbol and the number
of the initial DFA state).

By analysing the grammar, two tables can be precomputed:

• Shift, that decides what is the new state when pushing a terminal symbol on
the stack. This basically is the transition relation on the DFA.

• Action, that decides what action to take from a given state seeing a given input
symbol.

Both tables can be implemented as a two-dimensional table of integers, of dimensions
the number of states (typically, 100s to 1000s) times the number of symbols (typically,
under 100).

As said in the introduction, the algorithm described here is a mere Simple LR parsing,
or SLR(1). Its simplicity is in the reducibility test, which says:

... where red (a,r,c) = c==length r && x ‘elem‘ follow a

The follow set is a rough approximation of what might follow a given nonterminal.
But this set is not dependent of the context in which the nonterminal is used; maybe,
in some contexts, the set is smaller. So, the SLR red function, may designate items
as reducible, where it actually should not. For some grammars this might lead to
a decision to reduce, where it should have done a shift, with a failing parser as a
consequence.

206



11.3. LR parse example

An improvement, leading to a wider class of grammars that are allowable, would be
to make the follow set context dependent. This means that it should vary for each
item instead of for each nonterminal. It leads to a dramatic increase of the number
of states in the DFA. And the full power of LR parsing is rarely needed.

A compromise position is taken by the so-called LALR parsers, or Look Ahead LR
parsing. (A rather silly name, as all parsers look ahead. . . ). In LALR parsers,
the follow sets are context dependent, but when states in the DFA differ only with
respect to the follow-part of their set-members (and not with respect to the item-
part of them), the states are merged. Grammars that do not give rise to shift/reduce
conflicts in this situation are said to be LALR-grammars. It is not really a natural
notion; rather, it is a performance hack that gets most of LR power while keeping
the size of the goto- and action-tables reasonable.

A widely used parser generator tool named yacc (for ‘yet another compiler compiler’)
is based on an LALR engine. It comes with Unix, and was originally created for
implementing the first C compilers. A commonly used clone of yacc is named Bison.
Yacc is designed for doing the context-free aspects of analysing a language. The
micro structure of identifiers, numbers, keywords, comments etc. is not handled by
this grammar. Instead, it is described by regular expressions, which are analysed by a
accompanying tool to yacc named lex (for ‘lexical scanner’). Lex is a preprocessor to
yacc, that subdivides the input character stream into a stream of meaningful tokens,
such as numbers, identifiers, operators, keywords etc.

Bibliographical notes

The example DFA and NFA for LR parsing, and part of the description of the algo-
rithm were taken from course notes by Alex Aiken and George Necula, which can be
found at www.cs.wright.edu/~tkprasad/courses/cs780
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A. The Stack module

module Stack

( Stack

, emptyStack

, isEmptyStack

, push

, pushList

, pop

, popList

, top

, split

, mystack

)

where

data Stack x = MkS [x] deriving (Show,Eq)

emptyStack :: Stack x

emptyStack = MkS []

isEmptyStack :: Stack x -> Bool

isEmptyStack (MkS xs) = null xs

push :: x -> Stack x -> Stack x

push x (MkS xs) = MkS (x:xs)

pushList :: [x] -> Stack x -> Stack x

pushList xs (MkS ys) = MkS (xs ++ ys)

pop :: Stack x -> Stack x

pop (MkS xs) = if isEmptyStack (MkS xs)

then error "pop on emptyStack"

else MkS (tail xs)

popIf :: Eq x => x -> Stack x -> Stack x
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A. The Stack module

popIf x stack = if top stack == x

then pop stack

else error "argument and top of stack don’t match"

popList :: Eq x => [x] -> Stack x -> Stack x

popList xs stack = foldr popIf stack (reverse xs)

top :: Stack x -> x

top (MkS xs) = if isEmptyStack (MkS xs)

then error "top on emptyStack"

else head xs

split :: Int -> Stack x -> ([x], Stack x)

split 0 stack = ([], stack)

split n (MkS []) = error "attempt to split the emptystack"

split (n+1) (MkS (x:xs)) = (x:ys, stack’)

where

(ys, stack’) = split n (MkS xs)

mystack = MkS [1,2,3,4,5,6,7]
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B. Answers to exercises

2.1 Three of the fours strings are elements of L∗: abaabaaabaa, aaaabaaaa,
baaaaabaa.

2.2 {ε}.

2.3

∅L
= { Definition of concatenation of languages }
{st | s ∈ ∅, t ∈ L}

= { s ∈ ∅ }
∅

The other equalities can be proved in a similar fashion.

2.4 The star operator on sets injects the elements of a set in a list; the star operator
on languages concatenates the sentences of the language. The former star operator
preserves more structure.

2.5 Section 2.1 contains an inductive definition of the set of sequences over an arbi-
trary set X . Syntactical definitions for such sets follow immediately from this.

1. A grammar for X = {a} is given by

S → ε
S → aS

2. A grammar for X = {a, b} is given by

S → ε
S → X S
X → a | b

2.6 A context free grammar for L is given by

S → ε
S → aSb
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2.7 Analogous to the construction of the grammar for PAL.

P → ε
| a

| b

| aPa

| bPb

2.8 Analogous to the construction of PAL.

M → ε
| aM a

| bM b

2.9 First establish an inductive definition for parity sequences. An example of a
grammar that can be derived from the inductive definition is:

P → ε | 1P1 | 0P | P0

There are many other solutions.

2.10 Again, establish an inductive definition for L. An example of a grammar that
can be derived from the inductive definition is:

S → ε | aSb | bSa | SS

Again, there are many other solutions.

2.11 A sentence is a sentential form consisting only of terminals which can be de-
rived in zero or more derivation steps from the start symbol (to be more precise:
the sentential form consisting only of the start symbol). The start symbol is a non-
terminal. The nonterminals of a grammar do not belong to the alphabet (the set
of terminals) of the language we describe using the grammar. Therefore the start
symbol cannot be a sentence of the language. As a consequence we have to perform
at least one derivation step from the start symbol before we end up with a sentence
of the language.

2.12 The language consisting of the empty string only, i.e., {ε}.

2.13 This grammar generates the empty language, i.e., ∅. In general, grammars such
as this one that have no production rules without nonterminals on the right hand
side, cannot produce any sentences with only terminal symbols. Each derivation will
always contain nonterminals, so no sentences can be derived.

2.14 The sentences in this language consist of zero or more concatenations of ab, i.e.,
the language is the set {ab}∗.
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2.15 Yes. Each finite language is context free. A context free grammar can be
obtained by taking one nonterminal and adding a production rule for each sentence
in the language. For the language in Exercise 2.1, this prodedure yields

S → ab

S → aa

S → baa

2.16 To bring the grammar into the form where we can directly apply the rule for
associative separators, we introduce a new nonterminal:

A → AaA
A → B
B → b | c

Now we can remove the ambiguity:

A → BaA
A → B
B → b | c

It is now (optionally) possible to undo the auxiliary step of introducing the additional
nonterminal by applying the rules for substituting right hand sides for nonterminal
and removing unreachable productions. We then obtain:

A→ baA | caA
A→ b | c

2.17

1. Here are two parse trees for the sentence if b then if b then a else a:

S

if b then S

if b then S

a

else S

a

S

if b then S

if b then S

a

else S

a
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2. The rule we apply is: match else with the closest previous unmatched else.
This means we prefer the second of the two parse trees above. The disam-
biguating rule is incorporated directly into the grammar:

S → MatchedS |UnmatchedS
MatchedS → if b then MatchedS else MatchedS

| a

UnmatchedS → if b then S
| if b then MatchedS else UnmatchedS

3. An else clause is always matched with the closest previous unmatched if.

2.18 An equivalent grammar for bit lists is

L → B Z | B
Z → , L Z | , L
B → 0 | 1

2.19

1. The grammar generates the language {a2nbm |m,n ∈ N}.
2. An equivalent non left recursive grammar is

S → AB
A → ε | aaA
B → ε | bB

2.20 Of course, we can choose how we want to represent the different operators in
concrete syntax. Choosing standard symbols, this is one possibility:

Expr → Expr + Expr
| Expr * Expr
| Int

where Int is a nonterminal that produces integers. Note that the grammar given
above is ambiguous. We could also give an unambiguous version, for example by
introducing operator priorities.

2.21 Recall the grammar for palindromes from Exercise 2.7, now with names for the
productions:

Empty: P → ε
A: P → a

B: P → b

A2: P → aPa

B2: P → bPb
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We construct the datatype Pal by interpreting the nonterminal as datatype and the
names of the productions as names of the constructors:

data Pal = Empty |A | B |A2 P | B2 P

Note that once again we keep the nonterminals on the right hand sides as arguments
to the constructors, but omit all the terminal symbols.

