
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Midterm Exam INFOB3TC

Jurriaan Hage

Tuesday, December 17th, 2019, 11.00-13.00

Preliminaries

• The exam consists of 8 pages (including this page). Please verify that you got all the pages.

• Fill out the answers on the exam itself.

• Write your name and student number here:

• For open questions, the maximum score is stated at the top of each question. The total number
of points you can get is 90. You can compute your exam grade by dividing by 9 and rounding to
one decimal after the decimal point.

• Try to give simple and concise answers. Write readable text. You may use Dutch or English.

• Answer multiple choice questions by writing the correct alternative in the box below the ques-
tion. Sometimes multiple answers are correct: in that case you need to give the best answer.

• When writing grammar and language constructs, you may use any set, sequence, or language
operations covered in the lecture notes.

• When writing Haskell code, you may use Prelude functions and functions from the following
modules: Data.Char, Data.List, Data.Maybe, and Control.Monad. Unless indicated otherwise, you
may use all the parser combinators from the uu-tc package. If you are in doubt whether a certain
function is allowed, please ask.

Good luck!

1

1. An important part of database systems is the construction of forms. In such forms we have input
fields that often satisfy formatting rules. For example, a Dutch zip code field should contain six char-
acters, the first four of which must be digits, and the last two must be letters. In such systems, you can
often describe the formatting of such fields with a formatting string, and the system will guarantee it
will parse that field according to the specified format. To keep things manageable we use the follow-
ing formatters (each formatter is a character): ’0’ stands for any digit, ’L’ stands for any letter (lower or
upper case), but will also convert all lower case characters it parses to upper case, similarly we have
”l” for the other way around.

For Dutch zip codes, the format string would be ”0000LL”. If we apply the parser zipCodeP that
follows this format string to the input ”1900Ab” it will succeed and return the string ”1900AB”, having
converted the acceptable character ’b’ to the capital ’B’. The parser fails on inputs like ”My Name”,
”ABCD99”, and also ”1900 AB”.

Now, write a function parseFormatted :: String → Parser Char String, that given a format string, re-
turns the parser that parses following the rules above. This will allow us to define

zipCodeP :: Parser Char String
zipCodeP = parseFormatted "0000LL"

You may use any parser combinator from the uu-tc package.
•

. . . /10

2

2. To increase the power of the formatters, someone suggests to add the character ’9’ which behaves
like an optional ’0’, a digit may be there or not. Is support for ’9’ easy to add? Explain your answer. •

. . . /5

3. A grammar has the following productions:

T → xTy | xy

If we add a single production to this grammar, we can derive the sentence xxyyxxyy. Which of the
following productions could we add?

a) T → xTyy

b) T → yTx

c) T → TTT

d) None of the above answers are correct.

•

. . . /5

4. Suppose we have a parser pExpr :: Parser Char Expr, where the datatype Expr has a constructor
Let Identifier Expr Expr. What is the type of the following parser combinator?

pDecl = Let <$ token "let"

<∗ identifier
<∗ symbol ’=’
<∗> pExpr
<∗ token "in"

<∗> pExpr

a) Parser Char (Identifier→ Expr→ Expr→ Expr)

b) Parser Char ((Identifier, Expr, Expr)→ Expr)

c) Parser Char Expr

d) The parser pDecl is type incorrect

•

. . . /5
3

5. Given is the following context-free grammar:

S → ddS | db | bAc | bAd

A → aS | aA

Give a left-factorised version of this context-free grammar. •

. . . /10

6. Given is the following context-free grammar for boolean formulas:

B→ B /\ B
B→ B \/ B
B→ (B)

B→ ff
B→ tt

This grammar is ambiguous and does not correctly enforce the priority that conjunction (‘and‘) /\ has
over disjunction (‘or‘) \/. Give a non-ambiguous context-free grammar in which the above priorities
have been correctly introduced. •

. . . /10

4

7. Construct an NFA for the language L over the alphabet A = {a, b} containing all sequences over
A∗, except those that contain the contiguous subsequence bbb. So, abba and bababb are in L, but bbb
and abbaaabbbb are not.

•

. . . /10

5

Consider the following NFA, with start states S and T, and final state U.

Sstart U

Tstart

a

a

a

b

c
a

8. Construct a DFA (Deterministic Finite Automaton) that accepts the same language. You should use
the subset construction, but should exclude states that are unreachable from the start state or that can
never lead to a final state. It is essential that in your answer it is clear what each of your DFA states
corresponds to in the original NFA; do not forget to indicate the start and end states of the DFA. •

. . . /12

6

We are modelling a situation in which group chats can be organized in a hierarchical fashion. For
example, a company may consist of four (in fact, any number of) divisions, and it can initiate a group
chat in such a way that only members of the same division can chat with each other. A concrete group
chat consists of a list of messages each message coming with the name of the member who sent it. For
this, the following Haskell types have been defined:

data GroupChatterbox = Fork Name [GroupChatterbox] | Single Name GroupChat
type GroupChat = [(Member, Message)]

where the datatype GroupChat stores all relevant information about a single chat. The actual form of
types like Name, Message and Members is not that relevant here, but if it helps think of them as Strings.

9. Define the algebra type for the datatype GroupChatterbox. •

. . . /6

10. Now, give the type and the definition of the fold function associated with the datatype GroupChatterbox.
•

. . . /8

7

11. Define a function members :: GroupChatterbox→ [Member] that returns a list of Members that partici-
pate in a group chat (with or without duplicate member names). Define it using a fold on the datatype
GroupChatterbox. •

. . . /5

12. Define the function twotimers :: GroupChatterbox → [Member] that returns only those members that
have sent messages in more than one GroupChat. If necessary, give a new definition of members to make
this possible. Hint: use the function nub to remove duplicates from a list. •

. . . /4

8

