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Run Time Complexity

@ In typical application the total run time of a genetic algorithm is
determined by the number of fitness function evaluations.

@ Run time of selection algorithm and variation operators can be
ignored.

e Number of fitness function evaluations is equal to the number of
generations times the population size:

#FitnessFct.Evals = #Generations x PopulationSize
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Convergence speed

@ Rate at which a population converges is determined by the
selection pressure:

high selection pressure: fast convergence
low selection pressure: slow convergence

@ Size of population determines quality of solution found:
large population size: more reliable convergence
small population size: less reliable convergence

o Trade-off between selection pressure and population size
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Key questions

@ How long does a GA - with a certain selection pressure - runs
before it converges ?

@ What is the minimal population size to ensure reliable
convergence ?

— problem dependent, but:

@ We can build analytical models for simple problems,
@ Use this as an approximation for some real, complex problems,

@ Gives insight in and guidance for designing performant GAs.
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Models

@ First, we will build analytical models for the convergence
behavior, assuming large enough populations,

@ Second, we will build analytical models for the minimal required
population size,

@ Third, we will test the models on a real, complex problem (map
labeling).
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Selection Intensity

o To quantify the speed of convergence we need a quantitative
measure of selection pressure.

@ The selection differential S(¢) is the difference between the mean
fitness of the parent population at generation t and the population
mean fitness at generation ¢.

@ The selection intensity I(t) is the scaled selection differential,
obtained by dividing by the standard deviation of the fitness
values.

@ I(t) is dimensionless since the standard deviation has the units in
which the selection differential is expressed:
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Counting Ones fitness function

@ Counting Ones, "fruit fly” of GA theory

COX)=>x x€{0,1}

@ Probability having 1 at a certain locus: p(f)

@ Fitness binomial distributed

@ Mean fitness at generation ¢ : f(t) = Lp(t)

@ Variance at gen. t : o5(t) = Lp(t)(1 — p(t))

@ Recombination makes no change to population mean fitness

= simple, yet accurate convergence models
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Proportionate selection
@ Probability selecting i (fitness f;, proportion P;(t)): P;(t°) = P;(t)£=
@ Selection Differential S(t):

N
FO 70 = PO

@ Selection intensity I(f) = ==
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Proportionate Selection: Counting Ones

@ mean fitness increase: f(t + 1) —m = %

@ proportion of optimal alleles p(t)

plE+1) —plt) = 11— p(t)
P - p)

@ convergence model (p(0) = 0.5)

p(t) =1—0.5e"/!

@ convergence speed: p(teom) =1—1/(20)

tcony == g 111 (6)
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Truncation Selection

@ Truncating a normal distribution at the top 7% gives fitness
increase proportional to the standard deviation:

fE) =f(t) = c(r).0(t)
@ Selection intensity: I(7) = ¢(7)
@ Values of selection intensity I for truncation selection are constant:

7| 1% | 10% | 20% | 40% | 50% | 80%
1266|176 | 1.2 | 097 | 0.8 | 0.34
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Truncation Selection
@ mean fitness increase

fE+1) —f(B) =1a(t)

@ proportion of optimal alleles p(t)

plE-+1) =ple) = —2/p(O1 = p(0)
de_(tt) ~ \% p(t)(1 = p(t)

@ convergence model (p(0) = 0.5)

p(t) = 0.5(1 + sin (%t))

e convergence speed (p(temo) = 1)

Vi

teonv = 72_r T
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Tournament Selection

@ Tournament size s: the selection intensity i is equal to the expected
value of the best ranked individual of a sample from s individuals
taken from the standard normal distribution:

@ Can be computed using order statistics: I = us:s

s 2 3 4 5 6 7

I'=ugs \%7:0.56 085|103 | 116 | 1.27 | 1.35
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Tournament Selection

@ Same model as truncation selection, for instance for tournament
size s = 2:

@ mean fitness increase

@ convergence model (p(0) = 0.5)

p(t) = 05(1 +sin ()

o convergence speed (p(teony) = 1)

teony = % \/H
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Population sizing

@ Correct size of the population important:
too small: premature convergence to sub-optimal solutions
too large: computational inefficient
@ We focus on the Counting-Ones problem, but the model can be
extended to (slightly) more complex functions

e Key question: how does the optimal population size scales with
the complexity of the problem, ie. the length of the string ?
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Selection Error

@ Tournament selection:
s1 : 1100011100, fitness = 5
sy : 0100111101, fitness = 6
= string s, is selected !

o Competition at the schema level:
(order-1 sufficient since we focus on Counting-Ones)

partition f s s s % % sk % % %:
schema 0 * * * * % x % % * wins from schema 1 x * * * * % % % %
= selection decision error.
Partitions s s s s f s s % % % and s s s s s % % % x f
schema * * * x 1 % % * x x wins from schema * x * * 0 * * % x, and
schema x * * x * * x % * 1 wins from schema * * x * % x x x 0
= correct selection decisions.
other partitions: nothing changes.
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Selection Error

@ What is the probability of making a selection error ?

@ How many selection errors can we afford to make before the
optimal bit-value at a cdertain position is completely lost in the
population = premature convergence ?

@ Population sizing is basically a statistical decision making
problem.
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Probability selection decision error

@ Schemata fitness f(Hj : * * x1 % % % % x x % %) and
f(Hp : # * %0  * * * * * * ) binomial distributed
— approximating with normal distribution N(y, 0?):

p, =1+ =1p,  of, ={—1p1-p)

p, = (E=p,  ofy, = (€= 1)p(1 = p)
(p = probability of having a bit value 1 at any position).

@ Distribution of the fitness difference of the best schema and the
worst schema f(H;) — f(Hz) is also normal distributed:

pH-H, =1, of g, =2((—1)p(1—p)

Dirk Thierens (Utrecht University) GA Modeling 20/ 47



Probability selection decision error

@ Probability selection error is equal to the probability that the best
schema is sampled by a string with fitness less than the sample of
the worst schema, which is equal to the probability that the fitness
difference of the strings is negative:

P[SelErr] = P(Fp,—n, <0)

~1
= @
(\/2(5 —Dp(1-p)

)

@ ®(x): Cumulative distribution function of the standard normal
distribution.

o P(X < b) = (=4

[
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probability selection error
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Probability selection decision error

Approximation

e Approximation by first two terms of power series expansion for
the normal distribution:

1 1
2 2\/n(t-1p(A-p)

@ Selection error is upper bounded by:

P[SelErr] =~

P[SelErr] < 1 —

1
vl
this is a conservative estimate of the selection error that ignores

the reduction in error probability when the proportion of optimal
bit values p(t) increases.
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GA population sizing

How many selection errors ?

@ Selection viewed as decision making process within partitions:
schemata competition.

@ When best schema looses competition we have a selection
decision error.

e How many decision errors can we afford to make given a certain
population size ?

@ Answer given by Gambler’s ruin model: within each partition a
random walk is played.
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Gambler’s ruin random walk model

@ one-dimensional, discrete space of size N + 1.
@ one particle at position x € {0,...,N}.

@ the particle can move one step to the right with probability p, and
one step to the left with probability 1 — p.

@ when the particle reaches the boundaries (x = 0, or x = N) the
random walk ends.

@ call Py(x) (resp. Po(x)) the probability that the particle is absorbed
by the boundary x = N (resp, x = 0) when it is currently at
position x D
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Gambler’s ruin random walk model

e Difference equation:
Pn(x) = pPN(x +1) + (1 —p)Pn(x — 1)

with boundary conditions: Py(N) =1, and Py (0) =0

@ Probability the particle - starting from position xg - is absorbed by
the x = N boundary:

@ Py(xg) =1 — Pn(xo)
@ whenp =1—p = 0.5 we get Py(x9) = XN"
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Gambler’s ruin model (GR) — GA

@ Position x in GR:
— the number of optimal bit values 1" in the population at a
certain partition (position in the string).