The strings abaaba and baaab can be derived as follows:

P ⇒ aPa⇒ abPba⇒ abaPaba⇒ abaaba

P ⇒ bPb⇒ baPba⇒ baaab

The parse trees corresponding to the derivations are the following:

P

a P

b P

a P

ε

a

b

a

and

P

b P

a P

a

a

b

Consequently, the desired Haskell definitions are

pal1 = A2 (B2 (A2 Empty))
pal2 = B2 (A2 A)

2.22

1.

printPal :: Pal → String
printPal Empty = ""

printPal A = "a"

printPal B = "b"

printPal (A2 p) = "a" ++ printPal p ++ "a"

printPal (B2 p) = "b" ++ printPal p ++ "b"

Note how the function follows the structure of the datatype Pal closely, and
calls itself recursively wherever a recursive value of Pal occurs in the datatype.
Such a pattern is typical for semantic functions.
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2.

aCountPal :: Pal → Int
aCountPal Empty = 0
aCountPal A = 1
aCountPal B = 0
aCountPal (A2 p) = aCountPal p + 2
aCountPal (B2 p) = aCountPal p

2.23 Recall the grammar from Exercise 2.8, this time with names for the produc-
tions:

MEmpty: M → ε
MA: M → aM a

MB: M → bM b

1. By systematically transforming the grammar, we obtain the following datatype:

data Mir = MEmpty |MA Mir |MB Mir

The concrete mirror palindromes cMir1 and cMir2 correspond to the following
terms of type Mir :

aMir1 = MA (MB (MA Empty))
aMir2 = MA (MB (MB Empty))

2.

printMir :: Mir → String
printMir MEmpty = ""

printMir (MA m) = "a" ++ printMir m ++ "a"

printMir (MB m) = "b" ++ printMir m ++ "b"

3.

mirToPal :: Mir → Pal
mirToPal MEmpty = Empty
mirToPal (MA m) = A2 (mirToPal m)
mirToPal (MB m) = B2 (mirToPal m)

2.24 Recall the grammar from Exercise 2.9, this time with names for the produc-
tions:

Stop: P → ε
POne: P → 1P1

PZeroL: P → 0P
PZeroR: P → P0

218



1.

data Parity = Stop | POne Parity | PZeroL Parity | PZeroR Parity

aEven1 = PZeroL (PZeroL (POne (PZeroL Stop)))
aEven2 = PZeroL (PZeroR (POne (PZeroL Stop)))

Note that the grammar is ambiguous, and other representations for cEven1 and
cEven2 are possible, for instance:

aEven ′1 = PZeroL (PZeroL (POne (PZeroR Stop)))
aEven ′2 = PZeroR (PZeroL (POne (PZeroL Stop)))

2.

printParity :: Parity → String
printParity Stop = ""

printParity (POne p) = "1" ++ printParity p ++ "1"

printParity (PZeroL p) = "0" ++ printParity p
printParity (PZeroR p) = printParity p ++ "0"

2.25 A grammar for bit lists that is not left-recursive is the following:

L → B Z | B
Z → , L Z | , L
B → 0 | 1

1.

data BitList = ConsBit Bit Z | SingleBit Bit
data Z = ConsBitList BitList Z | SingleBitList BitList
data Bit = Bit0 | Bit1

aBitList1 = ConsBit Bit0 (ConsBitList (SingleBit Bit1)
(SingleBitList (SingleBit Bit0)))

aBitList2 = ConsBit Bit0 (ConsBitList (SingleBit Bit0)
(SingleBitList (SingleBit Bit1)))

2.

printBitList :: BitList → String
printBitList (ConsBit b z ) = printBit b ++ printZ z
printBitList (SingleBit b) = printBit b

printZ :: Z → String
printZ (ConsBitList bs z ) = "," ++ printBitList bs ++ printZ z
printZ (SingleBitList bs) = "," ++ printBitList bs
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printBit :: Bit → String
printBit Bit0 = "0"

printBit Bit1 = "1"

When multiple datatypes are involved, semantic functions typically still follow
the structure of the datatypes closely. We get one function per datatype, and
the functions call each other recursively where appropriate – we say they are
mutually recursive.

3. We can still make the concatenation function structurally recursive in the first
of the two bit lists. We never have to match on the second bit list:

concatBitList :: BitList → BitList → BitList
concatBitList (ConsBit b z ) cs = ConsBit b (concatZ z cs)
concatBitList (SingleBit b) cs = ConsBit b (SingleBitList cs)

concatZ :: Z → BitList → Z
concatZ (ConsBitList bs z ) cs = ConsBitList bs (concatZ z xs)
concatZ (SingleBitList bs) cs = ConsBitList bs (SingleBitList cs)

2.26 We only give the EBNF notation for the productions that change.

Digs → Dig∗

Int → Sign? Nat

AlphaNums → AlphaNum∗

AlphaNum → Letter |Dig

2.27 L(G?) = L(G) ∪ {ε}

2.28

1. L1 is generated by:

S → ZC
Z → aZb | ε
C → c∗

and L2 is generated by:

S → AZ
A→ a∗

Z → bZc | ε

2. We have that

L1 ∩ L2 = {anbncn | n ∈ N}

However, this language is not context-free, i. e., there is no context-free grammar
that generates this language. We will see in Chapter 9 how to prove such a
statement.
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2.29 No. Furthermore, for any language L, since ε ∈ L∗, we have ε /∈ (L∗). On the
other hand, ε ∈ (L)

∗
. Thus (L∗) and (L)

∗
cannot be equal.

2.30 For example L = {xn | n ∈ N}. For any language L, it holds that

L∗ = (L∗)∗

so, given any language L, the language L∗ fulfills the desired property.

2.31 This is only the case when ε /∈ L.

2.32 No. the language L = {aab, baa} also satisfies L = LR.

2.33

1. The shortest derivation is three steps long and yields the sentence aa. The
sentences baa, aba, and aab can all be derived in four steps.

2. Several derivations are possible for the string babbab. Two of them are

S ⇒ AA⇒ bAA⇒ bAbA⇒ babA ⇒ babbA ⇒ babbAb⇒ babbab

S ⇒ AA⇒ AAb⇒ bAAb⇒ bAbAb⇒ bAbbAb⇒ babbAb⇒ babbab

3. A leftmost derivation is:

S ⇒ AA⇒∗ bmAA⇒∗ bmAbnA⇒ bmabnA⇒∗ bmabnAbp

⇒ bmabnabp

2.34 The grammar is equivalent to the grammar

S → aaB
B → bBba

B → a

This grammar generates the string aaa and the strings aabma(ba)m for m ∈ N,
m > 1. The string aabbaabba does not appear in this language.

2.35 The language L is generated by:

S → aSa | bSb | c

The derivation is:

S ⇒ aSa⇒ abSba⇒ abcba

2.36 The language generated by the grammar is

{anbn | n ∈ N}
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The same language is also generated by the grammar

S → aAb | ε

2.37 The first language is

{an | n ∈ N}

This language is also generated by the grammar

S → aS | ε

The second language is

{ε} ∪ {a2n+1 | n ∈ N}

This language is also generated by the grammar

S → A | ε
A→ a | aAa

or using EBNF notation

S → (a(aa)∗)?

2.38 All three grammars generate the language

{an | n ∈ N}

2.39

S → A | ε
A→ aAb | ab

2.40 The language is

L = {a2n+1 | n ∈ N}

A grammar for L without left-recursive productions is

A→ aaA | a

And a grammar without right-recursive prodcutions is

A→ Aaa | a

2.41 The language is
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{abn | n ∈ N}

A grammar for L without left-recursive productions is

X → aY
Y → bY | ε

A grammar for L without left-recursive productions that is also non-contracting is

X → aY | a
Y → bY | b

2.42 A grammar that uses only productions with two or less symbols on the right
hand side:

S → T |US
T → X a |U a

X → aS
U → S |YT
Y → SU

The sentential forms aS and SU have been abstracted to nonterminals X and Y .

A grammar for the same language with only two nonterminals:

S → aSa |U a |US
U → S | SU aSa | SUU a

The nonterminal T has been substituted for its alternatives aSa and U a.

2.43

S → 1O
O → 1O | 0N
N → 1∗

2.44 The language is generated by the grammar:

S → (A) | SS
A→ S | ε

A derivation for ( ) ( ( ) ) ( ) is:

S ⇒ SS ⇒ SSS ⇒ (A)SS ⇒ ()SS ⇒ ()(A)S ⇒ ()(S)S ⇒ ()((A))S
⇒ ()(())S ⇒ ()(())(A)⇒ ()(())()

2.45 The language is generated by the grammar
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S → (A) | [A] | SS
A→ S | ε

A derivation for [ ( ) ] ( ) is:

S ⇒ SS ⇒ [A]S ⇒ [S]S ⇒ [(A)]S ⇒ [()]S ⇒ [()](A)⇒ [()]()

2.46 First leftmost derivation:

Sentence
⇒ Subject Predicate

⇒ they Predicate
⇒ they Verb NounPhrase
⇒ they are NounPhrase
⇒ they are Adjective Noun

⇒ they are flying Noun
⇒ they are flying planes

Second leftmost derivation:

Sentence
⇒ Subject Predicate

⇒ they Predicate
⇒ they AuxVerb Verb Noun
⇒ they are Verb Noun
⇒ they are flying Noun
⇒ they are flying planes

2.48 Here is an unambiguous grammar for the language from Exercise 2.45:

S → (E)E | [E] E
E → ε | S

2.49 Here is a leftmost derivation for ♣3♣4♠.

� ⇒ �4⊗ ⇒ ⊗4⊗ ⇒ ⊗3⊕4⊗ ⇒ ⊕3⊕4⊗ ⇒ ♣3⊕4⊗
⇒ ♣3♣4⊗ ⇒ ♣3♣4⊕ ⇒ ♣3♣4♠

Notice that the grammar of this exercise is the same, up to renaming, as the gram-
mar

E → E + T | T
T → T * F | F
F → 0 | 1
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2.50 The palindrome ε with length 0 can be generated by de grammar with the
derivation P ⇒ ε. The palindromes a, b, and b are the palindromes with length 1.
They can be derivated with P ⇒ a, P ⇒ b, P ⇒ c, respectively.

Suppose that the palindrome s with a length of 2 or more. Then s can be written as
ata or btb or ctc where the length of t is strictly smaller, and t also is a palindrome.
Thus, by induction hypothesis, there is a derivation P ⇒∗ t . But then, there is also
a derivation for s, for example P ⇒∗ t ⇒ ata in the first situation – the other two
cases are analogous.

We have now proved that any palindrome can be generated by the grammar – we
still have to prove that anything generated by the grammar is a palindrome, but this
is easy to see by induction over the length of derivations. Certainly ε, a, b, and c
are palindromes. And if s is a palindrome that can be derived, so are asa, bsb, and
csc.

3.1 Either we use the predefined predicate isUpper in module Data.Char ,

capital = satisfy isUpper

or we make use of the ordering defined characters,

capital = satisfy (λs → (’A’ 6 s) ∧ (s 6 ’Z’))

3.2 A symbol equal to a satisfies the predicate (= = a):

symbol a = satisfy (= = a)

3.3 The function epsilon is a special case of succeed :

epsilon :: Parser s ()
epsilon = succeed ()

3.4 Let xs :: [s]. Then

(f <$> succeed a) xs

= { definition of <$> }
[(f x , ys) | (x , ys)← succeed a xs]

= { definition of succeed }
[(f a, xs)]

= { definition of succeed }
succeed (f a) xs

3.5 The type and results of (:)<$> symbol ’a’ are (note that you cannot write this
as a definition in Haskell):
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((:)<$> symbol ’a’) :: Parser Char (String → String)
((:)<$> symbol ’a’) [] = []
((:)<$> symbol ’a’) (x : xs) | x = = ’a’ = [((x :), xs)]

| otherwise = []

3.6 The type and results of (:)<$> symbol ’a’<∗> p are:

((:)<$> symbol ’a’<∗> p) :: Parser Char String
((:)<$> symbol ’a’<∗> p) [] = []
((:)<$> symbol ’a’<∗> p) (x : xs)
| x = = ’a’ = [(’a’ : x , ys) | (x , ys)← p xs]
| otherwise = []

3.7

pBool :: Parser Char Bool
pBool = const True <$> token "True"

<|> const False <$> token "False"

3.9

1.

data Pal2 = Nil | Leafa | Leafb | Twoa Pal2 | Twob Pal2

2.

palin2 :: Parser Char Pal2
palin2 = (\ y → Twoa y)<$>

symbol ’a’<∗> palin2 <∗> symbol ’a’
<|> (\ y → Twob y)<$>

symbol ’b’<∗> palin2 <∗> symbol ’b’
<|> const Leafa <$> symbol ’a’
<|> const Leafb <$> symbol ’b’
<|> succeed Nil

3.

palina :: Parser Char Int
palina = (λ y → y + 2)<$>

symbol ’a’<∗> palina <∗> symbol ’a’
<|> (λ y → y) <$>

symbol ’b’<∗> palina <∗> symbol ’b’
<|> const 1<$> symbol ’a’
<|> const 0<$> symbol ’b’
<|> succeed 0
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3.10

1.

data English = E1 Subject Pred
data Subject = E2 String
data Pred = E3 Verb NounP | E4 AuxV Verb Noun
data Verb = E5 String | E6 String
data AuxV = E7 String
data NounP = E8 Adj Noun
data Adj = E9 String
data Noun = E10 String

2.

english :: Parser Char English
english = E1 <$> subject <∗> pred

subject = E2 <$> token "they"

pred = E3 <$> verb <∗> nounp
<|> E4 <$> auxv <∗> verb <∗> noun

verb = E5 <$> token "are"

<|> E6 <$> token "flying"

auxv = E7 <$> token "are"

nounp = E8 <$> adj <∗> noun
adj = E9 <$> token "flying"

noun = E10 <$> token "planes"

3.11 As <|> uses ++, it is more efficiently evaluated if right-associative.

3.12 The function is the same as <∗>, but instead of applying the result of the first
parser to that of the second, it pairs them together:

(<,>) :: Parser s a → Parser s b → Parser s (a, b)
(p <,> q) xs = [((x , y), zs)

|(x , ys)← p xs
, (y , zs) ← q ys
]

3.13 ‘Parser transformator’, or ‘parser modifier’ or ‘parser postprocessor’, etcetera.

3.14 The transformator <$> does to the result part of parsers what map does to
the elements of a list.

3.15 The parser combinators <∗> and <,> can be defined in terms of each other:

p <∗> q = uncurry ($)<$> (p <,> q)
p <,> q = (, )<$> p <∗> q
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3.16 Yes. You can combine the parser parameter of <$> with a parser that consumes
no input and always yields the function parameter of <$>:

f <$> p = succeed f <∗> p

3.17

f ::
Char → Parentheses → Char → Parentheses → Parentheses

open ::
Parser Char Char

f <$> open ::
Parser Char (Parentheses → Char → Parentheses → Parentheses)

parens ::
Parser Char Parentheses

(f <$> open)<∗> parens ::
Parser Char (Char → Parentheses → Parentheses)

3.18 To the left. Yes.

3.19 The function has to check whether applying the parser p to input s returns at
least one result with an empty rest sequence:

test p s = not (null (filter (null . snd) (p s)))

3.20

1.

listofdigits :: Parser Char [Int ]
listofdigits = listOf newdigit (symbol ’ ’)

?> listofdigits "1 2 3"

[([1,2,3],""),([1,2]," 3"),([1]," 2 3")]

?> listofdigits "1 2 a"

[([1,2]," a"),([1]," 2 a")]

2. In order to use the parser chainr we first define a parser plusParser that recog-
nises the character ’+’ and returns the function (+).

plusParser :: Num a ⇒ Parser Char (a → a → a)
plusParser [] = []
plusParser (x : xs) | x = = ’+’ = [((+), xs)]

| otherwise = []
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The definiton of the parser sumParser is:

sumParser :: Parser Char Int
sumParser = chainr newdigit plusParser

?> sumParser "1+2+3"

[(6,""),(3,"+3"),(1,"+2+3")]

?> sumParser "1+2+a"

[(3,"+a"),(1,"+2+a")]

?> sumParser "1"

[(1,"")]

Note that the parser also recognises a single integer.

3. The parser many should be replaced by the parser greedy in de definition of
listOf .

3.21 We introduce the abbreviation

listOfa = (:)<$> symbol ’a’

and use the results of Exercises 3.5 and 3.6.

xs = []:

many (symbol ’a’) []

= { definition of many and listOfa }
(listOfa <∗>many (symbol ’a’)<|> succeed []) []

= { definition of <|> }
(listOfa <∗>many (symbol ’a’)) [] ++ succeed [] []

= { Exercise 3.6, definition of succeed }
[] ++ [([], [])]

= { definition of ++ }
[([], [])]

xs = [’a’]:

many (symbol ’a’) [’a’]

= { definition of many and listOfa }
(listOfa <∗>many (symbol ’a’)<|> succeed []) [’a’]

= { definition of <|> }
(listOfa <∗>many (symbol ’a’)) [’a’] ++ succeed [] [’a’]

= { Exercise 3.6, previous calculation }
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[([’a’], []), ([], [’a’])]

xs = [’b’]:

many (symbol ’a’) [’b’]

= { as before }
(listOfa <∗>many (symbol ’a’)) [’b’] ++ succeed [] [’b’]

= { Exercise 3.6, previous calculation }
[([], [’b’])]

xs = [’a’, ’b’]:

many (symbol ’a’) [’a’, ’b’]

= { as before }
(listOfa <∗>many (symbol ’a’)) [’a’, ’b’] ++ succeed [] [’a’, ’b’]

= { Exercise 3.6, previous calculation }
[([’a’], [’b’]), ([], [’a’, ’b’])]

xs = [’a’, ’a’, ’b’]:

many (symbol ’a’) [’a’, ’a’, ’b’]

= { as before }
(listOfa <∗>many (symbol ’a’)) [’a’, ’a’, ’b’] ++ succeed [] [’a’, ’a’, ’b’]

= { Exercise 3.6, previous calculation }
[([’a’, ’a’], [’b’]), ([’a’], [’a’, ’b’]), ([], [’a’, ’a’, ’b’])]

3.22 The empty alternative is presented last, because the <|> combinator uses list
concatenation for concatenating lists of successes. This also holds for the recursive
calls; thus the ‘greedy’ parsing of all three a’s is presented first, then two a’s with a
singleton rest string, then one a, and finally the empty result with the original input
as rest string.

