Evolutionary Computation

Dirk Thierens

Utrecht University The Netherlands

Dirk Thierens (D.Thierens@uu.nl) 1 / 24

E

メロトメ部 トメモトメモト

- Part 1: lectures
- Part 2: practical assignment \Rightarrow report (groups of 2 students)
- Part 3: seminar \Rightarrow papers & presentation (student groups)

イロト イ押 トイヨ トイヨ トー

- \bullet Written exam = 60%
- 2 Practical assignment = 30%
- \bullet Paper presentation = 10%

Pass = Total > 6.0 and Minimum(Exam, Practical, Paper) > 5.0 Qualify for the resit if Exam grade > 4.0

イロト イ押 トイモ トイモト

Evolutionary Computation

- **= Population-based, stochastic search algorithms inspired by mechanisms of natural evolution**
- EC part of Computational Intelligence
- Evolution viewed as search algorithm
- Natural evolution only used as metaphor for designing computational problem solving systems
- No modelling of natural evolution (\neq evolutionary biology)

メロトメ 倒 トメ 君 トメ 君 トー

Key concepts of a Darwinian system

- **1** Information Structures
- ² Copies
- ³ Variation
- ⁴ Competition
- **5** Inheritance

E

イロト イ押 トイヨ トイヨ トー

Evolutionary algorithm

$\mathbf{0} \cdot P(0) \leftarrow$ Generate-Random-Population()

- \bullet P(0) \leftarrow Evaluate-Population(P(0))
- ³ **while** Not-Terminated? **do**

$$
\mathbf{D} \ \mathbf{P}^s \left(\mathbf{t} \right) \ \leftarrow \ \mathsf{Select-Mates} \left(\mathbf{P} \left(\mathbf{t} \right) \right)
$$

- $P^{o}(t) \leftarrow$ Generate-Offspring($P^{s}(t)$)
- $P^{\circ}(t) \leftarrow$ Evaluate-Population($P^{\circ}(t)$)
- \bullet P(t+1) \leftarrow Select-Fittest(P^0 (t) \cup P(t)) \bullet t \leftarrow t + 1

\bullet **return** $P(t)$

K ロ K K @ K K ミ K K ミ K … ミ

イロト (個) イヨト (ヨ)

Darwinian process characteristics: \Rightarrow Evolutionary Algorithm

¹ **Information structures:**

 \Rightarrow e.g. binary strings, real-valued vectors, programs, ...

² **Copies:**

 \Rightarrow selection algorithm

³ **Variation:**

 \Rightarrow mutation & crossover operators

⁴ **Competition:**

 \Rightarrow fitness based selection + fixed sized population

⁵ **Inheritance:**

⇒ Partial variation should lead to fitness correlation between parents and offspring

イロト イ部 トイヨ トイヨ トーヨ

Neo-Darwinism

Genetic Algorithm

- * user: string representation and function **f**
- * GA: string manipulation
	- **Exercise:** copy better strings
	- **variation:** generate new strings

イロトメ 倒 トメ 君 トメ 君 トー

Selection methods: fitness proportionate selection

• Probability P_i of selecting individual *i* with fitness value F_i

$$
P_i = \frac{F_i}{\sum_{j=1}^{N} F_j}
$$
 (N: population size)

Expected number of copies *Nⁱ* of individual *i*

$$
N_i = N \times P_i = \frac{F_i}{\overline{F}}
$$
 (\overline{F} : population mean fitness)

- Number of individuals with above average fitness increases
- Problems:
	- ¹ Too much selection pressure if single individual has much higher fitness than the others in the population
	- ² Loss of selection pressure when all fitness values converge to similar values

イロト イ押 トイヨ トイヨ トーヨ

Selection methods: ranked based

Selection based on relative fitness as opposed to absolute fitness

- **1** Truncation selection
	- \triangleright Sort the population according to the fitness values
	- Select the top $\tau\%$
	- ► Copy each selected individual $\frac{100}{\tau}$ times
- ² Tournament selection
	- ► Select best individual from *K* randomly selected individuals (preferably selected without replacement)
	- \blacktriangleright Hold *N* tournaments to select *N* parent solutions

Selection pressure can be tuned by changing the truncation threshold τ or the tournament size *K*

イロト イ部 トイヨ トイヨ トーヨ

Variation methods: mutation & crossover

1 mutation

{1111111111 ⇒ {1111111011

(small perturbations should be more likely than large ones)

crossover

2-point crossover: 1111111111 ⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰ [⇒] 1111000011 0000111100 uniform crossover: 1111111111 ⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰ [⇒] 1001110101 0110001010

す ロ ト す 御 ト す 産 ト す 産 ト 。

Toy example

$$
x \in [0,31] : f(x) = x^2
$$

binary integer representation: $x_i \in \{0, 1\}$

$$
x = x_1 * 2^4 + x_2 * 2^3 + x_3 * 2^2 + x_4 * 2^1 + x_5 * 2^0
$$

• Initial Random Population:

 $10010 : 18^2 = 324$ $01100 : 12^2 = 144$ $01001 : 9^2 = 81$ $10100 : 20^2 = 400$ $01000 : 8^2 = 64$ $00111 : 7^2 = 49$ population mean fitness $\bar{f}(0) = 177$

G.

