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Evolving a Checkers Player

Can we build intelligent systems to learn to play checkers ?

No expert knowledge provided to the learning system.
Programs simply have to play against themselves, and figure out
how to play.

Evolutionary computation feasible approach ?
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Game playing

Board representation
Move search: minimax algorithm
Traditional game playing programs: board evaluation functions
are extensively knowledge based

1 weighted feature function
2 opening games
3 end games table look-up

⇒ they do not learn by themselves !

Here: Evolving Neural Networks to Play Checkers
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Board representation

Output ∈ [−1 . . .+ 1]
-1: loss positions
+1: win positions
→ closer to +1⇒ better evaluations

Input: vector of 32 possible positions, 5 possible values
1 - K : king opponent
2 - 1 : checker opponent
3 0 : empty
4 + 1 : checker self
5 + K : king self

K ∈ [1 . . . 3] : exact value evolved
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Mini-Max algorithm
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Game lookahead

The further we can lookahead the better.
Computational restrictions: number of possible board positions
grows very fast with increasing number of lookahead levels.
Deep Blue when defeating chess champion Garry Kasparov made
200 million chess board evaluations per second !
Here only lookahead search of 2 moves each side when evolving.
When testing against players on Internet: lookahead search of 3
moves each side.
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Board Evaluation

Evaluation function represented by an artificial neural network
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Neural Network Architecture

Input Layer: 32 inputs
First hidden layer: 40 neurons
Second hidden layer: 10 neurons
Direct input-output connections with weight 1.0
Total number of neural network weights (incl. bias term) =
(32 + 1) x 40 + (40 + 1) x 10 + (10 + 1) x 1 = 1741

Need to determine values for the 1741 weights

⇓

Use evolutionary algorithm to co-evolve the weights
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Evolutionary search for network weights

Mutate neural network weights by adding a small random,
Gaussian distributed number to each weight.
Each weight has its own Gaussian distribution (different widths
or standard deviations).
The width or variance of each Gaussian distribution also evolves
by mutation.
For each neural network NNi all the Nw(= 1741) neural network
weights wi(j) (j = 1 . . .Nw) gets associated with the corresponding
standard deviation σi(j) (j = 1 . . .Nw) of the Gaussian mutation
distribution (mean value is always zero).
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Self-adaptive Mutation

First mutate the Nw widths of the Gaussian distributions, then mutate
the Nw weights (j = 1 . . .Nw):

Self-adaptive mutation of the mutation step-size:

σ′i(j) = σi(j) exp(RandNormj(0,1)√
2
√

Nw
)

Mutation of the neural network weights:

w′
i(j) = wi(j) + σ′i(j)RandNormj(0, 1)
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Evolutionary Cycle
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Fitness evaluation

15 parents + 15 offspring neural networks
Each NN competes against 5 randomly chosen NN
Score: win : + 1; draw : 0; loss : -2
Fitness: sum of scores
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Darwinian system ?

1 Structures ?
→ neural networks

2 Structures are copied ?
→ 15 parents⇒ 15 offspring

3 Copies partially vary from the original
→ weights Gaussian mutated

4 Structures are competing for a limited resource
→ fixed population size each generation

5 Reproductive success depends on environment
→ winning strategies survive
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Experiment

total of 250 generations evolved
15 neural networks each generation

⇒ 15 x 250 = 3750 neural networks created
fitness evaluation: 15 parents + 15 offspring: each competing
against 5 others

⇒ 30 x 5 x 250 = 37500 games played
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Checkers Rating
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Evolved neural network rating: 1902
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1 draw against player rated 2207 , ie. master level, ranked 18 out
of 40000 listed players
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Discussion

Chinook: opening games, end games table look-up, hand-crafted
evaluation function
Deep Blue: 200 million board evaluations per second vs. 3500 here
Payoff: summed score over 5 games→ no immediate feedback
about winning or losing a single game
Input to neural networks do not give spatial information: only 1 x
32 vector of {-K,-1,0,1,K}

Allen Newell:
“It is extremely doubtful whether there is enough information in ’win,
lose, or draw’ when referred to the whole play of the game to permit
any learning at all over available time scales”
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Conclusion

Building intelligent systems by evolutionary computing.
Learn to play checkers at high level by competing against
themselves.
No tedious domain knowledge extraction.
Learning by evolution: feasible approach.
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