3.24

— Combinators for repetition

psequence :: [Parser s a]→ Parser s [a]
psequence [] = succeed []
psequence (p : ps) = (:)<$> p <∗> psequence ps

psequence ′ :: [Parser s a]→ Parser s [a]
psequence ′ = foldr f (succeed [])

where f p q = (:)<$> p <∗> q

230



choice :: [Parser s a]→ Parser s a
choice = foldr (<|>) failp

?> (psequence [digit, satisfy isUpper]) "1A"

[("1A","")]

?> (psequence [digit, satisfy isUpper]) "1Ab"

[("1A","b")]

?> (psequence [digit, satisfy isUpper]) "1ab"

[]

?> (choice [digit, satisfy isUpper]) "1ab"

[(’1’,"ab")]

?> (choice [digit, satisfy isUpper]) "Ab"

[(’A’,"b")]

?> (choice [digit, satisfy isUpper]) "ab"

[]

3.25

token :: Eq s ⇒ [s]→ Parser s [s]
token = psequence .map symbol

3.27

identifier :: Parser Char String
identifier = (:)<$> satisfy isAlpha <∗> greedy (satisfy isAlphaNum)

3.28

1. As Haskell terms:

"abc": Var "abc"

"(abc)": Var "abc"

"a*b+1": Var "a" :∗: Var "b" :+: Con 1
"a*(b+1)": Var "a" :∗: (Var "b" :+: Con 1)
"-1-a": Con (−1) :−: Var "a"

"a(1,b)": Fun "a" [Con 1,Var "b"]

2. The parser fact first tries to parse an integer, then a variable, then a function
application and finally a parenthesised expression. A function application is a
variable followed by an argument list. When the parser encounters a function
application, a variable will first be recognised. This first solution will however
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not lead to a parse tree for the complete expression because the list of arguments
that comes after the variable cannot be parsed.

If we swap the second and the third line in the definition of the parser fact , the
parse tree for a function application will be the first solution of the parser:

fact :: Parser Char Expr
fact = Con <$> integer

<|> Fun <$> identifier <∗> parenthesised (commaList expr)
<|>Var <$> identifier
<|> parenthesised expr

?> expr "a(1,b)"

[(Fun "a" [Con 1,Var "b"],""),(Var "a","(1,b)")]

3.29 A function with no arguments is not accepted by the parser:

?> expr "f()"

[(Var "f","()")]

The parser parenthesised (commaList expr) that is used in the parser fact does not
accept an empty list of arguments because commaList does not. To accept an empty
list we modify the parser fact as follows:

fact :: Parser Char Expr
fact = Con <$> integer

<|> Fun <$> identifier
<∗> parenthesised (commaList expr <|> succeed [])

<|>Var <$> identifier
<|> parenthesised expr

?> expr "f()"

[(Fun "f" [],""),(Var "f","()")]

3.30

expr = chainr (chainl term (const (:−:)<$> symbol ’-’))
(const (:+:)<$> symbol ’+’)

3.31 The datatype Expr is extended as follows to allow raising an expression to the
power of an expression:

data Expr = Con Int
| Var String
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| Fun String [Expr ]
| Expr :+: Expr
| Expr :−: Expr
| Expr :∗: Expr
| Expr :/: Expr
| Expr : ˆ : Expr

deriving Show

Now the parser expr ′ of Listing 3.8 can be extended with a new level of priorities:

powis = [(’^’, (: ˆ :))]

expr ′ :: Parser Char Expr
expr ′ = foldr gen fact ′ [addis,multis, powis]

Note that because of the use of chainl all the operators listed in addis, multis and
powis are treated as left-associative.

3.32 The proofs can be given by using laws for list comprehension, but here we prefer
to exploit the following equation

(f <$> p) xs = map (f ∗∗∗ id) (p xs) (B.1)

where (∗∗∗) is defined by

(∗∗∗) :: (a → c)→ (b → d)→ (a, b)→ (c, d)
(f ∗∗∗ g) (a, b) = (f a, g b)

It has the following property:

(f ∗∗∗ g) . (h ∗∗∗ k) = (f . h) ∗∗∗ (g . k) (B.2)

Furthermore, we will use the following laws about map in our proof: map distributes
over composition, concatenation, and the function concat :

map f .map g = map (f . g) (B.3)

map f (x ++ y) = map f x ++ map f y (B.4)

map f . concat = concat .map (map f ) (B.5)

1.

(h <$> (f <$> p)) xs

= { (B.1) }
map (h ∗∗∗ id) ((f <$> p) xs)

= { (B.1) }
map (h ∗∗∗ id) (map (f ∗∗∗ id) (p xs))
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= { (B.3) }
map ((h ∗∗∗ id) . (f ∗∗∗ id)) (p xs)

= { (B.2) }
map ((h . f ) ∗∗∗ id) (p xs)

= { (B.1) }
((h . f )<$> p) xs

2.

(h <$> (p <|> q)) xs

= { (B.1) }
map (h ∗∗∗ id) ((p <|> q) xs)

= { definition of <|> }
map (h ∗∗∗ id) (p xs ++ q xs)

= { (B.4) }
map (h ∗∗∗ id) (p xs) ++ map (h ∗∗∗ id) (q xs)

= { (B.1) }
(h <$> p) xs ++ (h <$> q) xs

= { definition of <|> }
((h <$> p)<|> (h <$> q)) xs

3. First note that (p <∗> q) xs can be written as

(p <∗> q) xs = concat (map (mc q) (p xs)) (B.6)

where

mc q (f , ys) = map (f ∗∗∗ id) (q ys)

Now we calculate

(((h.)<$> p)<∗> q) xs

= { (B.6) }
concat (map (mc q) (((h.)<$> p) xs))

= { (B.1) }
concat (map (mc q) (map ((h.) ∗∗∗ id) (p xs)))

= { (B.3) }
concat (map (map (h ∗∗∗ id) (map (mc q) (p xs))))

= { (B.7), see below }
concat (map ((map (h ∗∗∗ id)) .mc q) (p xs))
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= { (B.3) }
concat (map (map (h ∗∗∗ id)) (map (mc q) (p xs)))

= { (B.5) }
map (h ∗∗∗ id) (concat (map (mc q) (p xs)))

= { (B.6) }
map (h ∗∗∗ id) ((p <∗> q) xs)

= { (B.1) }
(h <$> (p <∗> q)) xs

It remains to prove the claim

mc q . ((h.) ∗∗∗ id) = map (h ∗∗∗ id) .mc q (B.7)

This claim is also proved by calculation:

((map (h ∗∗∗ id)) .mc q) (f , ys)

= { definition of . }
map (h ∗∗∗ id) (mc q (f , ys))

= { definition of mc q }
map (h ∗∗∗ id) (map (f ∗∗∗ id) (q ys))

= { map and ∗∗∗ distribute over composition }
map ((h . f ) ∗∗∗ id) (q y)

= { definition of mc q }
mc q (h . f , ys)

= { definition of ∗∗∗ }
(mc q . ((h.) ∗∗∗ id)) (f , ys)

3.33

pMir :: Parser Char Mir
pMir = (λ m → MB m)<$> symbol ’b’<∗> pMir <∗> symbol ’b’

<|> (λ m → MA m) <$> symbol ’a’<∗> pMir <∗> symbol ’a’
<|> succeed MEmpty

3.34

pBitList :: Parser Char BitList
pBitList = SingleB <$> pBit

<|> (λb bs → ConsB b bs)<$> pBit <∗> symbol ’,’<∗> pBitList

pBit = const Bit0 <$> symbol ’0’
<|> const Bit1 <$> symbol ’1’
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3.35

— Parser for floating point numbers

fixed :: Parser Char Float
fixed = (+)<$> (fromIntegral <$> greedy integer)

<∗> (((λ y → y)<$> symbol ’.’<∗> fractpart) ‘option‘ 0.0)

fractpart :: Parser Char Float
fractpart = foldr f 0.0<$> greedy newdigit

where f d n = (n + fromIntegral d) / 10.0

3.36

float :: Parser Char Float
float = f <$> fixed

<∗> (((λ y → y)<$> symbol ’E’<∗> integer) ‘option‘ 0)
where f m e = m ∗ power e

power e | e < 0 = 1.0 / power (−e)
| otherwise = fromIntegral (10e)

3.37 Parse trees for Java assignments are of type:

data JavaAssign = JAssign String Expr
deriving Show

The parser is defined as follows:

assign :: Parser Char JavaAssign
assign = JAssign

<$> identifier
<∗> ((λ y → y)<$> symbol ’=’<∗> expr <∗> symbol ’;’)

?> assign "x1=(a+1)*2;"

[(JAssign "x1" (Var "a" :+: Con 1 :*: Con 2),"")]

?> assign "x=a+1"

[]

Note that the second example is not recognised as an assignment because the string
does not end with a semicolon.

4.1

data FloatLiteral = FL1 IntPart FractPart ExponentPart FloatSuffix
| FL2 FractPart ExponentPart FloatSuffix
| FL3 IntPart ExponentPart FloatSuffix
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| FL4 IntPart ExponentPart FloatSuffix
deriving Show

type ExponentPart = String
type ExponentIndicator = String
type SignedInteger = String
type IntPart = String
type FractPart = String
type FloatSuffix = String

digit = satisfy isDigit
digits = many1 digit

floatLiteral = (λa b c d e → FL1 a c d e)
<$> intPart <∗> period <∗> optfract <∗> optexp <∗> optfloat

<|> (λa b c d → FL2 b c d)
<$> period <∗> fractPart <∗> optexp <∗> optfloat

<|> (λa b c → FL3 a b c)
<$> intPart <∗> exponentPart <∗> optfloat

<|> (λa b c → FL4 a b c)
<$> intPart <∗> optexp <∗> floatSuffix

intPart = signedInteger
fractPart = digits
exponentPart = (++)<$> exponentIndicator <∗> signedInteger
signedInteger = (++)<$> option sign ""<∗> digits
exponentIndicator = token "e"<|> token "E"

sign = token "+"<|> token "-"

floatSuffix = token "f"<|> token "F"

<|> token "d"<|> token "D"

period = token "."

optexp = option exponentPart ""
optfract = option fractPart ""
optfloat = option floatSuffix ""

4.2 The data and type definitions are the same as before, only the parsers return
another (semantic) result.

digit = f <$> satisfy isDigit

where f c = ord c - ord ’0’

digits = foldl f 0 <$> many1 digit

where f a b = 10*a + b

floatLiteral = (\a b c d e -> (fromIntegral a + c) * power d) <$>

intPart <*> period <*> optfract <*> optexp <*> optfloat

<|> (\a b c d -> b * power c) <$>

period <*> fractPart <*> optexp <*> optfloat
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<|> (\a b c -> (fromIntegral a) * power b) <$>

intPart <*> exponentPart <*> optfloat

<|> (\a b c -> (fromIntegral a) * power b) <$>

intPart <*> optexp <*> floatSuffix

intPart = signedInteger

fractPart = foldr f 0.0 <$> many1 digit

where f a b = (fromIntegral a + b)/10

exponentPart = (\x y -> y) <$> exponentIndicator <*> signedInteger

signedInteger = (\ x y -> x y) <$> option sign id <*> digits

exponentIndicator = symbol ’e’ <|> symbol ’E’

sign = const id <$> symbol ’+’

<|> const negate <$> symbol ’-’

floatSuffix = symbol ’f’ <|> symbol ’F’<|> symbol ’d’ <|> symbol ’D’

period = symbol ’.’

optexp = option exponentPart 0

optfract = option fractPart 0.0

optfloat = option floatSuffix ’ ’

power e | e < 0 = 1 / power (-e)

| otherwise = fromIntegral (10^e)

4.3 The parsing scheme for Java floats is

digit = f <$> satisfy isDigit

where f c = .....

digits = f <$> many1 digit

where f ds = ..

floatLiteral = f1 <$>

intPart <*> period <*> optfract <*> optexp <*> optfloat

<|> f2 <$>

period <*> fractPart <*> optexp <*> optfloat

<|> f3 <$>

intPart <*> exponentPart <*> optfloat

<|> f4 <$>

intPart <*> optexp <*> floatSuffix

where

f1 a b c d e = .....

f2 a b c d = .....

f3 a b c = .....

f4 a b c = .....

intPart = signedInteger

fractPart = f <$> many1 digit

where f ds = ....

exponentPart = f <$> exponentIndicator <*> signedInteger

where f x y = .....
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signedInteger = f <$> option sign ?? <*> digits

where f x y = .....

exponentIndicator = f1 <$> symbol ’e’ <|> f2 <$> symbol ’E’

where

f1 c = ....

f2 c = ..

sign = f1 <$> symbol ’+’ <|> f2 <$> symbol ’-’

where

f1 h = .....

f2 h = .....

floatSuffix = f1 <$> symbol ’f’

<|> f2 <$> symbol ’F’

<|> f3 <$> symbol ’d’

<|> f4 <$> symbol ’D’

where

f1 c = .....

f2 c = .....

f3 c = .....

f4 c = .....

period = symbol ’.’

optexp = option exponentPart ??

optfract = option fractPart ??

optfloat = option floatSuffix ??

5.1

type LNTreeAlgebra a b x = (a → x , x → b → x → x )

foldLNTree :: LNTreeAlgebra a b x → LNTree a b → x
foldLNTree (leaf ,node) = fold

where
fold (Leaf a) = leaf a
fold (Node l m r) = node (fold l) m (fold r)

5.2

1. Definition of height by case analysis:

height (Leaf x ) = 0
height (Bin lt rt) = 1 + (height lt ‘max ‘ height rt)

Definition as a fold:

height :: BinTree x → Int
height = foldBinTree heightAlgebra

heightAlgebra = (λu v → 1 + (u ‘max ‘ v), const 0)
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2. Definition of flatten by case analysis:

flatten (Leaf x ) = [x ]
flatten (Bin lt rt) = flatten lt ++ flatten rt

Definition as a fold:

flatten :: BinTree x → [x ]
flatten = foldBinTree ((++), λx → [x ])

3. Definition of maxBinTree by case analysis:

maxBinTree (Leaf x ) = x
maxBinTree (Bin lt rt) = maxBinTree lt ‘max ‘ maxBinTree rt

Definition as a fold:

maxBinTree :: Ord x ⇒ BinTree x → x
maxBinTree = foldBinTree (max , id)

4. Definition of sp by case analysis:

sp (Leaf x ) = 0
sp (Bin lt rt) = 1 + (sp lt) ‘min‘ (sp rt)

Definition as a fold:

sp :: BinTree x → Int
sp = foldBinTree spAlgebra

spAlgebra = (λu v → 1 + u ‘min‘ v , const 0)

5. Definition of mapBinTree by case analysis:

mapBinTree f (Leaf x ) = Leaf (f x )
mapBinTree f (Bin lt rt) = Bin (mapBinTree f lt) (mapBinTree f rt)

Definition as a fold:

mapBinTree :: (a → b)→ BinTree a → BinTree b
mapBinTree f = foldBinTree (Bin,Leaf . f )

5.3 Using explicit recursion:

allPaths (Leaf x ) = [[]]
allPaths (Bin lt rt) = map (L:) (allPaths lt)

++ map (R:) (allPaths rt)
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As a fold:

allPaths :: BinTree a → [[Direction]]
allPaths = foldBinTree psAlgebra

psAlgebra :: BinTreeAlgebra a [[Direction]]
psAlgebra = (λu v → map (L:) u ++ map (R:) v , const [[]])

5.4

1.

data Resist = Resist :|: Resist
| Resist :∗: Resist
| BasicR Float

deriving Show

type ResistAlgebra a = (a → a → a, a → a → a,Float → a)

foldResist :: ResistAlgebra a → Resist → a
foldResist (par , seq , basic) = fold

where
fold (r1 :|: r2) = par (fold r1) (fold r2)
fold (r1 :∗: r2) = seq (fold r1) (fold r2)
fold (BasicR f ) = basic f

2.

result :: Resist → Float
result = foldResist resultAlgebra

resultAlgebra :: ResistAlgebra Float
resultAlgebra = (λu v → (u ∗ v) / (u + v), (+), id)

5.5

1. isSum = foldExpr ((&&)

,\x y -> False

,\x y -> False

,\x y -> False

,const True

,const True

,\x -> (&&)

)

2. vars = foldExpr ((++)

,(++)

,(++)
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,(++)

,const []

,\x -> [x]

,\x y z -> x : (y ++ z)

)

5.6

1. der computes a symbolic differentiation of an expression.

2. The function der is not a compositional function on Expr because the righthand
sides of the ‘Mul ‘ and ‘Dvd ‘ expressions do not only use der e1 dx and der e2 dx ,
but also e1 and e2 themselves.

3.

data Exp = Exp ‘Plus‘ Exp
| Exp ‘Sub‘ Exp
| Con Float
| Idf String

deriving Show

type ExpAlgebra a = (a → a → a
, a → a → a
,Float → a
,String → a
)

foldExp :: ExpAlgebra a → Exp → a
foldExp (plus, sub, con, idf ) = fold

where
fold (e1 ‘Plus‘ e2) = plus (fold e1) (fold e2)
fold (e1 ‘Sub‘ e2) = sub (fold e1) (fold e2)
fold (Con n) = con n
fold (Idf s) = idf s

4. Using explicit resursion:

der :: Exp → String → Exp
der (e1 ‘Plus‘ e2) dx = der e1 dx ‘Plus‘ der e2 dx
der (e1 ‘Sub‘ e2) dx = der e1 dx ‘Sub‘ der e2 dx
der (Con f ) dx = Con 0
der (Idf s) dx = if s = = dx then Con 1 else Con 0

Using a fold:

der = foldExp derAlgebra

derAlgebra :: ExpAlgebra (String → Exp)
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derAlgebra = (λf g → λs → f s ‘Plus‘ g s
, λf g → λs → f s ‘Sub‘ g s
, λn → λs → Con 0
, λs → λt → if s = = t then Con 1 else Con 0
)

5.7 Using explicit recursion:

replace (Leaf x ) y = Leaf y
replace (Bin lt rt) y = Bin (replace lt y) (replace rt y)

As a fold:

replace :: BinTree a → a → BinTree a
replace = foldBinTree repAlgebra

repAlgebra = (λf g → λy → Bin (f y) (g y), λx y → Leaf y)

5.8 Using explicit recursion:

path2Value (Leaf x ) =
λbs → if null bs then x else error "no roothpath"

path2Value (Bin lt rt) =
λbs → case bs of

[] → error "no roothpath"

(L : rs) → path2Value lt rs
(R : rs)→ path2Value rt rs

Using a fold:

path2Value :: BinTree a → [Direction]→ a
path2Value = foldBinTree pvAlgebra

pvAlgebra :: BinTreeAlgebra a ([Direction]→ a)
pvAlgebra = (λfl fr → λbs → case bs of

[] → error "no roothpath"

(L : rs) → fl rs
(R : rs)→ fr rs

, λx → λbs → if null bs then x
else error "no roothpath")

5.9

1.

type PalAlgebra p = (p, p, p, p → p, p → p)
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2.

foldPal :: PalAlgebra p → Pal → p
foldPal (pal1, pal2, pal3, pal4, pal5) = fPal

where
fPal Pal1 = pal1
fPal Pal2 = pal2
fPal Pal3 = pal3
fPal (Pal4 p) = pal4 (fPal p)
fPal (Pal5 p) = pal5 (fPal p)

3.

a2cPal = foldPal (""
, "a"
, "b"
, λp → "a" ++ p ++ "a"

, λp → "b" ++ p ++ "b"

)
aCountPal = foldPal (0, 1, 0, λp → p + 2, λp → p)

4.

pfoldPal :: PalAlgebra p → Parser Char p
pfoldPal (pal1, pal2, pal3, pal4, pal5) = pPal

where
pPal = const pal1 <$> ε

<|> const pal2 <$> syma
<|> const pal3 <$> symb
<|> (\ p → pal4 p)<$> syma <∗> pPal <∗> syma
<|> (\ p → pal5 p)<$> symb <∗> pPal <∗> symb

syma = symbol ’a’
symb = symbol ’b’

5. The parser pfoldPal m1 returns the concrete representation of a palindrome.
The parser pfoldPal m2 returns the number of a’s occurring in a palindrome.

