
INFOB3TC - Final Exam

David van Balen, Lawrence Chonavel

1st February, 13:30 - 16:00 (extra time: 16:30)

Preliminaries

• Write your name and student number on every page you hand in.
• The total amount of points is 85.
• Try to give concise answers, and write legibly.
• Please answer all questions in English.
• You may use any notation, theories and lemmas covered in the slides or

lecture notes.
• The appendices have additional information and examples on a few of the

languages we use in the exam.

1

1 (15p total) Finite State Machines
Consider the following two DFAs, which match some regexps r₁ and r₂ respec-
tively:

1.1 (2p) Draw an NFAε that matches the regexp r₁r₂
1.2 (8p) Draw a DFA that matches the regexp r₁r₂
1.3 (5p) Draw a DFA that matches the regexp r₃
r₃ = ((a|b)+)(c?)(d*)

2 (10p total) Fold and Algebra for a Binary
Search Tree

Suppose we have the following definition of a tree, which holds values of two
different types:

data Tree a b = Node (Tree a b) a (Tree a b)
| Leaf b

This tree type can be used to implement a Map (also known as a Dictionary):

type Map key value = Tree key (key,value)

The idea is that the leaves store (key,value) pairs, and lookup is implemented
using binary search. In order to make the lookup efficient, we impose an order
on the tree: For each Node left x right, the left subtree should contain the
(key,value) pairs where key <= x, and the right subtree should contain the
(key,value) pairs where key > x.

2

Here is an example:

-- A list of (key,value) pairs
list = [(10,a),(2,b),(5,c)]

-- A corresponding binary search tree
dict = Node

(Node
(Leaf (2,b))
3
(Leaf (5,c)))

5
(Leaf (10,a))

2.1 (5p) Write the algebra type and fold function for the
Tree type

2.2 (5p) Write an algebra to implement lookup

Your lookup function should return Just a value matched by the key, if one
exists, and otherwise return Nothing.

The lookupAlgebra should fit in the following template:

lookup :: (Ord k, Eq k) => k -> Map k v -> Maybe v
lookup key dict = foldTree lookupAlgebra dict key

Hint: (foldTree lookupAlgebra dict) :: k -> Maybe v

3 (20p total) Compiler passes
Consider a compiler with a nanopass architecture. One of its optimization passes
eliminates loops that have a fixed iteration size. For example, it would convert
the following for-loop

for(int i = 0; i<5; i++)
f(i);

into this equivalent code:

f(0); f(1); f(2); f(3); f(4);

N.B. This pass only recognizes a very specific pattern: int i = 0; i < n; i++
where n is a literal number.

3

3.1 (10p) Optimization
3.1.1 When is the pass safe (i.e. semantics-preserving)?

3.1.2 When & how might the pass improve the code?

3.1.3 When & how might the pass degrade the code?

3.2 (10p) Nanopasses
Consider the loop-elimination optimization pass described above.

You have been tasked with adding this optimization pass to an existing compiler.

The existing compiler has the following passes:

• Parsing
• Loops to Jumps
• Loop-Invariant Code Motion
• Unroll all loops exactly 32 times
• Type-checking

For each of the passes already in the compiler…

a. State whether it should come before or after the loop-elimination pass (or
if it doesn’t matter), in order to improve the code

b. Explain your answer to (a)

4 (10p total) Compiler Checks
Consider the following language:

Stmt ::= int Var; Stmt
| Var = Func (Var?) ; Stmt
| return Var ;
| if (0 ≤ Var) { Stmt } else { Stmt } ; Stmt
| ε

type Func = String
data Stmt = Decli Var Stmt

| Asign Var Func (Maybe Var) Stmt
| Retrn Var
| IfNat Var Stmt Stmt Stmt
| Empty

data StmtAlgebra r = SAlg
{ decli :: Var -> r -> r
, asign :: Var -> Func -> Maybe Var -> r -> r
, retrn :: Var -> r
, ifnat :: Var -> r -> r -> r -> r
, empty :: r
}

foldStmt :: StmtAlgebra r -> Stmt -> r

4

4.1 (10p) Implement checkScope

Users of the language are complaining that it’s too bash-like. In particular, they
don’t like how “out of scope” errors can occur at run-time. For example, the
following program would crash at run-time:

int input;
input = get_input();
if (0 ≤ input) {x = sqrt(input);}

else {x = not_a_number();}
return x;

To satisfy the users, you are tasked with writing a scope checker, to move “out of
scope” errors from run-time to compile-time. Implement a scope-checking algebra
scopeAlg (in pseudo-Haskell), which finds the free variables in a statement:

type Env = [Var]
checkScope :: Stmt -> Env -> Valid [Var] ()
checkScope = foldStmt scopeAlg

Hint: recall from the lectures that

data Valid e r = Err e | OK r
instance Functor (Valid es) -- provides (<$>), (<$), fmap
instance Applicative (Valid [e]) -- provides (<*>), (<*), (*>), pure
instance Monad (Valid es) -- provides (>>=), return, guard

5 (30p total) Regular, Context-Free, or Neither
Consider the following three languages:

L₁ The language of the names of all employees at the UU

L₁ = { David van Balen, Lawrence Chonavel, ...}

L₂ The language of matching parentheses (aka LISP).

