Evolutionary Computation

Dirk Thierens

Utrecht University The Netherlands

Dirk Thierens (D.Thierens@uu.nl)

Э

イロト イポト イヨト イヨト

- Part 1: lectures
- Part 2: practical assignment \Rightarrow report (groups of 2 students)
- Part 3: seminar ⇒ papers & presentation (student groups)

- Written exam = 60%
- Practical assignment = 30%
- **③** Paper presentation = 10%

Pass = Total \geq 6.0 <u>and</u> Minimum(Exam, Practical, Paper) \geq 5.0 Qualify for the resit if Exam grade \geq 4.0

イロト 人間 とくほ とくほ とう

Evolutionary Computation

- = Population-based, stochastic search algorithms inspired by mechanisms of natural evolution
- EC part of Computational Intelligence
- Evolution viewed as search algorithm
- Natural evolution only used as metaphor for designing computational problem solving systems
- No modelling of natural evolution (\neq evolutionary biology)

◆□> ◆□> ◆注> ◆注> 二注

Key concepts of a Darwinian system

- Information Structures
- Opies
- Variation
- Competition
- Inheritance

Э

(日)

Evolutionary algorithm

● P(0) ← Generate-Random-Population()

- ❷ P(0) ← Evaluate-Population(P(0))
- while Not-Terminated? do
 - **1** $P^{s}(t) \leftarrow \text{Select-Mates}(P(t))$
 - **2** $P^{o}(t) \leftarrow Generate-Offspring(P^{s}(t))$
 - **③** $P^{o}(t) \leftarrow Evaluate-Population(P^{o}(t))$
 - P(t+1) ← Select-Fittest(P⁰(t) ∪ P(t)) ● t ← t + 1

🜒 return P(t)

イロト イポト イヨト イヨト 一日

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Darwinian process characteristics: \Rightarrow Evolutionary Algorithm

1 Information structures:

 \Rightarrow e.g. binary strings, real-valued vectors, programs, ...

2 Copies:

 \Rightarrow selection algorithm

Overiation:

 \Rightarrow mutation & crossover operators

Competition:

 \Rightarrow fitness based selection + fixed sized population

Inheritance:

 \Rightarrow Partial variation should lead to fitness correlation between parents and offspring

イロト イポト イヨト イヨト 一日

Neo-Darwinism

Genetic Algorithm

- * user: string representation and function **f**
- * GA: string manipulation
 - selection: copy better strings
 - variation: generate new strings

3

イロト 人間 とくほ とくほ とう

Selection methods: fitness proportionate selection

• Probability *P_i* of selecting individual *i* with fitness value *F_i*

$$P_i = \frac{F_i}{\sum_{j=1}^N F_j}$$
 (N: population size)

• Expected number of copies *N_i* of individual *i*

$$N_i = N \times P_i = \frac{F_i}{\overline{F}}$$
 (\overline{F} : population mean fitness)

- Number of individuals with above average fitness increases
- Problems:
 - Too much selection pressure if single individual has much higher fitness than the others in the population
 - Loss of selection pressure when all fitness values converge to similar values

◆□> ◆□> ◆注> ◆注> 二注

Selection methods: ranked based

Selection based on relative fitness as opposed to absolute fitness

- Truncation selection
 - Sort the population according to the fitness values
 - Select the top $\tau\%$
 - Copy each selected individual $\frac{100}{\tau}$ times
- 2 Tournament selection
 - Select best individual from K randomly selected individuals (preferably selected without replacement)
 - Hold N tournaments to select N parent solutions

Selection pressure can be tuned by changing the truncation threshold τ or the tournament size *K*

Variation methods: mutation & crossover

1 mutation

$\{11111111111 \Rightarrow \{1111111011$

(small perturbations should be more likely than large ones)

2 crossover

2-point crossover:
$$\begin{cases} 1111111111\\000000000 \Rightarrow \end{cases} \Rightarrow \begin{cases} 1111000011\\000011100 \end{cases}$$
uniform crossover:
$$\begin{cases} 1111111111\\0000000000 \Rightarrow \end{cases} \Rightarrow \begin{cases} 1001110101\\0110001010 \end{cases}$$

Toy example

$$\begin{array}{l} x \ \epsilon \ [0,31] \ : \ f(x) = x^2 \\ \text{binary integer representation:} \ x_i \ \epsilon \ \{0,1\} \\ x = x_1 \ast 2^4 + x_2 \ast 2^3 + x_3 \ast 2^2 + x_4 \ast 2^1 + x_5 \ast 2^0 \end{array}$$

• Initial Random Population:

 $\bar{10010}$: $18^2 = 324$ 01100 : $12^2 = 144$ 01001 : $9^2 = 81$ 10100 : $20^2 = 400$ 01000 : $8^2 = 64$ 00111 : $7^2 = 49$ population mean fitness $\bar{f}(0) = 177$

