
Evolutionary Computation

Dirk Thierens

Utrecht University
The Netherlands

Dirk Thierens (D.Thierens@uu.nl) 1 / 24



Course organization

Part 1: lectures
Part 2: practical assignment⇒ report (groups of 2 students)
Part 3: seminar⇒ papers & presentation (student groups)

Dirk Thierens (D.Thierens@uu.nl) 2 / 24



Course grading

1 Written exam = 60%

2 Practical assignment = 30%

3 Paper presentation = 10%

Pass = Total ≥ 6.0 and Minimum(Exam, Practical, Paper) ≥ 5.0

Qualify for the resit if Exam grade ≥ 4.0

Dirk Thierens (D.Thierens@uu.nl) 3 / 24



Evolutionary Computation: introduction

Evolutionary Computation

= Population-based, stochastic search algorithms
inspired by mechanisms of natural evolution

EC part of Computational Intelligence
Evolution viewed as search algorithm
Natural evolution only used as metaphor for designing
computational problem solving systems
No modelling of natural evolution (6= evolutionary biology)

Dirk Thierens (D.Thierens@uu.nl) 4 / 24



Evolutionary Computation: introduction

Key concepts of a Darwinian system

1 Information Structures
2 Copies
3 Variation
4 Competition
5 Inheritance

Dirk Thierens (D.Thierens@uu.nl) 5 / 24



Evolutionary Computation: introduction

Evolutionary algorithm

1 P(0) ← Generate-Random-Population()

2 P(0) ← Evaluate-Population(P(0))
3 while Not-Terminated? do

1 Ps(t) ← Select-Mates(P(t))
2 Po(t) ← Generate-Offspring(Ps(t))
3 Po(t) ← Evaluate-Population(Po(t))
4 P(t+1) ← Select-Fittest(Po(t) ∪ P(t))
5 t← t + 1

4 return P(t)

Dirk Thierens (D.Thierens@uu.nl) 6 / 24



Evolutionary Computation: introduction

Dirk Thierens (D.Thierens@uu.nl) 7 / 24



Genetic Algorithm

Darwinian process characteristics:
⇒ Evolutionary Algorithm

1 Information structures:
⇒ e.g. binary strings, real-valued vectors, programs, ...

2 Copies:
⇒ selection algorithm

3 Variation:
⇒mutation & crossover operators

4 Competition:
⇒ fitness based selection + fixed sized population

5 Inheritance:
⇒ Partial variation should lead to fitness correlation

between parents and offspring

Dirk Thierens (D.Thierens@uu.nl) 8 / 24



Genetic Algorithm

Neo-Darwinism

organism
⇑

...AUUCGCCAAU...

Genetic Algorithm

f: <
⇑

...0101001111...

* user: string representation and function f
* GA: string manipulation

I selection: copy better strings
I variation: generate new strings

Dirk Thierens (D.Thierens@uu.nl) 9 / 24



Genetic Algorithm

Selection methods: fitness proportionate selection

Probability Pi of selecting individual i with fitness value Fi

Pi =
Fi∑N
j=1 Fj

(N: population size)

Expected number of copies Ni of individual i

Ni = N × Pi =
Fi

F̄
(F̄: population mean fitness)

Number of individuals with above average fitness increases
Problems:

1 Too much selection pressure if single individual has much higher
fitness than the others in the population

2 Loss of selection pressure when all fitness values converge to
similar values

Dirk Thierens (D.Thierens@uu.nl) 10 / 24



Genetic Algorithm

Selection methods: ranked based

Selection based on relative fitness as opposed to absolute fitness
1 Truncation selection

I Sort the population according to the fitness values
I Select the top τ%
I Copy each selected individual 100

τ times
2 Tournament selection

I Select best individual from K randomly selected individuals
(preferably selected without replacement)

I Hold N tournaments to select N parent solutions

Selection pressure can be tuned by changing the truncation threshold τ
or the tournament size K

Dirk Thierens (D.Thierens@uu.nl) 11 / 24



Genetic Algorithm

Variation methods: mutation & crossover

1 mutation
{1111111111 ⇒ {1111111011

(small perturbations should be more likely than large ones)
2 crossover

2-point crossover:
{

1111111111
0000000000

⇒
{

1111000011
0000111100

uniform crossover:
{

1111111111
0000000000

⇒
{

1001110101
0110001010

Dirk Thierens (D.Thierens@uu.nl) 12 / 24



Genetic Algorithm

Toy example

x ε [0, 31] : f (x) = x2

binary integer representation: xi ε {0, 1}
x = x1 ∗ 24 + x2 ∗ 23 + x3 ∗ 22 + x4 ∗ 21 + x5 ∗ 20

Initial Random Population:
10010 : 182 = 324
01100 : 122 = 144
01001 : 92 = 81
10100 : 202 = 400
01000 : 82 = 64
00111 : 72 = 49

population mean fitness f̄ (0) = 177

Dirk Thierens (D.Thierens@uu.nl) 13 / 24



Genetic Algorithm

Generation 1:
tournament selection, 1-point crossover, mutation

Parents Fitness Offspring Fitness
100|10 324 10100 400
101|00 400 10111 529
01|000 64 00010 4
10|010 324 10010 324
0110|0 144 11100 784
1010|0 400 10000 256

