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Evolving a Checkers player

Z] Rated Room 1:Table 37

Figure 1. The opening board position. The picture is from an Internet gaming site, www.zone.com, where
people can log in to play a variety of games. In this case, the game is checkers. Players can chat by
using the “chat box” below the board.
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Evolving a Checkers Player

Can we build intelligent systems to learn to play checkers ? J

@ No expert knowledge provided to the learning system.

@ Programs simply have to play against themselves, and figure out
how to play.

Evolutionary computation feasible approach ?

Dirk Thierens (Universiteit Utrecht) EvoCheckers 3/21



Evolving a Checkers player

Game playing

@ Board representation
@ Move search: minimax algorithm

o Traditional game playing programs: board evaluation functions
are extensively knowledge based

© weighted feature function
@ opening games
© end games table look-up
= they do not learn by themselves !

Here: Evolving Neural Networks to Play Checkers J
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Board representation

@ Output € [-1...+1]
-1: loss positions
+1: win positions
— closer to +1 = better evaluations
@ Input: vector of 32 possible positions, 5 possible values
@ - K:king opponent
@ - 1: checker opponent
©Q O0:empty
@ +1: checker self
© +K:king self
K e [1...3]: exact value evolved
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Mini-Max algorithm

X's move

(choose max)

O’s move
(back-up min}

X's move
(back-up max)
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Game lookahead

@ The further we can lookahead the better.

o Computational restrictions: number of possible board positions
grows very fast with increasing number of lookahead levels.

@ Deep Blue when defeating chess champion Garry Kasparov made
200 million chess board evaluations per second !

@ Here only lookahead search of 2 moves each side when evolving.

@ When testing against players on Internet: lookahead search of 3
moves each side.
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Board Evaluation

@ Evaluation function represented by an artificial neural network
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Figure 2. The neural network topology y checkers exp The net-
works have 32 input nodes (blue) th tothe 32 the board. The

two hidden layers (gmn) wmprlsz 40 and ‘[0 hidden nms mspmlvely Allinput nodes are
comnested directly to the output node (red) with a weight of 1.0. Bias terms affect each hidden
and output node as a threshold term (not pictured).
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Neural Network Architecture

@ Input Layer: 32 inputs

@ First hidden layer: 40 neurons

@ Second hidden layer: 10 neurons

@ Direct input-output connections with weight 1.0

@ Total number of neural network weights (incl. bias term) =
32+1)x40+(40+1)x 10+ (10 + 1) x 1 =1741

Need to determine values for the 1741 weights )
I
Use evolutionary algorithm to co-evolve the weights )
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Evolutionary search for network weights

@ Mutate neural network weights by adding a small random,
Gaussian distributed number to each weight.

@ Each weight has its own Gaussian distribution (different widths
or standard deviations).

@ The width or variance of each Gaussian distribution also evolves
by mutation.

@ For each neural network NN; all the N;,(= 1741) neural network
weights w;(j) (j = 1...Ny) gets associated with the corresponding
standard deviation o;(j) (j = 1...Ny) of the Gaussian mutation
distribution (mean value is always zero).
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Self-adaptive Mutation

First mutate the N,, widths of the Gaussian distributions, then mutate
the Ny, weights (j = 1... Ny):

@ Self-adaptive mutation of the mutation step-size:

a;(j) = ai(j) exp(

RandNorm;(0,1) )
2v/Nw ’

@ Mutation of the neural network weights:

1

wi(j) = w;(j) + o;(j)RandNorm;(0, 1) |
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Evolutionary Cycle
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Fitness evaluation

5 OPPONENTS

NN’ 15

@ 15 parents + 15 offspring neural networks
@ Each NN competes against 5 randomly chosen NN
@ Score: win : + 1; draw : 0; loss : -2

@ Fitness: sum of scores
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Darwinian system ?

@ Structures ?
— neural networks

@ Structures are copied ?
— 15 parents = 15 offspring

@ Copies partially vary from the original
— weights Gaussian mutated

@ Structures are competing for a limited resource
— fixed population size each generation

@ Reproductive success depends on environment
— winning strategies survive
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Experiment

o total of 250 generations evolved
@ 15 neural networks each generation
= 15 x 250 = 3750 neural networks created

o fitness evaluation: 15 parents + 15 offspring: each competing
against 5 others
= 30 x 5 x 250 = 37500 games played
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Checkers Rating
Class Rating
Senior Master 2400+
Master 2200-2399
Expert 2000-2199
Class A 1800-1999
Class B 1600-1799
Class C 1400-1599
Class D 1200-1399
Class E 1000-1199
Class F 800-999
Class G 600-799
Class H 400-599
Class I 200-399
Class J below 200
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Figure 4. The sequential rating of the evolved neural network (ENN) throughout the 90 games played against
human opponents. The graph indicates both the network's rating and the corresponding rating of the opponent
on each game, along with the result (win, draw, or loss). The highest rating for the ENN was 1975.8 on game 74.

The evolved network completed the 90 games by earning a Class A rating.

e Evolved neural network rating: 1902
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Figure 3. The performance of the evolved neural network after 250 generations, played
throughout 90 games against human opponents on www. zou com. The histogram indi-
cates the rating of the opponent and the iated perf against
with that rating. Ratings are binned into intervals of 100 units (thatis, 1650 corre-
sponds to opponents who were rated between 1600 and 1699). The numbers above each
bar indicate the number of wins, draws, and losses, respectively. Note that the evolved
network generally defeated opponents who were rated below 1800 and played to about an
equal number of wins and losses with those who were rated between 1800 and 1899.

@ 1 draw against player rated 2207 , ie. master level, ranked 18 out
of 40000 listed players
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Discussion

@ Chinook: opening games, end games table look-up, hand-crafted
evaluation function

@ Deep Blue: 200 million board evaluations per second vs. 3500 here

@ Payoff: summed score over 5 games — no immediate feedback
about winning or losing a single game

@ Input to neural networks do not give spatial information: only 1 x
32 vector of {-K,-1,0,1,K}

Allen Newell:

“It is extremely doubtful whether there is enough information in ‘win,
lose, or draw” when referred to the whole play of the game to permit
any learning at all over available time scales”
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Conclusion

@ Building intelligent systems by evolutionary computing.

@ Learn to play checkers at high level by competing against
themselves.

@ No tedious domain knowledge extraction.

@ Learning by evolution: feasible approach.
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