
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for the Exam

Johan Jeuring

Monday, 31 January 2011, 09:00–11:30, EDUC-GAMMA

Please keep in mind that often, there are many possible solutions, and that these example
solutions may contain mistakes.

Regular grammars, NFAs, DFAs

Consider the following NFA (Nondeterministic Finite-state Automaton), with start state S,
and final state Z.

A

BSstart

Z

C

a

a

b

a
b

a

b

b

a

a

1 (6 points). Construct a regular grammar with the same language. •

Solution 1.

S→ a A
S→ a B
S→ b Z
A→ a B
A→ b C
B→ b A
B→ b B
B→ a Z
C→ a Z
Z→ a Z
Z→ ε

◦

1

2 (6 points). Construct a DFA (Deterministic Finite-state Automaton) with the same lan-
guage (you may draw a DFA). •

Solution 2.

Sstart AB ABC

ZC BZ

a

b a

b
b

a

a

b

a

a

Note that state C is not reachable from the start state, so it may safely be removed. ◦

3 (6 points). Suppose we have two context-free grammars G1 = (T1, N1, R1, S1) and G2 =
(T2, N2, R2, S2), where the intersection of N1 and N2 is empty. Define G = (T1 ∪ T2, N1 ∪
N2 ∪ {S}, R1 ∪ R2 ∪ {S→ S1 S2}, S), where S is the new startsymbol.

(a) What is the language of G?

(b) This construction does not work for regular grammars. Why not?

(c) Describe the construction of a grammar with the same language as G, which is regu-
lar if both G1 and G2 are regular.

•

Solution 3.

(a) L (G) = {x y | x← L (G1), y← L (G2)}.

(b) The resulting grammar is not regular, since it is of the form S → S1 S2, and hence it
has two instead of one non-terminals in a right-hand side of a production.

(c) See Theorem 8.10 in the lecture notes: we obtain a regular grammar for G if we re-
place in G1 every production of the form T → x and T → ε by T → x S2 and T → S2,
respectively.

◦

Pumping lemmas

The language of sequences of nested pairs of brackets consists of sequences of open and
close brackets that are well nested. Examples of sentences in this language are:

((((()))))

(()())()

The empty sentence is also an element of this language.

4 (4 points). Show that the language of nested pairs of brackets is context-free. •

2

Solution 4. Here is a context-free grammar that specifies the language.

S→ (S) S
S→ ε

◦

5 (5 points). The regular pumping lemma is useful in showing that a language does not
belong to the family of regular languages. Its application is typical of pumping lemmas in
general; it is used negatively to show that a given language does not belong to the family
of regular languages. Give this negative version of the regular pumping lemma, which
you can use to prove that a language is not regular. •

Solution 5. If

for all n ∈N :
there exist x, y, z : xyz ∈ L and |y| > n :
for all u, v, w : y = uvw and |v| > 0:
there exists i ∈N : xuviwz 6∈ L

then the language L is not regular. ◦

6 (9 points). The language of sequences of nested pairs of brackets can be specified as
follows: the string s belongs to the language if and only if:

• no prefix of s has fewer open brackets than close brackets,

• the numbers of open and close brackets in s are the same.

Prove that the language of sequences of nested pairs of brackets is not regular. •

Solution 6. Let n ∈ N. Choose x = (n, y =)n, z = ε. Then xyz ∈ L and |y| > n. Let u,v,w,
such that y = uvw and |v| > 0. Observe that v only consists of close brackets, since y only
consists of close brackets. Choose i= 2. The string xu v2 wz is not an element of L, because it
contains more close brackets than open brackets, which violates one of the properties of L.
Using the negative version of the regular pumping lemma, we conclude that this language
is not regular. ◦

LL and LR parsing

Consider the following context-free grammar with startsymbol S, terminals {a, b, c}, and
productions:

S→ D a E
D→ b SD
D→ ε
E→ D
E→ c

3

7 (8 points). Determine the empty property, and the first and follow sets for each of the
nonterminals of the above grammar. •

Solution 7.

empty first follow
S False {a, b} {a, b}
D True {b} {a, b}
E True {b, c} {a, b}

◦

8 (3 points). Using empty, first, and follow, determine the lookahead set of each production
in the above grammar. •

Solution 8.