@ Boundaries x = N (resp. x = 0) in GR:
— all bit values in the population at the partition are equal to the
bit value 1" (resp, '0").

@ Absorbing boundary states in GR:
— population converged to all ones or all zeroes at that partition.

@ Probability p particle moves one step to the right in GR:
— probability that the number of optimal bit values 1 in the
population at the partition is increased by one = probability
correct selection decision.

@ Convergence to x = N (resp. x = 0) boundary:
— Population converges to optimal bit value 1
(resp. converges to wrong bit value = premature convergence).
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® Recall probability selection decision error: P[SelErr] < 5 — L

~

@ Probability convergence to the optimal bit value:

P[selEr] \N/2
1- (1—5’[eSelg7]fr] )

P[SelE b

PI[SelErr] N/2
— P[SelErr]

P[OptConv] =

Q
—_
|
Y

X
—_
|
~/—
== =
[
-2
~__
Z
~
N

Approximation: denominator approaches 1 much more rapidly as
the numerator since P[SelErr] < 1 — P[SelErr]

v
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o Taking the logs:

N\/_Z
Nl +2

@ Using the Taylor series approximation:

~ In(1 — P[OptConv))

lnx+2 = In(x—2)—In(x+2)
2 2 2 2
~ (lnx—;—;)—(lnx—i—;—;
4
X
we get:
N 4
——— =~ In(1 — P[OptConv

)
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o Critical population size:

N ~ In(1 — P[OptConv]) ‘{—”?

The minimal required population size scales as the square root
of the problem complexity !

@ Probability optimal bit value will be found at certain position:

—2N
P[OptConv] ~ 1 — e V=t
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Convergence string length ¢

@ The number of optimal bits F in the entire string of length ¢ is
binomially distributed:

P(F=x)= (ﬁ)P[OptConv]x (1 — P[OptConv])*~>
with mean: p = ¢ P[OptConv]

and variance: o = ¢P[OptConv](1 — P[OptConv]),
@ The probability the optimal string will be reached is:

P[OptimalString] = P[OptConvl’.
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Experimental validation
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Map Labeling problem
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@ Place labels next to map features.
@ Even basic instances are NP-hard.

@ Numerous cartographic rules need to be considered.
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Basic map-labeling problem

@ Set of points in the plane.

@ Each point has rectangular fixed sized label at 4 possible positions.

@ Find a labeling with maximum number of non-overlapping labels.
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Encoding
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Rival Groups

@ Two points are rivals if their labels can overlap.
@ A point together with its rivals is called a rival group.
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Crossover on Rival Groups

@ Crossover is done by repeatedly choosing rival groups.

@ Crossover is complementary: half of a parent is copied to a child
and the other half is copied from the other parent.

Parents: :I :] E
— —
| |
l

!
Children: \ ‘:\ ‘/:’
= a—
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Geometric Local Search: slot filling

o After crossover a geometrically local optimizer is applied to
points which may have a conflict.
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Rival Crossover

Percentage of non-intersecting labels

30 - Rival crossover i
Uniform crossover - - -
One-point crossover — - —
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Elitist Recombination

Parents Children

Best two of family replace parents.
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Scalability

@ Cost(Eval) = O(¢): each city can be checked in constant time.
o PopSize = O(\/{): If gambler’s ruin model is applicable.

o Generations = O(v/¢): If convergence model is applicable.

e RunTime = O({?)

RunTime = Cost(Eval) x PopSize x Generations
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Scalability Number of Generations
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Scalabiilty Minimal Population Size
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Scalability Number of Fitness Evaluations
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Modeling applicable ?

Assumptions of models are satisfied:

@ Fitness function can be kept simple
(uniformly scaled, semi-separable, and additively decomposable).

@ Crossover is linkage-respecting and mixes well.

@ Disruption is minimized by the geometrically local optimizer.

Bottom line

Theoretical insights can be used to design efficient genetic algorithms
for real-world problems.
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