5.10

1. type MirAlgebra m = (m,m->m,m->m)

2. foldMir :: MirAlgebra m -> Mir -> m

foldMir (mir1,mir2,mir3) = fMir where

fMir Mir1 = mir1

fMir (Mir2 m) = mir2 (fMir m)

fMir (Mir3 m) = mir3 (fMir m)

3. a2cMir = foldMir ("",\m->"a"++m++"a",\m->"b"++m++"b")

m2pMir = foldMir (Pal1,Pal4,Pal5)
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4. pfoldMir :: MirAlgebra m -> Parser Char m

pfoldMir (mir1, mir2, mir3) = pMir where

pMir = const mir1 <$> epsilon

<|> (\_ m _ -> mir2 m) <$> syma <*> pMir <*> syma

<|> (\_ m _ -> mir3 m) <$> symb <*> pMir <*> symb

syma = symbol ’a’

symb = symbol ’b’

5. The parser pfoldMir m1 returns the concrete representation of a palindrome.
The parser pfoldMir m2 returns the abstract representation of a palindrome.

5.11

1. type ParityAlgebra p = (p,p->p,p->p,p->p)

2. foldParity :: ParityAlgebra p -> Parity -> p

foldParity (empty,parity1,parityL0,parityR0) = fParity where

fParity Empty = empty

fParity (Parity1 p) = parity1 (fParity p)

fParity (ParityL0 p) = parityL0 (fParity p)

fParity (ParityR0 p) = parityR0 (fParity p)

3. a2cParity = foldParity (""

,\x->"1"++x++"1"

,\x->"0"++x

,\x->x++"0"

)

5.12

1. type BitListAlgebra bl z b = ((b->z->bl,b->bl),(bl->z->z,bl->z),(b,b))

2. foldBitList :: BitListAlgebra bl z b -> BitList -> bl

foldBitList ((consb,singleb),(consbl,singlebl),(bit0,bit1)) = fBitList

where

fBitList (ConsB b z) = consb (fBit b) (fZ z)

fBitList (SingleB b) = singleb (fBit b)

fZ (ConsBL bl z) = consbl (fBitList bl) (fZ z)

fZ (SingleBL bl) = singlebl (fBitList bl)

fBit Bit0 = bit0

fBit Bit1 = bit1

3. a2cBitList = foldBitList (((++),id)

,((++),id)

,("0","1")

)

4. pfoldBitList :: BitListAlgebra bl z b -> Parser Char bl

pfoldBitList ((consb,singleb),(consbl,singlebl),(bit0,bit1)) = pBitList

where

pBitList = consb <$> pBit <*> pZ

<|> singleb <$> pBit
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pZ = (\_ bl z -> consbl bl z) <$> symbol ’,’

<*> pBitList

<*> pZ

<|> singlebl <$> pBitList

pBit = const bit0 <$> symbol ’0’

<|> const bit1 <$> symbol ’1’

5.13

1.

data Block = B1 Stat Rest
data Rest = R1 Stat Rest |Nix
data Stat = S1 Decl | S2 Use | S3 Nest
data Decl = Dx |Dy
data Use = UX |UY
data Nest = N1 Block

The abstract representation of x;(y;Y);X is

B1 (S1 Dx ) (R1 stat2 rest2)
where

stat2 = S3 (N1 block)
block = B1 (S1 Dy) (R1 (S2 UY ) Nix )
rest2 = R1 (S2 UX ) Nix

2.

type BlockAlgebra b r s d u n =
(s → r → b
, (s → r → r , r)
, (d → s, u → s,n → s)
, (d , d)
, (u, u)
, b → n
)

3.

foldBlock :: BlockAlgebra b r s d u n → Block → b
foldBlock (b1 , (r1,nix ), (s1 , s2 , s3 ), (dx , dy), (ux , uy),n1 ) =

foldB
where

foldB (B1 stat rest) = b1 (foldS stat) (foldR rest)
foldR (R1 stat rest) = r1 (foldS stat) (foldR rest)
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foldR Nix = nix
foldS (S1 decl) = s1 (foldD decl)
foldS (S2 use) = s2 (foldU use)
foldS (S3 nest) = s3 (foldN nest)
foldD Dx = dx
foldD Dy = dy
foldU UX = ux
foldU UY = uy
foldN (N1 block) = n1 (foldB block)

4.

a2cBlock :: Block → String
a2cBlock = foldBlock a2cBlockAlgebra

a2cBlockAlgebra :: BlockAlgebra String String String
String String String

a2cBlockAlgebra =
(b1 , (r1,nix ), (s1 , s2 , s3 ), (dx , dy), (ux , uy),n1 )
where

b1 u v = u ++ v
r1 u v = ";" ++ u ++ v
nix = ""

s1 u = u
s2 u = u
s3 u = u
dx = "x"

dy = "y"

ux = "X"

uy = "Y"

n1 u = "(" ++ u ++ ")"

7.1 The type TreeAlgebra and the function foldTree are defined in the rep-min

problem.

1. height = foldTree heightAlgebra

heightAlgebra = (const 0, \l r -> (l ‘max‘ r) + 1)

--frontAtLevel :: Tree -> Int -> [Int]

--frontAtLevel (Leaf i) h = if h == 0 then [i] else []

--frontAtLevel (Bin l r) h =

-- if h > 0 then frontAtLevel l (h-1) ++ frontAtLevel r (h-1)

-- else []

frontAtLevel = foldTree frontAtLevelAlgebra

frontAtLevelAlgebra =

( \i h -> if h == 0 then [i] else []
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, \f g h -> if h > 0 then f (h-1) ++ g (h-1) else []

)

2. a) Straightforward Solution: impossible to give a solution like rm.sol1.

heightAlgebra = (const 0, \l r -> (l ‘max‘ r) + 1)

front t = foldTree frontAtLevelAlgebra t h

where h = foldTree heightAlgebra t

b) Lambda Lifting

front’ t = foldTree

frontAtLevelAlgebra

t

(foldTree heightAlgebra t)

c) Tupling Computations

htupfr :: TreeAlgebra (Int, Int -> [Int])

htupfr

-- = (heightAlgebra ‘tuple‘ frontAtLevelAlgebra)

= ( \i -> ( 0

, \h -> if h == 0 then [i] else []

)

, \(lh,f) (rh,g) -> ( (lh ‘max‘ rh) + 1

, \h -> if h > 0

then f (h-1) ++ g (h-1)

else []

)

)

front’’ t = fr h

where (h, fr) = foldTree htupfr t

d) Merging Tupled Functions
It is helpful to note that the merged algebra is constructed such that

foldTree mergedAlgebra t i = (height t, frontAtLevel t i)

Therefore, the definitions corresponding to the fourth solution are

mergedAlgebra :: TreeAlgebra (Int -> (Int, [Int]))

mergedAlgebra =

(\i -> \h -> ( 0

, if h == 0 then [i] else []

)

, \lfun rfun -> \h -> let (lh, xs) = lfun (h-1)

(rh, ys) = rfun (h-1)

in

( (lh ‘max‘ rh) + 1
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, if h > 0 then xs ++ ys else []

)

)

front’’’ t = fr

where (h, fr) = foldTree mergedAlgebra t h

7.2 The highest front problem is the problem of finding the first non-empty list
of nodes which are at the lowest level. The solutions are similar to these of the
deepest front problem.

1. --lowest :: Tree -> Int

--lowest (Leaf i) = 0

--lowest (Bin l r) = ((lowest l) ‘min‘ (lowest r)) + 1

lowest = foldTree lowAlgebra

lowAlgebra = (const 0, \ l r -> (l ‘min‘ r) + 1)

2. a) Straightforward Solution: impossible to give a solution like rm.sol1.

lfront t = foldTree frontAtLevelAlgebra t l

where l = foldTree lowAlgebra t

b) Lambda Lifting

lfront’ t = foldTree

frontAtLevelAlgebra

t

(foldTree lowAlgebra t)

c) Tupling Computations

ltupfr :: TreeAlgebra (Int, Int -> [Int])

ltupfr =

( \i -> ( 0

, (\l -> if l == 0 then [i] else [])

)

, \ (lh,f) (rh,g) -> ( (lh ‘min‘ rh) + 1

, \l -> if l > 0

then f (l-1) ++ g (l-1)

else []

)

)

lfront’’ t = fr l

where (l, fr) = foldTree ltupfr t

d) Merging Tupled Functions
It is helpful to note that the merged algebra is constructed such that

foldTree mergedAlgebra t i = (lowest t, frontAtLevel t i)
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Therefore, the definitions corresponding to the fourth solution are

lmergedAlgebra :: TreeAlgebra (Int -> (Int, [Int]))

lmergedAlgebra =

( \i -> \l -> ( 0

, if l == 0 then [i] else []

)

, \lfun rfun -> \l ->

let (ll, lres) = lfun (l-1)

(rl, rres) = rfun (l-1)

in

( (ll ‘min‘ rl) + 1

, if l > 0 then lres ++ rres else []

)

)

lfront’’’ t = fr

where (l, fr) = foldTree lmergedAlgebra t l

8.1 Let G = (T,N,R, S). Define the regular grammar G′ = (T,N ∪ {S′}, R′, S′)
as follows. S′ is a new nonterminal symbol. For the productions R′, divide the
productions of R in two sets: the productions R1 of which the right-hand side consists
just of terminal symbols, and the productions R2 of which the right-hand side ends
with a nonterminal. Define a set R3 of productions by adding the nonterminal S
at the right end of each production in R1. Define R′ = R ∪ R3 ∪ S′ → S | ε. The
grammar G′ thus defined is regular, and generates the language L∗.