S→ D a E {a, b}
D→ b S D {b}
D→ ε {a, b}
E→ D {a, b}
E→ c {c}

◦

9 (3 points). Is the above grammar LL(1)? Explain how you can determine this using the
lookahead sets of the productions. •

Solution 9. Since the intersection of the lookahead sets for any pair of productions for the
same non-terminal is not empty, the above grammar is not LL(1). ◦

10 (4 points). The string baca is a sentence of the above grammar. Show how an LL(1)
parser recognizes this string by using a stack. Show step by step the contents of the stack,
the part of the input that has not been consumed yet, and which action you perform. If the
above grammar is not LL(1), point at the step where different choices can be made. •

Solution 10.

Stack input action
S baca Expand

D a E baca Expand
b S D a E baca Match

S D a E aca Expand
D a E D a E aca Expand

a E D a E aca Match
E D a E ca Expand
c D a E ca Match

D a E a Expand
a E a Match

E — Expand
D — Expand
— — Succeed

◦

4

Consider the context-free grammar:

S→ AS
S→ b

A→ SA
A→ a

We want to use an LR parsing algorithm to parse sentences from this grammar. We start
with extending the grammar with a new start-symbol S′, and a production

S′ → S $

where $ is a terminal symbol denoting the end of input.

11 (9 points). Construct the LR(0) automaton for the extended grammar. •

Solution 11. The LR(0) automaton corresponding to the full grammar looks as follows (each
state is numbered before the production for future reference; the layout is not optimal, or,
actually, terrible):

(0) S′ → •S$
S → •AS
S → •b
A → •SA
S → •a

start

(1) A→ a•

(2) A→ S•A
A→ •SA
A→ •a
S→ •AS
S→ •b

(3) A→ SA•
S→ A•S
S→ •AS
S→ •b
S→ •SA
S→ •a

(4) S→ A•S
S→ •AS
S→ •b
A→ •SA
A→ •a

(5) S→ AS•
A→ S•A
A→ •SA
A→ •a
S→ •AS
S→ •b

(6) S′ → S $•

(7) S′ → S•$
A → S•A
A → •SA
A → •a
S → •AS
S → •b

(8) S→ b•

a

b

A

S

a

b

A

S

a

b

A

S
a

b

S

A

a

b

S

A

$

a

b

AS

◦

12 (3 points). This grammar is not LR(0). Explain why. •

Solution 12. States 3 and 5 have shift/reduce conflicts, so the grammar is not LR(0). ◦

5

13 (3 points). The string bab $ is a sentence of the above grammar. Show how an LR(0)-
based parser recognizes this string by using a stack. Show step by step the contents of the
stack mixed with the states in the LR(0) automaton you pass through, the part of the input
that has not been consumed yet, and which action you perform. Explain at which step(s)
different choices can be made. •

Solution 13.

Stack input action
0 bab $ Shift

0 b 8 ab $ Reduce
0 S7 ab $ Shift

0 S7 a 1 b $ Reduce
0 S7A3 b $ Shift
0 S7A3 b $ Reduce

0 A4 b $ Shift
0 A4 b 8 $ Reduce

0 A4S5 $ Reduce
0 A4S5 $ Reduce

0 S7 $ Shift
0 S7 $ 8 — Reduce

0 S′ —

◦

14 (3 points). The extended grammar is SLR(1). Give the SLR(1) action table for this gram-
mar. You do not have to give the complete table, but you do have to give the actions for
the states in which conflicts appear. •

Solution 14.

state a b EOF S A
1
2
3 reduce reduce reduce reduce reduce
4
5 reduce reduce reduce reduce reduce
6
7
8

◦

Code generation

15 (18 points). The essential components of the third lab exercise are included below. Solve
the ‘additional task’ 8 of the lab exercise, that is: include a for statement in the source
language, and add functionality to compile a for statement. Here is an example of a for
statement:

for (n=0; n<10; n++)

{ do something }

6

You can assume that the three components between parentheses are expressions, and that
doing something is achieved by means of a block of statements. Or you make a different
choice, but make sure you document your choice.

