
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Solutions for Exam 2

Sean Leather, Johan Jeuring

Thursday, 31 January 2013, 17:00–20:00

Please keep in mind that there are often many possible solutions and that these ex-
ample solutions may contain mistakes.

Questions

Regular grammars, NFAs, DFAs, Pumping Lemmas

Consider the following NFA, with start state S, and accepting state �.

1 (5 points). Construct a regular grammar with the same language. •

Solution 1.

S→ a A | a B
A→ b B | b C
B→ c A | c C
C→ a

◦

2 (5 points). Construct a DFA (Deterministic Finite-state Automaton) with the same
language (you may draw a DFA). •

1

Solution 2.

BC

AC

ABSstart �a b

c

a

c
a

b

◦
A palindrome is a string which reads the same when reversed. In the following task
you will look at palindromes in DNA strings. A DNA string is a list of ‘C’, ‘A’, ‘T’,
‘G’ symbols. The male DNA on the Y chromosome contains some huge palindromes,
some more than a million DNA symbols long. These palindromes have a small non-
palindromic gap in the middle, which may contain an arbitrary sequence of DNA sym-
bols. A small example of a DNA palindrome with a gap is the string ”ATACGTATA”.
This string has a non-palindromic gap of length three (”CGT”) in the middle.

3 (8 points). Give a context-free grammar specifying the language of palindromes in
DNA with gaps of at most length 3 in the middle. •

Solution 3.

P→ A P A | C P | C | G P G | T P T |D D D
D→ A | C | G | T | ε

◦

4 (8 points). Is the language of palindromes in DNA with gaps of at most length 3 in
the middle specified in the previous exercise regular? If so, give a regular grammar or
a DFA for the language. If not, use the regular pumping lemma to prove this. •

Solution 4. The language of palindromes in DNA with gaps in the middle is not regular.
We use the regular pumping lemma to prove this.
Let n ∈ N.
Take s = An C G T An, with x = ε, y = An, and z = C G T An. The sentence s is an element of
the language.
Let u, v, w be such that y = uvw with v 6≡ ε, that is, u = Ap, v = Aq and w = Ar with
p + q + r = n and q > 0.
Take i = 2, then xuv2wz = Ap+2q+r T An=An+q C G T An.
Since q > 0, this is not a sentence in the language of palindromes with gaps of at most
length 3.
Using the negative version of the regular pumping lemma, we conclude that this lan-
guage is not regular. ◦

2

LL parsing

Consider the following context-free grammar:

Session → Facts Question | (Session) Session
Facts → Fact Facts | ε
Fact → ! x

Question→ ? x

This grammar describes a simple language that could be used as the input language for
a rudimentary consulting system: the user enters some facts, and then asks a question.
There is also a facility for sub-sessions. The contents of the facts and questions are of
no concern here. They are represented by the word x, which is regarded as a terminal
symbol.

5 (8 points). Determine the empty property, and the first and follow sets for each of the
nonterminals of the above grammar. •

Solution 5.

empty first follow
Session False {!, ?, (} {)}
Facts True {!} {?}
Fact False {!} {!, ?}
Question False {?} {)}

◦

6 (8 points). Using empty, first, and follow, determine the lookahead set of each pro-
duction in the above grammar. •

Solution 6.

Session→ Facts Question {!, ?}
Session→ (Session) Session {(}
Facts→ Fact Facts {!}
Facts→ ε {?}
Fact→ ! x {!}
Question→ ? x {?}

◦

7 (4 points). Is the above grammar LL(1)? Explain how you can determine this using
the lookahead sets of the productions. •

Solution 7. Since the intersection of the lookahead sets for any pair of productions for
the same non-terminal is empty, the above grammar is LL(1). ◦

3

8 (6 points). The string (? x) ! x ? x is a sentence of the above grammar. Show how
an LL(1) parser recognizes this string by using a stack. Show step by step the contents
of the stack, the part of the input that has not been consumed yet, and which action you
perform. If the above grammar is not LL(1), point at the step where different choices
can be made. •

Solution 8.

Stack input action
Session (? x) ! x ? x Expand

(Session) Session (? x) ! x ? x Match
Session) Session ? x) ! x ? x Expand

Facts Question) Session ? x) ! x ? x Expand
Question) Session ? x) ! x ? x Expand

? x) Session ? x) ! x ? x Match
x) Session x) ! x ? x Match
) Session) ! x ? x Match

Session ! x ? x Expand
Facts Question ! x ? x Expand

Fact Facts Question ! x ? x Expand
! Facts x Question ! x ? x Match

Facts x Question x ? x Expand
x Question x ? x Match

Question ? x Expand
? x ? x Match
x x Match

— — Succeed

◦

LR parsing

Consider the context-free grammar:

E→ E - T
E→ T
T → n

T → (E)

We want to use an LR parsing algorithm to parse sentences from this grammar. We
start with extending the grammar with a new start-symbol S, and a production

S→ E $

where $ is a terminal symbol denoting the end of input.