Each opening or closing bracket must have a unique match, and we also have
the character ‘a’.

L₂ = { w | w ∈ {a,(,)}*, matchingParens(w)}

(see sec. 6 for examples)

L₃ The language of well-formed markdown code blocks,

L₃ = { `ᵐs`ᵐ
| m ∈ ℕ ∧ m > 0
∧ s ∈ 𝔸⁺
∧ head(s) ≠ ` ∧ last(s) ≠ `
∧ ¬ (s contains the substring `ᵐ) }

Where 𝔸 is the alphabet of ASCII characters

(see sec. 7 for examples)

5

5.1 (5p) Prove that L₁ is Regular
5.2 (5p) Prove that L₂ is Context-Free
5.3 (10p) Prove that L₂ is not Regular
Hint:

∀ L where L is regular,
∃ n ∈ ℕ, such that
∀ xyz ∈ L where |y| ≥ n,
∃ uvw where |v| > 0, such that
∀ i ∈ ℕ, xuvⁱwz ∈ L

5.4 (10p) Prove that L₃ is not Context-Free.
Prove that L is not context free, by completing the following (unfinished) proof,
writing a proof for each case:

We prove that L is not context-free, using the pumping lemma for context-
free languages:

∀ context-free L,
∃ n ∈ ℕ,
∀ z ∈ L with |z| ⩾ n,
∃ u,v,w,x,y where z = uvwxy ∧ |vx| > 0 ∧ |vwx| ⩽ n,
∀ i ≥ 0, uvⁱwxⁱy ∈ L

Let n be a natural number.
We choose the word z = `³ⁿ_`²ⁿ_`³ⁿ, which is in L and longer than n.

Let z=uvwxy be a splitting of our word, where |vx| > 0 and |vwx| ⩽ n.

Now consider which part of `³ⁿ_`²ⁿ_`³ⁿ
the strings v and x come from.

Case 1: v and x both fit completely into the middle `²ⁿ

Case 2: v or x contains an _

Case 3: v or x overlaps with one of the `³ⁿ parts

6 Appendix: Extra information about the lan-
guage of matching parentheses

The alphabet of matching parentheses consists of the characters ‘a’, ‘(’, and ‘)’.
Each opening bracket is matched with exactly one closing bracket that follows
it, and each closing bracket is matched with exactly one opening bracket that
precedes it.

6

6.1 These are words with matching parentheses:
a

()a()

ε

a(((a))a)(a())

6.2 These are not words with matching parentheses:
(

)a(

((a)

7 Appendix: Extra information about the lan-
guage of well-formed markdown code blocks

The language of well-formed markdown code blocks consists of arbitrary code
(i.e. a non-empty ASCII string), enclosed in some positive number n of backtick
characters `, with the additional restriction that the code may not contain any
n-or-longer sequences of backtick characters `

7.1 These are well-formed markdown code blocks:
``int main (void)``

`````````` <- trust me, I counted these -> ``````````

`````Look, a code block: ``int main (void)`` (inside a `code` block!)`````

``Did you know that `LaTeX quotes' use backticks?``

7.2 These are not well-formed markdown code blocks:
```` I have 4 opening backticks, but only 3 closing backticks ```

` I have 1 opening backtick, and 5 closing backticks ````

``I have too many backticks: ```` in the code!``

`I also have `too many` backticks inside the code!`

7


	(15p total) Finite State Machines
	(2p) Draw an NFAε that matches the regexp r₁r₂
	(8p) Draw a DFA that matches the regexp r₁r₂
	(5p) Draw a DFA that matches the regexp r₃

	(10p total) Fold and Algebra for a Binary Search Tree
	(5p) Write the algebra type and fold function for the Tree type
	(5p) Write an algebra to implement lookup

	(20p total) Compiler passes
	(10p) Optimization
	When is the pass safe (i.e. semantics-preserving)?
	When & how might the pass improve the code?
	When & how might the pass degrade the code?

	(10p) Nanopasses

	(10p total) Compiler Checks
	(10p) Implement checkScope

	(30p total) Regular, Context-Free, or Neither
	(5p) Prove that L₁ is Regular
	(5p) Prove that L₂ is Context-Free
	(10p) Prove that L₂ is not Regular
	(10p) Prove that L₃ is not Context-Free.

	Appendix: Extra information about the language of matching parentheses
	These are words with matching parentheses:
	These are not words with matching parentheses:

	Appendix: Extra information about the language of well-formed markdown code blocks
	These are well-formed markdown code blocks:
	These are not well-formed markdown code blocks:


