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Run Time Complexity

In typical application the total run time of a genetic algorithm is
determined by the number of fitness function evaluations.
Run time of selection algorithm and variation operators can be
ignored.
Number of fitness function evaluations is equal to the number of
generations times the population size:

#FitnessFct.Evals = #Generations× PopulationSize
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Convergence speed

Rate at which a population converges is determined by the
selection pressure:

I high selection pressure: fast convergence
I low selection pressure: slow convergence

Size of population determines quality of solution found:
I large population size: more reliable convergence
I small population size: less reliable convergence

Trade-off between selection pressure and population size
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Key questions

1 How long does a GA - with a certain selection pressure - runs
before it converges ?

2 What is the minimal population size to ensure reliable
convergence ?

→ problem dependent, but:

We can build analytical models for simple problems,
Use this as an approximation for some real, complex problems,
Gives insight in and guidance for designing performant GAs.
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Models

1 First, we will build analytical models for the convergence
behavior, assuming large enough populations,

2 Second, we will build analytical models for the minimal required
population size,

3 Third, we will test the models on a real, complex problem (map
labeling).
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Selection Intensity

To quantify the speed of convergence we need a quantitative
measure of selection pressure.
The selection differential S(t) is the difference between the mean
fitness of the parent population at generation t and the population
mean fitness at generation t.
The selection intensity I(t) is the scaled selection differential,
obtained by dividing by the standard deviation of the fitness
values.
I(t) is dimensionless since the standard deviation has the units in
which the selection differential is expressed:

I(t) =
S(t)
σ(t)

=
f (ts)− f (t)

σ(t)
.
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Counting Ones fitness function

Counting Ones, ’fruit fly’ of GA theory

CO(X) =
∑̀
i=1

xi xi ∈ {0, 1}

Probability having 1 at a certain locus: p(t)
Fitness binomial distributed
Mean fitness at generation t : f̄ (t) = l.p(t)
Variance at gen. t : σ2

p(t) = l.p(t)(1− p(t))
Recombination makes no change to population mean fitness

⇒ simple, yet accurate convergence models
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Proportionate selection
Probability selecting i (fitness fi, proportion Pi(t)): Pi(ts) = Pi(t) fi

f (t)

Selection Differential S(t):

f (ts)− f (t) =

N∑
i=1

Pi(ts)fi − f (t)

=

N∑
i=1

Pi(t)
f 2
i

f (t)
− f (t)

=
1

f (t)
(f 2(t)− (f (t))2)

=
σ2(t)
f (t)

Selection intensity I(t) = σ(t)
f (t)
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Proportionate Selection: Counting Ones

mean fitness increase: f (t + 1)− f (t) = σ2(t)
f (t)

proportion of optimal alleles p(t)

p(t + 1)− p(t) =
1
l
(1− p(t))

dp(t)
dt
≈ 1

l
(1− p(t))

convergence model (p(0) = 0.5)

p(t) = 1− 0.5e−t/l

convergence speed: p(tconv) = 1− 1/(2`)

tconv = ` ln (`)
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Truncation Selection

Truncating a normal distribution at the top τ% gives fitness
increase proportional to the standard deviation:

f (ts)− f (t) = c(τ).σ(t)

Selection intensity: I(τ) = c(τ)

Values of selection intensity I for truncation selection are constant:

τ 1% 10% 20% 40% 50% 80%

I 2.66 1.76 1.2 0.97 0.8 0.34
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Truncation Selection
mean fitness increase

f (t + 1)− f (t) = I σ(t)

proportion of optimal alleles p(t)

p(t + 1)− p(t) =
I√
l

√
p(t)(1− p(t))

dp(t)
dt
≈ I√

l

√
p(t)(1− p(t))

convergence model (p(0) = 0.5)

p(t) = 0.5(1 + sin ( I√
l
t))

convergence speed (p(tconv) = 1)

tconv = π
2

√
l

I
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Tournament Selection

Tournament size s: the selection intensity i is equal to the expected
value of the best ranked individual of a sample from s individuals
taken from the standard normal distribution:
Can be computed using order statistics: I = us:s

s 2 3 4 5 6 7
I = us:s

1√
π

= 0.56 0.85 1.03 1.16 1.27 1.35
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Tournament Selection

