
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 1

Sean Leather, Johan Jeuring

Thursday, 13 December 2012, 08:30–10:30

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

Grammar Analysis and Transformation

Consider the following context-free grammar over the alphabet {a, d, e, i, r, s, v} with
the start symbol X:

X→ aYse
Y → Yi | Yer | Zv
Z → d

1 (15 points). Describe a sequence of transformations for simplifying this grammar.
The resulting grammar should be minimal and suitable for deriving a parser (using
parser combinators). The grammar should not be ambiguous and should not result in
inefficiency or nontermination in the parser.

You may use any of the transformations in the following list or another transforma-
tion discussed during the lecture or in the lecture notes.
• Inline nonterminal • Remove duplicate productions
• Introduce nonterminal • Remove left-recursion
• Introduce ·∗ • Remove unreachable production
• Introduce ·+ • Left-factoring
• Introduce ·?

For each transformation step in the sequence, describe the transformation and give
the transformed grammar. You may use at most two transformations in one step, but
you must mention both of them (e.g. “Inline S and remove unreachable production”).

•

1

Solution 1.
Initial grammar:

X→ aYse
Y → Yi | Yer | Zv
Z → d

Inline Z and remove unreachable production:

X→ aYse
Y → Yi | Yer | dv

Left-factor Y:

X→ aYse
Y → YI | dv
I → i | er

Remove left-recursion of Y:

X→ aYse
Y → dv | dvZ
Z → I | IZ
I → i | er

Introduce Z? and I+:

X→ aYse
Y → dvZ?
Z → I+

I → i | er

Inline Z and remove unreachable production:

X→ aYse
Y → dv(I+)?
I → i | er

Introduce I∗:

X→ aYse
Y → dvI∗

I → i | er

Inline Y and remove unreachable production:

X→ advI∗se
I → i | er

◦

2

2 (5 points). Choose a word w that is in the language and at least 8 symbols in length.
Give the parse tree for w with either the original or simplified grammar. •

Solution 2.

w = adverise

X

adv I∗

I

er

I∗

I

i

I∗

ε

se

◦

3 (5 points). Define a parser using parser combinators for the simplified grammar from
the previous part. The input and output are lists of characters. •

Solution 3.

px = (λx y z→ x ++ concat y ++ z)<$> token "adv"<∗> many pi <∗> token "se"

pi = token "i"<|> token "er"

◦

Datatypes and Semantic Functions

A certain file format describes documents containing a list of houses followed by a list
of trees. A house has a name (a string) and a color (a string). A tree has a name and the
name of the house to which the tree belongs.

4 (5 points). Give an abstract syntax (as a family of datatypes) for the file format. •

Solution 4.

data File = File [House] [Tree]
data House = House String String
data Tree = Tree String String

◦

5 (10 points). Define the algebra type and fold for the file format datatype. •

3

Solution 5.

type FileAlgebra f h t =
([h]→ [t]→ f — File
, String→ String→ h — House
, String→ String→ t — Tree
)

foldFile :: FileAlgebra f h t→ File→ f
foldFile (f , h, t) = ff

where ff (File hs ts) = f (map fh hs) (map ft ts)
fh (House nm clr) = h nm clr
ft (Tree nm owner) = t nm owner

◦

6 (10 points). Define the semantic function treesOfGreen using an algebra and the fold.
This function produces a list of the names of trees owned by "green" houses in a given
file. •

Solution 6.

type Houses = [String]
type Trees = [String]
greenHouseAlgebra :: FileAlgebra Trees Houses (Houses→ Trees)
greenHouseAlgebra =
(λhs ts→ concat (map ($concat hs) ts)
, λnm clr→ if clr = = "green" then [nm] else []
, λnm owner→ λhouses→ if nm ‘elem‘ houses then [owner] else []
)

treesOfGreen :: File→ Trees
treesOfGreen = foldFile greenHouseAlgebra

◦

Parser Combinators

We have learned about parser combinators defined with the following type:

type Parser s a = [s]→ [(a, [s])]

The input to a parser is a stream of symbols, and the output is a list of successes where
each result is paired with its unconsumed input. Failure to parse is indicated with an
empty result list.

4

Let us extend this parser to one that gives a bit more information about failure,
namely the position of the failure-inducing symbol in the input stream. We indicate
position as an Int:

type Pos = Int

The parser type now looks like this:

type Parser s a = Pos→ [s]→ Either Pos [(a, Pos, [s])]

Whenever a parser fails, it will return Left pos where pos is the maximum index into the
input ([s]) where parsing failed. A successful parse will advance the resulting position
by the number of symbols consumed.

We can run the parser with parse and initialize the position with 0:

parse :: Parser s a→ [s]→ Either String a
parse p inp = case p 0 inp of

Left pos → Left ("Error at position "++ show pos)
Right ((x, ,):)→ Right x

Use the new Parser type for the following questions.

7 (5 points). Define the parser combinator failp. •

Solution 7.

failp :: Parser s a
failp pos = Left pos

◦

8 (10 points). Define the parser combinator satisfy. •

Solution 8.

satisfy :: (s→ Bool)→ Parser s s
satisfy p pos (x : xs) | p x = Right [(x, succ pos, xs)]
satisfy pos = Left pos

◦

9 (10 points). Define the parser combinator (<<|>) (left-biased greedy version of (<|>)).
•

Solution 9.

(<<|>) :: Parser s a→ Parser s a→ Parser s a
(p <<|> q) pos xs = case p pos xs of

Left → q pos xs
r → r

◦

5

Context-Free Grammars

Let B = {0, 1}. Give context-free grammars for the languages in the following ques-
tions, if possible. If not, explain why.

10 (5 points). L1 = {b2bR | b ∈ B∗} where sR is the reverse of s. •

Solution 10. Language L1 is not context-free. ◦

11 (10 points). The set of all sequences s ∈ B∗ with no consecutive 1s. In other words,
the sequence 11 is not a subsequence of s. •

Solution 11.
Several options:

S→ (1?0)∗1?

S→ 0∗(10+)
∗
1?

S→ 0S | 10S | 1 | ε

A dual of one of these is also acceptable.
◦

6