9 (8 points). Construct the LR(0) automaton for the extended grammar. •

4

Solution 9. The LR(0) automaton corresponding to the full grammar looks as follows
(each state is numbered before the production for future reference):

◦

10 (4 points). Is this grammar LR(0)? Explain why or why not. •

Solution 10. The grammar is LR(0), because there are no shift/reduce or reduce/reduce
conflicts. ◦

11 (8 points). The string n - (n - n) $ is a sentence of the above grammar. Show how
an LR(0)-based parser recognizes this string by using a stack. Show step by step the
contents of the stack mixed with the states in the LR(0) automaton you pass through,
the part of the input that has not been consumed yet, and which action you perform. •

Solution 11.

5

Stack input action
1 n - (n - n) $ Shift

1 n 3 - (n - n) $ Reduce
1 T 2 - (n - n) $ Reduce
1 E 4 - (n - n) $ Shift

1 E 4 - 7 (n - n) $ Shift
1 E 4 - 7 (6 n - n) $ Shift

1 E 4 - 7 (6 n 3 - n) $ Reduce
1 E 4 - 7 (6 T 2 - n) $ Reduce
1 E 4 - 7 (6 E 9 - n) $ Shift

1 E 4 - 7 (6 E 9 - 7 n) $ Shift
1 E 4 - 7 (6 E 9 - 7 n 3) $ Reduce
1 E 4 - 7 (6 E 9 - 7 T 8) $ Reduce

1 E 4 - 7 (6 E 9) $ Shift
1 E 4 - 7 (6 E 9) 10 $ Reduce

1 E 4 - 7 T 8 $ Reduce
1 E 4 $ Shift

1 E 4 $ 5 Accept

◦

12 (3 points). Suppose we take the same grammar, but replace the productions for E by:

E→ T - E
E→ T

This grammar is not LR(0). Explain why. •

Solution 12. This grammar is not LR(0): there will be a shift/reduce conflict in the state
that contains the two items E→ T • - E and E→ T •. ◦

13 (3 points). The grammar is SLR(1). Explain why. •

Solution 13. The nonterminal E can be followed by the symbols {$,)}. So when the
next symbol in the input is one of these symbols, we reduce by means of the production
E→ T, and when the next input symbol is - we shift. ◦

Code generation

For mysterious reasons, the Maya culture received a surge of interest by the end of 2012.
As a consequence, computers now perform many calculations based on Mayan input.
In this exercise you will develop a code generator for generating stack machine code to
calculate Mayan numbers.

On a separate sheet of paper you can find the Wikipedia description of Mayan num-
bers. To process Mayan numbers, I use the following abstract syntax:

type MayaNumber = [MayaBase]
data MayaBase = Shell

| DotsLines Int Int deriving Show

6

where a MayaBase value corresponds to one of the vertical levels (the 1s, 20s, 400s, etc,
where the higher levels, with the higher values, come first). DotsLines 3 4 means 3
dots above 4 lines. For example, the Mayan number for 429 (given as example in the
Wikipedia document), is represented as

mn429 = [DotsLines 1 0, DotsLines 1 0, DotsLines 4 1]

14 (12 points). Write a function

maya2Code :: MayaNumber→ Code

which takes a Mayan number, and produces stackmachine code, which when run on
the SSM, produces the integer corresponding to the Mayan number. All multiplications
and additions have to be performed on the stack machine, so calculating the resulting
integer i in Haskell, and then outputting [LDC i, TRAP 0] is not sufficient. The type
Code is the same as in the third lab, and repeated below. •

Solution 14.

maya2Code maya = maya2Code′ (reverse maya) ++ [TRAP 0]
maya2Code′ [] = [LDC 0]
maya2Code′ [x] = codeBase x
maya2Code′ (x : y : ys) = codeBase x ++

[LDC 20] ++
maya2Code′ (y : ys) ++
[MUL, ADD]

codeBase Shell = [LDC 0]
codeBase (DotsLines m n) = [LDC m, LDC n, LDC 5, MUL, ADD]

main = putStrLn $ formatCode (maya2Code mn429)

◦

type Code = [Instr]
data Instr

= STR Reg | STL Int | STS Int | STA Int — Store from stack
| LDR Reg | LDL Int | LDS Int | LDA Int — Load on stack
| LDC Int | LDLA Int | LDSA Int | LDAA Int— Load on stack
| BRA Int | Bra String — Branch always (relative/to label)
| BRF Int | Brf String — Branch on false
| BRT Int | Brt String — Branch on true
| BSR Int | Bsr String — Branch to subroutine
|ADD | SUB |MUL |DIV |MOD — Arithmetical operations on 2 stack operands
| EQ |NE | LT | LE |GT |GE — Relational operations on 2 stack operands
|AND |OR |XOR — Bitwise operations on 2 stack operands

7

|NEG |NOT — operations on 1 stack operand
| RET |UNLINK | LINK Int |AJS Int — Procedure utilities
| SWP | SWPR Reg | SWPRR Reg Reg | LDRR Reg Reg— Various swaps
| JSR | TRAP Int |NOP |HALT — Other instructions
| LABEL String — Pseudo-instruction for generating a label

deriving Show

8