Same model as truncation selection, for instance for tournament
size s = 2:
mean fitness increase

f (t + 1)− f (t) = I σ(t) =
1√
π
σ(t)

convergence model (p(0) = 0.5)

p(t) = 0.5(1 + sin ( t√
πl

))

convergence speed (p(tconv) = 1)

tconv = π
2

√
πl
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Population sizing

Correct size of the population important:
I too small: premature convergence to sub-optimal solutions
I too large: computational inefficient

We focus on the Counting-Ones problem, but the model can be
extended to (slightly) more complex functions
Key question: how does the optimal population size scales with
the complexity of the problem, ie. the length of the string ?
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Selection Error

Tournament selection:
s1 : 1100011100, fitness = 5
s2 : 0100111101, fitness = 6
⇒ string s2 is selected !
Competition at the schema level:
(order-1 sufficient since we focus on Counting-Ones)

I partition f ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗:
schema 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗wins from schema 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
⇒ selection decision error.

I partitions ∗ ∗ ∗ ∗ f ∗ ∗ ∗ ∗ ∗ and ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ f :
schema ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗wins from schema ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗, and
schema ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 wins from schema ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
⇒ correct selection decisions.

I other partitions: nothing changes.
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Selection Error

What is the probability of making a selection error ?
How many selection errors can we afford to make before the
optimal bit-value at a cdertain position is completely lost in the
population = premature convergence ?
Population sizing is basically a statistical decision making
problem.
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Probability selection decision error

Schemata fitness f (H1 : ∗ ∗ ∗1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) and
f (H2 : ∗ ∗ ∗0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗) binomial distributed
→ approximating with normal distribution N(µ, σ2):

µH1 = 1 + (`− 1)p, σ2
H1

= (`− 1)p(1− p)

µH2 = (`− 1)p, σ2
H2

= (`− 1)p(1− p)

(p = probability of having a bit value 1 at any position).
Distribution of the fitness difference of the best schema and the
worst schema f (H1)− f (H2) is also normal distributed:

µH1−H2 = 1, σ2
H1−H2

= 2(`− 1)p(1− p)
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Probability selection decision error

Probability selection error is equal to the probability that the best
schema is sampled by a string with fitness less than the sample of
the worst schema, which is equal to the probability that the fitness
difference of the strings is negative:

P[SelErr] = P(FH1−H2 < 0)

= Φ(
−1√

2(`− 1)p(1− p)
)

Φ(x): Cumulative distribution function of the standard normal
distribution.
P(X < b) = Φ( b−µ

σ )
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Probability selection decision error

Approximation
Approximation by first two terms of power series expansion for
the normal distribution:

P[SelErr] ≈ 1
2
− 1

2
√
π(`− 1)p(1− p)

Selection error is upper bounded by:

P[SelErr] ≤ 1
2 −

1√
π`

this is a conservative estimate of the selection error that ignores
the reduction in error probability when the proportion of optimal
bit values p(t) increases.
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GA population sizing

How many selection errors ?
Selection viewed as decision making process within partitions:
schemata competition.
When best schema looses competition we have a selection
decision error.
How many decision errors can we afford to make given a certain
population size ?
Answer given by Gambler’s ruin model: within each partition a
random walk is played.
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Gambler’s ruin random walk model

one-dimensional, discrete space of size N + 1.
one particle at position x ∈ {0, . . . ,N}.
the particle can move one step to the right with probability p, and
one step to the left with probability 1− p.
when the particle reaches the boundaries (x = 0, or x = N) the
random walk ends.
call PN(x) (resp. P0(x)) the probability that the particle is absorbed
by the boundary x = N (resp, x = 0) when it is currently at
position x

0 nx0

p
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Gambler’s ruin random walk model

Difference equation:

PN(x) = pPN(x + 1) + (1− p)PN(x− 1)

with boundary conditions: PN(N) = 1, and PN(0) = 0
Probability the particle - starting from position x0 - is absorbed by
the x = N boundary:

PN(x0) =
1− (

1−p
p )x0

1− (
1−p

p )N

P0(x0) = 1− PN(x0)

when p = 1− p = 0.5 we get PN(x0) = x0
N
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Gambler’s ruin model (GR)→ GA