8.2 In step 2, add the productions

S → aS
S → ε
S → cC
S → a
A→ ε
A→ cC
A→ a
B → cC
B → a

and remove the productions

S → A

A→ B

B → C

In step 3, remove the productions A→ ε, B → ε.
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8.3

ndfsa d qs [ ] = qs

ndfsa d qs (x : xs) = ndfsa d (d qs x) xs

8.4 Let M = (X,Q, d, S, F ) be a deterministic finite-state automaton. Then the
nondeterministic finite-state automatonM ′ defined byM ′ = (X,Q, d′, {S}, F ), where
d′ q x = {d q x} accepts the same language.

8.5 Let M = (X,Q, d, S, F ) be a deterministic finite-state automaton that accepts
language L. Then the deterministic finite-state automaton M ′ = (X,Q, d, S,Q−F ),
where Q − F is the set of states Q from which all states in F have been removed,
accepts the language L. Here we assume that d q a is defined for all q and a.

8.6

1. L1 ∩ L2 = (L1 ∪ L2), so it follows that regular languages are closed under
intersection if they are closed under complementation and union. Regular lan-
guages are closed under union, see Theorem 8.10, and they are closed under
complementation, see Exercise 8.5.

2. Ldfa M
=

{w ∈ X∗ | dfa accept w (d, (S1, S2), (F1 × F2))}
=

{w ∈ X∗ | dfa d (S1, S2) w ∈ F1 × F2}
= This requires a proof by induction

{w ∈ X∗ | (dfa d1 S1 w, dfa d2 S2 w) ∈ F1 × F2}
=

{w ∈ X∗ | dfa d1 S1 w ∈ F1 ∧ dfa d2 S2 w ∈ F2}
=

{w ∈ X∗ | dfa d1 S1 w ∈ F1} ∩ {w ∈ X∗ | dfa d2 S2 w ∈ F2}
=

Ldfa M1 ∩ Ldfa M2

8.7

1.

S
(

//

) ��A
)

//

( ��B
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2.

S
0 //

1

��

0

��

A

0

��

1 //
C

B
0 //

D

8.8 Use the definition of Lre to calculate the languages:

1. {ε, b}
2. (bc∗)
3. {a}b∗ ∪ c∗

8.9

1. Lre(R(S + T ))
=

(Lre(R))(Lre(S + T ))
=

(Lre(R))(Lre(S) ∪ Lre(T ))
=

(Lre(R))(Lre(S)) ∪ (Lre(R))(Lre(T ))
=

Lre(RS +RT )

2. Similar to the above calculation.

8.10 Take R = a, S = a, and R = a, S = b.

8.11 If both V and W are subsets of S, then Lre(R(S+V )) = Lre(R(S+W )). Since
S 6= ∅, V = S and W = ∅ satisfy the requirement. Another solution is

V = S ∩R
W = S ∩R

Since S 6= ∅, at least one of S∩R and S∩R is not empty, and it follows that V 6= W .
There exist other solutions than these.

8.12 The string 01 may not occur in a string in the language of the regular expression.
So when a 0 appears somewhere, only 0’s can follow. Take 1∗0∗.

8.13
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1. If we can give a regular grammar for (a + bb)∗ + c, we can use the procedure
constructed in Exercise 8.1 to obtain a regular grammar for the complete regular
expression. The following regular grammar generates (a + bb)∗+ c:

S0 → S1 | c

provided S1 generates (a + bb)∗. Again, we use Exercise 8.1 and a regular
grammar for a + bb to obtain a regular grammar for (a + bb)∗. The language
of the regular expression a + bb is generated by the regular grammar

S2 → a | bb

2. The language of the regular expression a∗ is generated by the regular grammar

S0 → ε | aS0

The language of the regular expression b∗ is generated by the regular grammar

S1 → ε | bS1

The language of the regular expression ab is generated by the regular grammar

S2 → ab

It follows that the language of the regular expression a∗+ b∗+ ab is generated
by the regular grammar

S3 → S0 | S1 | S2

8.14 First construct a nondeterministic finite-state automaton for these grammars,
and use the automata to construct the following regular expressions.

1. a(b + b(b + ab)∗(ab + ε)) + bb∗+ ε
2. (0 + 10∗1)∗

8.16

1. b ∗+b ∗ (aa ∗ b(a + b)∗)
2. (b + a(bb) ∗ b)∗

9.1 We follow the proof pattern for non-regular languages given in the text.
Let n ∈ N.
Take s = an

2
with x = ε, y = an, and z = an

2−n.
Let u, v, w be such that y = uvw with v 6= ε, that is, u = ap, v = aq and w = ar with
p+ q + r = n and q > 0.
Take i = 2, then
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xuv2wz 6∈ L
⇐ defn. x, u, v, w, z, calculus

ap+2q+ran
2−n 6∈ L

⇐ p+ q + r = n and q > 0

n2 + q is not a square
⇐

n2 < n2 + q < (n+ 1)2

⇐
q < 2n+ 1

9.2 Using the proof pattern.
Let n ∈ N.
Take s = anbn+1 with x = an, y = bn, and z = b.
Let u, v, w be such that y = uvw with v 6= ε, that is, u = bp, v = bq and w = br with
p+ q + r = n and q > 0.
Take i = 0, then

xuwz 6∈ L
⇐ defn. x, u, v, w, z, calculus

anbp+r+1 6∈ L
⇐

p+ q + r > p+ r + 1
⇐

q > 0

9.3 Using the proof pattern.
Let n ∈ N.
Take s = anb2n with x = an, y = bn, and z = bn.
Let u, v, w be such that y = uvw with v 6= ε, that is, u = bp, v = bq and w = br with
p+ q + r = n and q > 0.
Take i = 2, then

xuv2wz 6∈ L
⇐ defn. x, u, v, w, z, calculus

anb2n+q 6∈ L
⇐

2n+ q > 2n
⇐

q > 0
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9.4 Using the proof pattern.
Let n ∈ N.
Take s = a6bn+4an with x = a6bn+4, y = an, and z = ε.
Let u, v, w be such that y = uvw with v 6= ε, that is, u = ap, v = aq and w = ar with
p+ q + r = n and q > 0.
Take i = 6, then

xuv6wz 6∈ L
⇐ defn. x, u, v, w, z, calculus

a6bn+4an+5q 6∈ L
⇐

n+ 5q > n+ 4
⇐

q > 0

9.5 The length of a substring with a’s, b’s, and c’s is at least r+ 2, and |vwx| 6 d 6
r.

9.6 We follow the proof pattern for proving that a language is not context-free given
in the text.
Let c, d ∈ N.
Take z = ak

2
with k = max(c, d).

Let u, v, w, x, y be such that z = uvwxy, |vx| > 0 and |vwx | 6 d
That is u = ap, v = aq, w = ar, x = as and y = at with p + q + r + s + t = k2,
q + r + s 6 d and q + s > 0.
Take i = 2, then

uv2wx 2y 6∈ L
⇐ defn. u, v, w, x, y, calculus

ak
2+q+s 6∈ L

⇐ q + s > 0

k2 + q + s is not a square
⇐

k2 < k2 + q + s < (k + 1)2

⇐
q + s < 2k + 1

⇐ defn. k

q + s 6 d

9.7 Using the proof pattern.
Let c, d ∈ N.
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Take z = ak with k is prime and k > max(c, d).
Let u, v, w, x, y be such that z = uvwxy, |vx| > 0 and |vwx | 6 d
That is u = ap, v = aq, w = ar, x = as and y = at with p + q + r + s + t = k,
q + r + s 6 d and q + s > 0.
Take i = k + 1, then

uvk+1wxk+1y 6∈ L
⇐ defn. u, v, w, x, y, calculus

ak+kq+ks 6∈ L
⇐

k(1 + q + s) is not a prime
⇐

q + s > 0

9.8 Using the proof pattern.
Let c, d ∈ N.
Take z = akbkakbk with k = max(c, d).
Let u, v, w, x, y be such that z = uvwxy, |vx| > 0 and |vwx | 6 d
Note that our choice for k guarantees that substring vwx has one of the following
shapes:

• vwx consists of just a’s, or just b’s.
• vwx contains both a’s and b’s.

Take i = 0, then

• If vwx consists of just a’s, or just b’s, then it is impossible to write the string
uwy as ww for some string w, since only the number of terminals of one kind
is decreased.
• If vwx contains both a’s and b’s, it lies somewhere on the border between a’s

and b’s, or on the border between b’s and a’s. Then the string uwy can be
written as

uwy = asbtapbq

for some s, t, p, q, respectively. At least one of s ,t, p and q is less than k,
while two of them are equal to k. Again this sentence is not an element of the
language.