Parent population mean fitness f (1) = 383

Dirk Thierens (D.Thierens@uu.nl) 14 / 24



Genetic Algorithm

Generation 3:

Parents Fitness Offspring Fitness
1|1111 961 11110 900
1|1100 784 11011 729
110|00 576 11110 900
111|10 900 11101 841
1101|1 729 11111 961
1100|1 625 01001 81

Parent population mean fitness f (3) = 762

Dirk Thierens (D.Thierens@uu.nl) 15 / 24



Genetic Algorithm

Schemata

Schema = similarity subset

11##0 = {11000, 11010, 11100, 11110}

How does the number of solutions that are member of particular
schemata change in successive populations ?

generation 1#### 0#### ####1 ####0
0 2 4 2 4
1 5 1 1 5
2 6 0 2 4
3 6 0 3 3
4 6 0 3 3
5 5 1 4 2

Dirk Thierens (D.Thierens@uu.nl) 16 / 24



Genetic Algorithm

Schemata definitions

o(h): schema order = number of fixed values: o(11##0) = 3
δ(h): schema length = distance between leftmost and rightmost
fixed position: δ(#11##0) = 4
m(h, t): number of schema h instances at generation t
f (h, t) =

∑
i∈P fi: schema fitness is average fitness of individual

members

Dirk Thierens (D.Thierens@uu.nl) 17 / 24



Genetic Algorithm

Schemata competition

key issue: changing number of schemata members in successive
population.
fit schemata increase in proportion by selection.
Schemata compete in their respective partitioning:

##f #f : ##0#0,##0#1,##1#0,##1#1

Mutation and crossover viewed as destructive operators for the fit
schemata.

Dirk Thierens (D.Thierens@uu.nl) 18 / 24



Genetic Algorithm

Schema growth by selection

Reproduction ratio φ(h, t)

φ(h, t) = m(h,ts)
m(h,t)

proportionate selection
I Probability individual i selected: fi∑

fi
(fi : fitness ind. i)

I Expected number of copies of ind. i : fi∑
fi
.N =

fi
f (t)

(N: population size)

I Expected number of copies of schema h members:

m(h, ts) = m(h, t)φ(h, t) = m(h, t)
f (h, t)
f (t)

tournament selection
I tournament size K: 0 ≤ φ(h, t) ≤ K

Dirk Thierens (D.Thierens@uu.nl) 19 / 24



Genetic Algorithm

Schema disruption by mutation

probability bit flipped: pm

schema h survives iff all the bit values are not mutated

psurvival = (1− pm)o(h)

for small values pm << 1

(1− pm)o(h) ≈ 1− o(h).pm

disruption factor ε(h, t) by mutation:

ε(h, t) = o(h).pm

Dirk Thierens (D.Thierens@uu.nl) 20 / 24



Genetic Algorithm

Schema disruption by recombination

probability crossover applied pc

1-point crossover
I schema h survives iff cutpoint not within schema length δ:

psurvival = 1− δ(h, t)
l− 1

uniform crossover (bit swap probability: px)
I schema h survives iff none or all bits swapped together

psurvival = po(h)
x + (1− px)o(h)

disruption factor ε(h, t) by recombination:

ε(h, t) = pc.(1− psurvival)
(pc : probability of applying crossover)

Dirk Thierens (D.Thierens@uu.nl) 21 / 24



Genetic Algorithm

Schema Theorem

Selection, mutation, and recombination combined:
m(h, t + 1) ≥ m(h, t)φ(h, t)[1− ε(h, t)]

net growth factor: γ(h, t) = m(h,t+1)
m(h,t)

γ(h, t) ≥ φ(h, t)[1− ε(h, t)]

schemata with γ(h, t) > 1 increase in proportion
schemata with γ(h, t) < 1 decrease in proportion

Dirk Thierens (D.Thierens@uu.nl) 22 / 24



Genetic Algorithm

Schema Theorem cont’d

low order, high performance schemata receive exponentially
(geometrically) increasing trials→ building blocks
according to the k-armed bandit analogy this strategy is near
optimal (Holland, 1975)
happens in an implicit parallel way

→ only the short, low-order schemata are processed reliably

enough samples present for statistically reliable information
enough samples survive the disruption of variation operators

Dirk Thierens (D.Thierens@uu.nl) 23 / 24



Genetic Algorithm

Building Blocks

Building block hypothesis

= building blocks can be juxtaposed
to form near optimal solutions

Consequences

1 schema sampling is a statistical decision process:
variance considerations

2 building blocks must be juxtaposed before convergence:
mixing analysis

3 low order schemata might give misleading information:
deceptive problems

Dirk Thierens (D.Thierens@uu.nl) 24 / 24


	Evolutionary Computation: introduction
	Genetic Algorithm