Position x in GR:
→ the number of optimal bit values ’1’ in the population at a
certain partition (position in the string).
Boundaries x = N (resp. x = 0) in GR:
→ all bit values in the population at the partition are equal to the
bit value ’1’ (resp, ’0’).
Absorbing boundary states in GR:
→ population converged to all ones or all zeroes at that partition.
Probability p particle moves one step to the right in GR:
→ probability that the number of optimal bit values 1 in the
population at the partition is increased by one = probability
correct selection decision.
Convergence to x = N (resp. x = 0) boundary:
→ Population converges to optimal bit value 1
(resp. converges to wrong bit value = premature convergence).
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Recall probability selection decision error: P[SelErr] ≤ 1
2 −

1√
π`

Probability convergence to the optimal bit value:

P[OptConv] =
1−

(
P[SelErr]

1−P[SelErr]

)N/2

1−
(

P[SelErr]
1−P[SelErr]

)N

≈ 1−
(

P[SelErr]
1− P[SelErr]

)N/2

≈ 1−

( 1
2 −

1√
π`

1
2 + 1√

π`

)N/2

≈ 1−

(√
π`− 2√
π`+ 2

)N/2

Approximation: denominator approaches 1 much more rapidly as
the numerator since P[SelErr] < 1− P[SelErr]
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Taking the logs:

N
2

ln

√
π`− 2√
π`+ 2

≈ ln(1− P[OptConv])

Using the Taylor series approximation:

ln
x− 2
x + 2

= ln(x− 2)− ln(x + 2)

≈ (ln x− 2
x
− 2

x2 )− (ln x +
2
x
− 2

x2 )

≈ −4
x

we get:
N
2
−4√
π`

≈ ln(1− P[OptConv])
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Critical population size:

N ≈ ln(1− P[OptConv])
√
π`
−2

The minimal required population size scales as the square root
of the problem complexity !
Probability optimal bit value will be found at certain position:

P[OptConv] ≈ 1− e
−2N√
π`
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Convergence string length `

The number of optimal bits F in the entire string of length ` is
binomially distributed:

P(F = x) =

(
`

x

)
P[OptConv]x(1− P[OptConv])`−x

with mean: µ = ` P[OptConv]
and variance: σ2 = `P[OptConv](1− P[OptConv]),
The probability the optimal string will be reached is:

P[OptimalString] = P[OptConv]`.
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Experimental validation

E[Fitness] = 100 (1− e
−2N√

100π )

P[OptimalString] = (1− e
−2N√

100π )100
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Map Labeling problem

Place labels next to map features.
Even basic instances are NP-hard.
Numerous cartographic rules need to be considered.
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Basic map-labeling problem

Set of points in the plane.
Each point has rectangular fixed sized label at 4 possible positions.
Find a labeling with maximum number of non-overlapping labels.
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Encoding
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Rival Groups

Two points are rivals if their labels can overlap.
A point together with its rivals is called a rival group.
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Crossover on Rival Groups

Crossover is done by repeatedly choosing rival groups.
Crossover is complementary: half of a parent is copied to a child
and the other half is copied from the other parent.
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Geometric Local Search: slot filling

After crossover a geometrically local optimizer is applied to
points which may have a conflict.
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Rival Crossover
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Elitist Recombination
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Scalability

Cost(Eval) = O(`): each city can be checked in constant time.
PopSize = O(

√
`): If gambler’s ruin model is applicable.

Generations = O(
√
`): If convergence model is applicable.

RunTime = O(`2)

RunTime = Cost(Eval)× PopSize× Generations
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Scalability Number of Generations
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Scalabiilty Minimal Population Size
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Scalability Number of Fitness Evaluations

Dirk Thierens (Utrecht University) GA Modeling 46 / 47



47/??

Modeling applicable ?

Assumptions of models are satisfied:
Fitness function can be kept simple
(uniformly scaled, semi-separable, and additively decomposable).
Crossover is linkage-respecting and mixes well.
Disruption is minimized by the geometrically local optimizer.

Bottom line
Theoretical insights can be used to design efficient genetic algorithms
for real-world problems.
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