9.9 Using the proof pattern.
Let n ∈ N.
Take s = 1n0n with x = 1n, y = 0n, and z = ε.
Let u, v, w be such that y = uvw with v 6= ε, that is, u = bp, v = bq and w = br with
p+ q + r = n and q > 0.
Take i = 2, then
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xuv2w 6∈ L
⇐ defn. x, u, v, w, z, calculus

1n0p+2q+r 6∈ L
⇐ p+ q + r = n

1n0n+q 6∈ L
⇐ q > 0

true

9.10

1. The language {aibj | 0 6 i 6 j} is context-free. The language can be generated
by the following context-free grammar:

S → AB

A → ε | aAb

B → ε | bB

This grammar generates the strings ambmbn for m,n ∈ N. These are exactly
the strings of the given language.

2. The language is not regular. We prove this using the proof pattern.
Let n ∈ N.
Take s = anbn+1 with x = ε, y = an, and z = bn+1.
Let u, v, w be such that y = uvw with v 6= ε, that is, u = ap, v = aq and w = ar

with p+ q + r = n and q > 0.
Take i = 3, then

xuv3wz 6∈ L
⇐ defn. x, u, v, w, z, calculus

ap+3q+rbn+1 6∈ L
⇐ p+ q + r = n

n+ 2q > n+ 1

⇐ q > 0

true

9.11

1. The language {wcw | w ∈ {a, b}∗} is not context-free. We prove this using the
proof pattern.
Let c, d ∈ N.
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Take z = akbkcakbk with k = max(c, d).
Let u, v, w, x, y be such that z = uvwxy, |vx| > 0 and |vwx | 6 d
Note that our choice for k guarantees that |vwx | 6 k. The substring vwx has
one of the following shapes:

• vwx does not contain c.
• vwx contains c.

Take i = 0, then

• If vwx does not contain c it is a substring at the left-hand side or at the
right-hand side of c. Then it is impossible to write the string uwy as scs
for some string s, since only the number of terminals on one side of c is
decreased.
• If vwx contains c then the string vwx can be written as

vwx = bscat

for some s, t respectively. For uwy there are two possibilities.
The string uwy does not contain c so it is not an element of the language.
If the string uwy does contain c then it has either fewer b’s at the left-hand
side than at the right-hand side or fewer a’s at the right-hand side than
at the left-hand side, or both. So it is impossible to write the string uwy
as scs for some string s.

2. The language is not regular because it is not context-free. The set of regular
languages is a subset of the set of context-free languages.

9.12

1. The grammar G is context-free because there is only one nonterminal at the
left hand side of the production rules and the right hand side is a sequence of
terminals and nonterminals. The grammar is not regular because there is a
production rule with two nonterminals at the right hand side.

2. L(G) = {(st)∗ | s ∈ {∗ ∧ t ∈ }∗ ∧ |s| = |t| }
L(G) is all sequences of nested braces.

3. The language is context-free because it is generated by a context-free grammar.
The language is not regular. We use the proof pattern and choose
s = {n}n. The proof is exactly the same as the proof for non-regularity of
L = {ambm | m > 0} in Section 9.2.

9.13

1. The grammar is context-free. The grammar is not right-regular but left-regular
because the nonterminal appears at the left hand side in the last production
rule.
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2. L(G) = 0∗ ∪ 10∗

Note that the language is also generated by the following right-regular grammar:

S → ε

S → 1A

S → 0A

A → ε

A → 0

A → 0A

3. The language is context-free and regular because it is generated by a regular
grammar.

10.1 For both grammars we have:

empty = const False

10.2 For grammar1 we have:

firsts S = {b,c}

firsts A = {a,b,c}

firsts B = {a,b,c}

firsts C = {a,b}

For grammar2:

firsts S = {a}

firsts A = {b}

10.3 For gramm1 we have:

follow S = {a,b,c}

follow A = {a,b,c}

follow B = {a,b}

follow C = {a,b,c}

For gramm2:

follow = const {}

10.4 For the productions of gramm3 we have:
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lookAhead (S → AaS) = {a,c }
lookAhead (S → B) = {b}
lookAhead (A → cS) = {c}
lookAhead (A → []) = {a}
lookAhead (B → b) = {b}

Since all lookAhead sets for productions of the same nonterminal are disjoint, gramm3
is an LL(1) grammar.

10.5 After left factoring gramm2 we obtain gramm2’ with productions

S → aC

C → bA | a

A → bD

D → b | S

For this transformed grammar gramm2’ we have:

The empty function

empty = const False

The first function

firsts S = {a}

firsts C = {a,b}

firsts A = {b}

firsts D = {a,b}

The follow function

follow = const {}

The lookAhead function

lookAhead (S → aC) = {a}
lookAhead (C → bA) = {b}
lookAhead (C → a) = {a}
lookAhead (A → bD) = {b}
lookAhead (D → b) = {b}
lookAhead (D → S) = {a}

Clearly, gramm2’ is an LL(1) grammar.

10.6 For the empty function we have:

260



empty R = True

empty _ = False

For the firsts function we have

firsts L = {0,1}

firsts R = {,}

firsts B = {0,1}

The follow function is

follow B = {,}

follow _ = {}

The lookAhead function is

lookAhead (L → B R) = {0, 1}
lookAhead (R→ ε) = {}
lookAhead (R → , B R) = {,}
lookAhead (B → 0) = {0}
lookAhead (B → 1) = {1}

Since all lookAhead sets for productions of the same nonterminal are disjoint, the
grammar is LL(1).

10.7

Node S [ Node c []

, Node A [ Node c []

, Node B [ Node c [], Node c [] ]

, Node C [ Node b [], Node a [] ]

]

]

10.8

Node S [ Node a []

, Node C [ Node b []

, Node A [ Node b [], Node D [ Node b [] ] ]

]

]

10.9
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Node S [ Node A []

, Node a []

, Node S [ Node A [ Node c [], Node S [ Node B [ Node b []]]]

, Node a []

, Node S [ Node B [ Node b [] ]]

]

]

10.10

1. list2Set :: Ord s => [s] -> [s]

list2Set = unions . map single

2. list2Set :: Ord s => [s] -> [s]

list2Set = foldr op []

where

op x xs = single x ‘union‘ xs

3. pref :: Ord s => (s -> Bool) -> [s] -> [s]

pref p = list2Set . takeWhile p

or

pref p [] = []

pref p (x:xs) = if p x then single x ‘union‘ pref p xs else []

or

pref p = foldr op []

where

op x xs = if p x then single x ‘union‘ xs else []

4. prefplus p [] = []

prefplus p (x:xs) = if p x then single x ‘union‘ prefplus p xs

else single x

5. prefplus p = foldr op []

where

op x us = if p x then single x ‘union‘ us

else single x

6. prefplus p

=

foldr op []

where

op x us = if p x then single x ‘union‘ us else single x

=

foldr op []
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where

op x us = single x ‘union‘ rest

where

rest = if p x then us else []

=

foldrRhs p single []

7. The function foldrRhs p f [] takes a list xs and returns the set of all f-images
of the elements of the prefix of xs all of whose elements satisfy p together with
the f-image of the first element of xs that does not satisfy p (if this element
exists).
The function foldrRhs p f start takes a list xs and returns the set start

‘union‘ foldrRhs p f [] xs.

8.

10.11

1. For gramm1

a) foldrRhs empty first [] bSA
=

unions (map first (prefplus empty bSA))

= empty b = False

unions (map first [b])

=
unions [{b}]

=
{b}

b) foldrRhs empty first [] Cb
=

unions (map first (prefplus empty Cb))

= empty C = False

unions (map first [C])
=

unions [{a, b }]
=

{ a, b }

2. For gramm3

a) foldrRhs empty first [] AaS
=

unions (map first (prefplus empty AaS))
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= empty A = True

unions (map first ([A] ‘union‘ prefplus empty aS))

empty a = False

unions (map first ([A] ‘union‘ [a]))

=
unions (map first ([A, a]))

=
unions [first A, first a]

=
unions [{c}, {a}]

=
{a, c}

b) scanrRhs empty first [] AaS
=

map (foldrRhs empty first []) (tails AaS)
=

map (foldrRhs empty first []) [AaS, aS, S, []]

=
[ foldrRhs empty first [] AaS
, foldrRhs empty first [] aS
, foldrRhs empty first [] S
, foldrRhs empty first [] []

]

= calculus

[ {a, c}, {a}, {a, b, c }, [] ]

11.1 Recall, for gramm1 we have:

follow S = {a,b,c}

follow A = {a,b,c}

follow B = {a,b}

follow C = {a,b,c}

The production rule B → cc cannot be used for a reduction when the input begins
with the symbol c.
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stack input

ccccba

c cccba

cc ccba

ccc cba

cccc ba

Bcc ba

bBcc a

abBcc
CBcc

Ac

S

11.2 Recall, for gramm2 we have:

follow S = {}

follow A = {}

No reduction can be made until the input is empty.

stack input

abbb

a bbb

ba bb

bba b

bbba

Aba

S

11.3 Recall, for gramm3 we have:

follow S = {a}

follow A = {a}

follow B = {a}

At the beginning a reduction is applied using the production rule A→ ε.
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stack input

acbab

A acbab

aA cbab

caA bab

bcaA ab

BcaA ab

ScaA ab

AaA ab

aAaA b

baAaA
SaAaA

SaA
S
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