Annotate the text of the lab with positions, and give the code you have to add to these
positions in order to also compile for statements. Fill out your name on the exam/lab text
as well! •

JavaLex.hs

module JavaLex where

import Data.Char

import Control.Monad

import ParseLib.Abstract

data Token = POpen | PClose -- parentheses ()

| SOpen | SClose -- square brackets []

| COpen | CClose -- curly braces {}

| Comma | Semicolon

| KeyIf | KeyElse

| KeyWhile | KeyReturn

| KeyTry | KeyCatch

| KeyClass | KeyVoid

| StdType String -- the 8 standard types

| Operator String -- the 15 operators

| UpperId String -- uppercase identifiers

| LowerId String -- lowercase identifiers

| ConstInt Int

| ConstBool Bool

deriving (Eq, Show)

keyword :: String -> Parser Char String

keyword [] = succeed ""

keyword xs@(x:_) | isLetter x = do

ys <- greedy (satisfy isAlphaNum)

guard (xs == ys)

return ys

| otherwise = token xs

greedyChoice :: [Parser s a] -> Parser s a

greedyChoice = foldr (<<|>) empty

terminals :: [(Token, String)]

terminals =

[(POpen , "(")

,(PClose , ")")

7

,(SOpen , "[")

,(SClose , "]")

,(COpen , "{")

,(CClose , "}")

,(Comma , ",")

,(Semicolon , ";")

,(KeyIf , "if")

,(KeyElse , "else")

,(KeyWhile , "while")

,(KeyReturn , "return")

,(KeyTry , "try")

,(KeyCatch , "catch")

,(KeyClass , "class")

,(KeyVoid , "void")

]

lexWhiteSpace :: Parser Char String

lexWhiteSpace = greedy (satisfy isSpace)

lexLowerId :: Parser Char Token

lexLowerId = (\x xs -> LowerId (x:xs))

<$> satisfy isLower

<*> greedy (satisfy isAlphaNum)

lexUpperId :: Parser Char Token

lexUpperId = (\x xs -> UpperId (x:xs))

<$> satisfy isUpper

<*> greedy (satisfy isAlphaNum)

lexConstInt :: Parser Char Token

lexConstInt = (ConstInt . read) <$> greedy1 (satisfy isDigit)

lexEnum :: (String -> Token) -> [String] -> Parser Char Token

lexEnum f xs = f <$> choice (map keyword xs)

lexTerminal :: Parser Char Token

lexTerminal = choice (map (\ (t,s) -> t <$ keyword s) terminals)

stdTypes :: [String]

stdTypes = ["int", "long", "double", "float",

"byte", "short", "boolean", "char"]

operators :: [String]

operators = ["+", "-", "*", "/", "%", "&&", "||",

"^", "<=", "<", ">=", ">", "==",

8

"!=", "="]

lexToken :: Parser Char Token

lexToken = greedyChoice

[lexTerminal

, lexEnum StdType stdTypes

, lexEnum Operator operators

, lexConstInt

, lexLowerId

, lexUpperId

]

lexicalScanner :: Parser Char [Token]

lexicalScanner = lexWhiteSpace *> greedy (lexToken <* lexWhiteSpace) <* eof

sStdType :: Parser Token Token

sStdType = satisfy isStdType

where isStdType (StdType _) = True

isStdType _ = False

sUpperId :: Parser Token Token

sUpperId = satisfy isUpperId

where isUpperId (UpperId _) = True

isUpperId _ = False

sLowerId :: Parser Token Token

sLowerId = satisfy isLowerId

where isLowerId (LowerId _) = True

isLowerId _ = False

sConst :: Parser Token Token

sConst = satisfy isConst

where isConst (ConstInt _) = True

isConst (ConstBool _) = True

isConst _ = False

sOperator :: Parser Token Token

sOperator = satisfy isOperator

where isOperator (Operator _) = True

isOperator _ = False

sSemi :: Parser Token Token

sSemi = symbol Semicolon

9

JavaGram.hs

module JavaGram where

import ParseLib.Abstract hiding (braced, bracketed, parenthesised)

import JavaLex

data Class = Class Token [Member]