• Generation 1:

tournament selection, 1-point crossover, mutation

Parents	Fitness	Offspring	Fitness	
100 10	324	10 <u>1</u> 00	400	
101 00	400	1011 <u>1</u>	529	
01 000	64	0 <u>0</u> 010	4	
10 010	324	100 <u>1</u> 0	324	
0110 0	144	<u>1</u> 1100	784	
1010 0	400	10 <u>0</u> 00	256	

Parent population mean fitness $\overline{f}(1) = 383$

• Generation 3:

Parents	Fitness	Offspring	Fitness	
1 1111	961	111 <u>1</u> 0	900	
1 1100	784	11 <u>0</u> 11	729	
110 00	576	11 <u>1</u> 10	900	
111 10	900	1110 <u>1</u>	841	
1101 1	729	11 <u>1</u> 11	961	
1100 1	625	<u>0</u> 1001	81	

Parent population mean fitness $\overline{f}(3) = 762$

◆□▶ ◆□▶ ◆注≯ ◆注≯ ●注

Schemata

• Schema = similarity subset

 $11\#\#0 = \{11000, 11010, 11100, 11110\}$

• How does the number of solutions that are member of particular schemata change in successive populations ?

generation	1####	0####	####1	####0
0	2	4	2	4
1	5	1	1	5
2	6	0	2	4
3	6	0	3	3
4	6	0	3	3
5	5	1	4	2

イロト イポト イヨト イヨト

Schemata definitions

- o(h): schema order = number of fixed values: o(11##0) = 3
- δ (h): schema length = distance between leftmost and rightmost fixed position: $\delta(\#11\#\#0) = 4$
- m(h, t): number of schema h instances at generation t
- $f(h,t) = \overline{\sum_{i \in P} f_i}$: schema fitness is average fitness of individual members

Schemata competition

- key issue: changing number of schemata members in successive population.
- fit schemata increase in proportion by selection.
- Schemata compete in their respective partitioning:

##f#f: ##0#0, ##0#1, ##1#0, ##1#1

• Mutation and crossover viewed as destructive operators for the fit schemata.

Schema growth by selection

• Reproduction ratio $\phi(h, t)$

$$\phi(h,t) = \frac{m(h,t^s)}{m(h,t)}$$

- proportionate selection
 - Probability individual *i* selected: $\frac{f_i}{\sum f_i}$ (*f_i*: fitness ind. i)
 - Expected number of copies of ind. $i: \frac{f_i}{\sum f_i} N = \frac{f_i}{\overline{f(t)}}$

(N: population size)

◆□> ◆□> ◆注> ◆注> 二注

• Expected number of copies of schema *h* members:

$$m(h,t^s) = m(h,t)\phi(h,t) = m(h,t)\frac{f(h,t)}{\bar{f}(t)}$$

tournament selection

• tournament size $K: 0 \le \phi(h, t) \le K$

Schema disruption by mutation

- probability bit flipped: p_m
- schema *h* survives iff all the bit values are *not* mutated

$$p_{survival} = (1 - p_m)^{o(h)}$$

• for small values $p_m << 1$

$$(1-p_m)^{o(h)}\approx 1-o(h).p_m$$

• disruption factor $\epsilon(h, t)$ by mutation:

$$\epsilon(h,t) = o(h).p_m$$

(日)

Schema disruption by recombination

- probability crossover applied p_c
- 1-point crossover
 - schema *h* survives iff cutpoint *not* within schema length δ :

$$p_{survival} = 1 - \frac{\delta(h, t)}{l - 1}$$

- **uniform crossover** (bit swap probability: *p_x*)
 - schema h survives iff none or all bits swapped together

$$p_{survival} = p_x^{o(h)} + (1 - p_x)^{o(h)}$$

• disruption factor $\epsilon(h, t)$ by recombination:

$$\epsilon(h,t) = p_c.(1 - p_{survival})$$

(*p_c*: probability of applying crossover)

・ロト ・ ア・ ・ ア・ ・ ア・ ア

Schema Theorem

Selection, mutation, and recombination combined: m(h, t + 1) ≥ m(h, t)φ(h, t)[1 − ε(h, t)] net growth factor: γ(h, t) = m(h,t+1)/m(h,t)

$$\gamma(h,t) \geq \phi(h,t)[1-\epsilon(h,t)]$$

schemata with $\gamma(h, t) > 1$ increase in proportion schemata with $\gamma(h, t) < 1$ decrease in proportion

イロト イポト イヨト イヨト 一日

Schema Theorem cont'd

- low order, high performance schemata receive exponentially (geometrically) increasing trials → building blocks
- according to the k-armed bandit analogy this strategy is near optimal (Holland, 1975)
- happens in an implicit parallel way
 - \rightarrow only the short, low-order schemata are processed reliably
- enough samples present for statistically reliable information
- enough samples survive the disruption of variation operators

◆□> ◆□> ◆注> ◆注> 二注

Building Blocks

Building block hypothesis

= building blocks can be juxtaposed to form near optimal solutions

Consequences

- schema sampling is a statistical decision process:
 variance considerations
- e building blocks must be juxtaposed before convergence: mixing analysis
- Iow order schemata might give misleading information: deceptive problems

イロト イポト イヨト イヨト 二日