
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Exam 1

Sean Leather

Thursday, 15 December 2010, 08:30–10:30

Preliminaries

• The exam consists of 4 pages (including this page). Please verify that you got all
the pages.

• Write your name and student number on all submitted work. Also include the
total number of separate sheets of paper.

• The maximum score is stated at the top of each question. The total amount of
points you can get is 100.

• Try to give simple and concise answers. Write readable text. Do not use pencils
or pens with red ink.

• Please write your text in English.

• When writing grammar and language constructs, you may use any set, sequence,
or language operations covered in the lecture notes.

• When writing Haskell code, you may use Prelude functions and functions from
the following modules: Data.Char, Data.List, Data.Maybe, and Control.Monad. Also,
you may use all the parser combinators from the uu-tc package. If you are in
doubt whether a certain function is allowed, please ask.

Good luck!

1

Questions

Context-Free Grammars

1 (20 points). Consider the following language definitions:

(a) L1 = {a w | a ∈ A2 ∧ w ∈ A∗ ∧ |w |> 0} where A = {t, u, v}

(b) L2 is the language defined by the following grammar over the alphabet {a, b, z}:

S → R a | S a | z
R→ bR | bS

(c) L3 = {< t > c </ t > | t ∈ L1 ∧ c ∈ L2}

If possible, give another definition of the language using one of the following ap-
proaches: an enumeration, a context-free grammar, or a predicate. Do not use the same
approach that is used in the question.

If you cannot give any alternative definitions, explain why the other approaches do
not work.

Note that |w| denotes the length of the word w.
•

Grammar Analysis and Transformation

2 (30 points). Consider the following context-free grammar over the alphabet {?, /, a, b}:

S → ? T | a | b
T → S | S / S

(a) This grammar presents a variant of the “dangling else” problem. Describe the
problem in full, including an example of a problematic sentence for this grammar
and an explanation of why the example is problematic.

(b) If you were the designer of this language, how would you solve this problem?
There are multiple solutions. Describe one possible solution in full, including
any new grammars as necessary. Show how your example, or some modification
thereof, is no longer problematic.

•

3 (20 points). Transform the grammar below into a minimal grammar from which we
can immediately derive the simplest and most efficient parser.

S → S a R
S → T

2

T → a R
R→ b c
P → S S

Name each transformation step and show the grammar after that transformation. You
may use any of the following transformations:

Inline nonterminal Remove duplicate productions
Introduce nonterminal Remove left-recursion
Introduce ·∗ Remove unreachable production
Introduce ·+ Left-factoring
Introduce ·?

•

Parsing Grammar Descriptions

4 (30 points). There are many other notations for describing context-free (EBNF) gram-
mars than the one we have used in the course. The grammar below describes one of
those notations.

Production → Name = Expression? .
Expression → Alternative (| Alternative)∗

Alternative→ Term+

Term → Name | Token (. . . Token)? |Group |Option | Repetition
Group → (Expression)
Option → [Expression]
Repetition → { Expression }

In this grammar for a language of grammars, production rules are described with a
name and an optional expression and end with a dot. An expression is a nonempty
sequence of alternatives with a | separator. An alternative is a nonempty sequence of
terms. A term can be either a name, a single token, a range of tokens with minimum
and maximum separated by a two dots, a subexpression, an optional expression, and a
possibly empty sequenced expression.

(a) The grammar for Name is a word with an initial uppercase character from the
Latin alphabet followed by any number of alphabetic or numeric terminals. Give
the necessary productions, the type (either as a datatype or a type synonym), and
the parser (by using combinators you know and/or defining a new one) for Name.

(b) The grammar for Token is a sequence of alphanumeric or whitespace terminals
between double quotes. Given the necessary productions, the type, and the parser
for Token.

(c) Give the abstract syntax for the grammar of productions in the form of a family
of Haskell types.

3

(d) Define an efficient parser using the above grammar and abstract syntax.

(e) Define the algebra type and fold for the datatype used for Production.

(f) Using the above fold, define the following semantic functions.

a) The function tokens collects all possible tokens of a production into a list of
tokens. Assume that you can enumerate all tokens in a range with a function
enumRange which takes two tokens and results in a list of tokens.

b) The function productions splits the alternatives of a production into multiple
productions. It produces a list of productions where each new production
has the same name as the input production and only one of the alternatives.

•

4