deriving Show

data Member = MemberD Decl

| MemberM Type Token [Decl] Stat

deriving Show

data Stat = StatDecl Decl

| StatExpr Expr

| StatIf Expr Stat Stat

| StatWhile Expr Stat

| StatReturn Expr

| StatBlock [Stat]

deriving Show

data Expr = ExprConst Token

| ExprVar Token

| ExprOper Token Expr Expr

deriving Show

data Decl = Decl Type Token

deriving Show

data Type = TypeVoid

| TypePrim Token

| TypeObj Token

| TypeArray Type

deriving (Eq,Show)

parenthesised p = pack (symbol POpen) p (symbol PClose)

bracketed p = pack (symbol SOpen) p (symbol SClose)

braced p = pack (symbol COpen) p (symbol CClose)

pExprSimple :: Parser Token Expr

pExprSimple = ExprConst <$> sConst

<|> ExprVar <$> sLowerId

<|> parenthesised pExpr

10

pExpr :: Parser Token Expr

pExpr = chainr pExprSimple (ExprOper <$> sOperator)

pMember :: Parser Token Member

pMember = MemberD <$> pDeclSemi

<|> pMeth

pStatDecl :: Parser Token Stat

pStatDecl = pStat

<|> StatDecl <$> pDeclSemi

pStat :: Parser Token Stat

pStat = StatExpr

<$> pExpr

<* sSemi

<|> StatIf

<$ symbol KeyIf

<*> parenthesised pExpr

<*> pStat

<*> option ((_ x -> x) <$> symbol KeyElse <*> pStat) (StatBlock [])

<|> StatWhile

<$ symbol KeyWhile

<*> parenthesised pExpr

<*> pStat

<|> StatReturn

<$ symbol KeyReturn

<*> pExpr

<* sSemi

<|> pBlock

pBlock :: Parser Token Stat

pBlock = StatBlock

<$> braced(many pStatDecl)

pMeth :: Parser Token Member

pMeth = MemberM

<$> (pType

<|> const TypeVoid <$> symbol KeyVoid

)

<*> sLowerId

<*> parenthesised (option (listOf pDecl

11

(symbol Comma)

)

[]

)

<*> pBlock

pType0 :: Parser Token Type

pType0 = TypePrim <$> sStdType

<|> TypeObj <$> sUpperId

pType :: Parser Token Type

pType = foldr (const TypeArray)

<$> pType0

<*> many (bracketed (succeed ()))

pDecl :: Parser Token Decl

pDecl = Decl

<$> pType

<*> sLowerId

pDeclSemi :: Parser Token Decl

pDeclSemi = const <$> pDecl <*> sSemi

pClass :: Parser Token Class

pClass = Class

<$ symbol KeyClass

<*> sUpperId

<*> braced (many pMember)

JavaAlgebra.hs

module JavaAlgebra where

import JavaLex

import JavaGram

type JavaAlgebra clas memb stat expr

= ((Token -> [memb] -> clas

)

, (Decl -> memb

, Type -> Token -> [Decl] -> stat -> memb

)

, (Decl -> stat

, expr -> stat

, expr -> stat -> stat -> stat

12

, expr -> stat -> stat

, expr -> stat

, [stat] -> stat

)

, (Token -> expr

, Token -> expr

, Token -> expr -> expr -> expr

)

)

foldJava :: JavaAlgebra clas memb stat expr -> Class -> clas

foldJava ((c1),(m1,m2),(s1,s2,s3,s4,s5,s6),(e1,e2,e3)) = fClas

where fClas (Class c ms) = c1 c (map fMemb ms)

fMemb (MemberD d) = m1 d

fMemb (MemberM t m ps s) = m2 t m ps (fStat s)

fStat (StatDecl d) = s1 d

fStat (StatExpr e) = s2 (fExpr e)

fStat (StatIf e s1 s2) = s3 (fExpr e) (fStat s1) (fStat s2)

fStat (StatWhile e s1) = s4 (fExpr e) (fStat s1)

fStat (StatReturn e) = s5 (fExpr e)

fStat (StatBlock ss) = s6 (map fStat ss)

fExpr (ExprConst con) = e1 con

fExpr (ExprVar var) = e2 var

fExpr (ExprOper op e1 e2) = e3 op (fExpr e1) (fExpr e2)

