
Evolving a Checkers Player

Dirk Thierens

Universiteit Utrecht
The Netherlands

Dirk Thierens (Universiteit Utrecht) EvoCheckers 1 / 21



Evolving a Checkers player

Dirk Thierens (Universiteit Utrecht) EvoCheckers 2 / 21



Evolving a Checkers player

Evolving a Checkers Player

Can we build intelligent systems to learn to play checkers ?

No expert knowledge provided to the learning system.
Programs simply have to play against themselves, and figure out
how to play.

Evolutionary computation feasible approach ?

Dirk Thierens (Universiteit Utrecht) EvoCheckers 3 / 21



Evolving a Checkers player

Game playing

Board representation
Move search: minimax algorithm
Traditional game playing programs: board evaluation functions
are extensively knowledge based

1 weighted feature function
2 opening games
3 end games table look-up

⇒ they do not learn by themselves !

Here: Evolving Neural Networks to Play Checkers

Dirk Thierens (Universiteit Utrecht) EvoCheckers 4 / 21



Evolving a Checkers player

Board representation

Output ∈ [−1 . . .+ 1]
-1: loss positions
+1: win positions
→ closer to +1⇒ better evaluations

Input: vector of 32 possible positions, 5 possible values
1 - K : king opponent
2 - 1 : checker opponent
3 0 : empty
4 + 1 : checker self
5 + K : king self

K ∈ [1 . . . 3] : exact value evolved

Dirk Thierens (Universiteit Utrecht) EvoCheckers 5 / 21



Evolving a Checkers player

Mini-Max algorithm

Dirk Thierens (Universiteit Utrecht) EvoCheckers 6 / 21



Evolving a Checkers player

Game lookahead

The further we can lookahead the better.
Computational restrictions: number of possible board positions
grows very fast with increasing number of lookahead levels.
Deep Blue when defeating chess champion Garry Kasparov made
200 million chess board evaluations per second !
Here only lookahead search of 2 moves each side when evolving.
When testing against players on Internet: lookahead search of 3
moves each side.

Dirk Thierens (Universiteit Utrecht) EvoCheckers 7 / 21



Evolving a Checkers player

Board Evaluation

Evaluation function represented by an artificial neural network

Dirk Thierens (Universiteit Utrecht) EvoCheckers 8 / 21



Evolving a Checkers player

Neural Network Architecture

Input Layer: 32 inputs
First hidden layer: 40 neurons
Second hidden layer: 10 neurons
Direct input-output connections with weight 1.0
Total number of neural network weights (incl. bias term) =
(32 + 1) x 40 + (40 + 1) x 10 + (10 + 1) x 1 = 1741

Need to determine values for the 1741 weights

⇓

Use evolutionary algorithm to co-evolve the weights

Dirk Thierens (Universiteit Utrecht) EvoCheckers 9 / 21



Evolving a Checkers player

Evolutionary search for network weights

Mutate neural network weights by adding a small random,
Gaussian distributed number to each weight.
Each weight has its own Gaussian distribution (different widths
or standard deviations).
The width or variance of each Gaussian distribution also evolves
by mutation.
For each neural network NNi all the Nw(= 1741) neural network
weights wi(j) (j = 1 . . .Nw) gets associated with the corresponding
standard deviation σi(j) (j = 1 . . .Nw) of the Gaussian mutation
distribution (mean value is always zero).

Dirk Thierens (Universiteit Utrecht) EvoCheckers 10 / 21



Evolving a Checkers player

Self-adaptive Mutation

First mutate the Nw widths of the Gaussian distributions, then mutate
the Nw weights (j = 1 . . .Nw):

Self-adaptive mutation of the mutation step-size:

σ′i(j) = σi(j) exp(RandNormj(0,1)√
2
√

Nw
)

Mutation of the neural network weights:

w′
i(j) = wi(j) + σ′i(j)RandNormj(0, 1)

Dirk Thierens (Universiteit Utrecht) EvoCheckers 11 / 21



Evolving a Checkers player

Evolutionary Cycle

Dirk Thierens (Universiteit Utrecht) EvoCheckers 12 / 21



Evolving a Checkers player

Fitness evaluation

15 parents + 15 offspring neural networks
Each NN competes against 5 randomly chosen NN
Score: win : + 1; draw : 0; loss : -2
Fitness: sum of scores

Dirk Thierens (Universiteit Utrecht) EvoCheckers 13 / 21



Evolving a Checkers player

Darwinian system ?

1 Structures ?
→ neural networks

2 Structures are copied ?
→ 15 parents⇒ 15 offspring

3 Copies partially vary from the original
→ weights Gaussian mutated

4 Structures are competing for a limited resource
→ fixed population size each generation

5 Reproductive success depends on environment
→ winning strategies survive

Dirk Thierens (Universiteit Utrecht) EvoCheckers 14 / 21



Evolving a Checkers player

Experiment

total of 250 generations evolved
15 neural networks each generation

⇒ 15 x 250 = 3750 neural networks created
fitness evaluation: 15 parents + 15 offspring: each competing
against 5 others

⇒ 30 x 5 x 250 = 37500 games played

Dirk Thierens (Universiteit Utrecht) EvoCheckers 15 / 21



Evolving a Checkers player

Checkers Rating

Dirk Thierens (Universiteit Utrecht) EvoCheckers 16 / 21



Evolving a Checkers player

Evolved neural network rating: 1902

Dirk Thierens (Universiteit Utrecht) EvoCheckers 17 / 21



Evolving a Checkers player

1 draw against player rated 2207 , ie. master level, ranked 18 out
of 40000 listed players

Dirk Thierens (Universiteit Utrecht) EvoCheckers 18 / 21



Evolving a Checkers player

Discussion

Chinook: opening games, end games table look-up, hand-crafted
evaluation function
Deep Blue: 200 million board evaluations per second vs. 3500 here
Payoff: summed score over 5 games→ no immediate feedback
about winning or losing a single game
Input to neural networks do not give spatial information: only 1 x
32 vector of {-K,-1,0,1,K}

Allen Newell:
“It is extremely doubtful whether there is enough information in ’win,
lose, or draw’ when referred to the whole play of the game to permit
any learning at all over available time scales”

Dirk Thierens (Universiteit Utrecht) EvoCheckers 19 / 21



Evolving a Checkers player

Conclusion

Building intelligent systems by evolutionary computing.
Learn to play checkers at high level by competing against
themselves.
No tedious domain knowledge extraction.
Learning by evolution: feasible approach.

Dirk Thierens (Universiteit Utrecht) EvoCheckers 20 / 21



Evolving a Checkers player

Dirk Thierens (Universiteit Utrecht) EvoCheckers 21 / 21


	Evolutionary Computation
	Evolving a Checkers player