JavaCode.hs

module JavaCode where

import Prelude hiding (LT, GT, EQ)

import Data.Map as M

import JavaLex

import JavaGram

import JavaAlgebra

import SSM

data ValueOrAddress = Value | Address

deriving Show

codeAlgebra :: JavaAlgebra Code

Code

Code

(ValueOrAddress -> Code)

codeAlgebra = ((fClas)

13

, (fMembDecl,fMembMeth)

, (fStatDecl,fStatExpr,fStatIf,fStatWhile,fStatReturn,fStatBlock)

, (fExprCon,fExprVar,fExprOp)

)

where

fClas c ms = [Bsr "main", HALT] ++ concat ms

fMembDecl d = []

fMembMeth t m ps s = case m of

LowerId x -> [LABEL x] ++ s ++ [RET]

fStatDecl d = []

fStatExpr e = e Value ++ [pop]

fStatIf e s1 s2 = let c = e Value

n1 = codeSize s1

n2 = codeSize s2

in c ++ [BRF (n1 + 2)] ++ s1 ++ [BRA n2] ++ s2

fStatWhile e s1 = let c = e Value

n = codeSize s1

k = codeSize c

in [BRA n] ++ s1 ++ c ++ [BRT (-(n + k + 2))]

fStatReturn e = e Value ++ [pop] ++ [RET]

fStatBlock ss = concat ss

fExprCon c va = case c of

ConstInt n -> [LDC n]

fExprVar v va = case v of

LowerId x -> let loc = 37

in case va of

Value -> [LDL loc]

Address -> [LDLA loc]

fExprOp o e1 e2 va =

case o of

Operator "=" -> e2 Value ++ [LDS 0] ++ e1 Address ++ [STA 0]

Operator op -> e1 Value ++ e2 Value ++ [opCodes ! op]

opCodes :: Map String Instr

opCodes

= fromList

[("+" , ADD)

, ("-" , SUB)

, ("*" , MUL)

, ("/" , DIV)

, ("%" , MOD)

, ("<=", LE)

, (">=", GE)

14

, ("<" , LT)

, (">" , GT)

, ("==", EQ)

, ("!=", NE)

, ("&&", AND)

, ("||", OR)

, ("^" , XOR)

]

SSM.hs

module SSM where

data Reg = PC | SP | MP | R3 | R4 | R5 | R6 | R7

deriving Show

r0, r1, r2, r3, r4, r5, r6, r7 :: Reg

r0 = PC

r1 = SP

r2 = MP

r3 = R3

r4 = R4

r5 = R5

r6 = R6

r7 = R7

data Instr

= STR Reg | STL Int | STS Int | STA Int -- Store from stack

| LDR Reg | LDL Int | LDS Int | LDA Int -- Load on stack

| LDC Int | LDLA Int | LDSA Int | LDAA Int -- Load on stack

| BRA Int | Bra String -- Branch always (relative/to label)

| BRF Int | Brf String -- Branch on false

| BRT Int | Brt String -- Branch on true

| BSR Int | Bsr String -- Branch to subroutine

| ADD | SUB | MUL | DIV | MOD -- Arithmetical operations on 2 stack operands

| EQ | NE | LT | LE | GT | GE -- Relational operations on 2 stack operands

| AND | OR | XOR -- Bitwise operations on 2 stack operands

| NEG | NOT -- operations on 1 stack operand

| RET | UNLINK | LINK Int | AJS Int -- Procedure utilities

| SWP | SWPR Reg | SWPRR Reg Reg | LDRR Reg Reg -- Various swaps

| JSR | TRAP Int | NOP | HALT -- Other instructions

| LABEL String -- Pseudo-instruction for generating a label

deriving Show

pop :: Instr

15

pop = AJS (-1)

type Code = [Instr]

formatInstr :: Instr -> String

formatInstr (LABEL s) = s ++ ":"

formatInstr x = ’\t’ : show x

formatCode :: Code -> String

formatCode = filter clean . concatMap ((++"\n") . formatInstr)

where

clean :: Char -> Bool

clean x = notElem x "()\""

codeSize :: Code -> Int

codeSize = sum . map instrSize

instrSize :: Instr -> Int

instrSize (LDRR _ _) = ...

16

17