イロト イ押 トイヨ トイヨ トー

• Generation 1:

tournament selection, 1-point crossover, mutation

Parent population mean fitness $\bar{f}(1) = 383$

イロト イ押 トイヨ トイヨ トーヨ

• Generation 3:

Parent population mean fitness $\bar{f}(3) = 762$

メロトメ 御 トメ ミトメ ミトリ 毛

Schemata

 \bullet Schema = similarity subset

```
11\#\#0 = \{11000, 11010, 11100, 11110\}
```
How does the number of solutions that are member of particular schemata change in successive populations ?

イロト イ押 トイヨ トイヨ トー

Schemata definitions

- $o(h)$: schema order = number of fixed values: $o(11 \# 0) = 3$
- $\delta(h)$: schema length = distance between leftmost and rightmost fixed position: $\delta(\#11\# \#0) = 4$
- \bullet $m(h, t)$: number of schema h instances at generation t
- $f(h,t) = \sum_{i \in P} f_i$: schema fitness is average fitness of individual members

イロト イ押 トイヨ トイヨ トーヨ

Schemata competition

- **•** key issue: changing number of schemata members in successive **population**.
- fit schemata increase in proportion by selection.
- Schemata compete in their respective partitioning:

##*f*#*f* : ##0#0, ##0#1, ##1#0, ##1#1

Mutation and crossover viewed as destructive operators for the fit schemata.

K ロ > K 個 > K 差 > K 差 > → 差

Schema growth by selection

• Reproduction ratio $\phi(h, t)$

$$
\boxed{\phi(h,t) = \frac{m(h,t^s)}{m(h,t)}}
$$

proportionate selection

- **Probability individual** *i* **selected:** $\frac{f_i}{\sum f_i}$ (*f_i*: fitness ind. i)
- Expected number of copies of ind. $i: \frac{f_i}{\sum f_i} N = \frac{f_i}{f(i)}$ *f* (*t*)

(N: population size)

イロト イ部 トイヨ トイヨ トーヨ

▶ Expected number of copies of schema *h* members:

$$
m(h, ts) = m(h, t)\phi(h, t) = m(h, t)\frac{f(h, t)}{\bar{f}(t)}
$$

tournament selection

 \triangleright tournament size *K*: 0 ≤ $\phi(h, t)$ ≤ *K*

Schema disruption by mutation

- probability bit flipped: *p^m*
- schema *h* survives iff all the bit values are *not* mutated

$$
p_{survival} = (1 - p_m)^{o(h)}
$$

• for small values $p_m \ll 1$

$$
(1-p_m)^{o(h)} \approx 1-o(h).p_m
$$

• disruption factor $\epsilon(h, t)$ by mutation:

$$
\epsilon(h,t)=o(h).p_m
$$

←ロト (伊) → (ヨ) → (ヨ) →

Schema disruption by recombination

- probability crossover applied p_c
- **1-point crossover**
	- \triangleright schema *h* survives iff cutpoint *not* within schema length δ :

$$
p_{survival} = 1 - \frac{\delta(h,t)}{l-1}
$$

- **uniform crossover** (bit swap probability: *px*)
	- \triangleright schema *h* survives iff none or all bits swapped together

$$
p_{survival} = p_x^{o(h)} + (1 - p_x)^{o(h)}
$$

• disruption factor $\epsilon(h, t)$ by recombination:

$$
\boxed{\epsilon(h,t) = p_c.(1-p_{survival})}
$$

(*pc*: probability of applying crosso[ver\)](#page-19-0) イロト イ押 トイヨ トイヨ トー

Schema Theorem

• Selection, mutation, and recombination combined: $\vert m(h, t + 1) \geq m(h, t) \phi(h, t) [1 - \epsilon(h, t)] \vert$ net growth factor: $\gamma(h,t) = \frac{m(h,t+1)}{m(h,t)}$

$$
\gamma(h,t) \geq \phi(h,t)[1-\epsilon(h,t)]
$$

schemata with $\gamma(h, t) > 1$ increase in proportion schemata with $\gamma(h, t) < 1$ decrease in proportion

K ロ > K 個 > K 差 > K 差 > → 差

Schema Theorem cont'd

- low order, high performance schemata receive exponentially (geometrically) increasing trials → **building blocks**
- according to the k-armed bandit analogy this strategy is near optimal (Holland, 1975)
- happens in an implicit parallel way
	- \rightarrow only the short, low-order schemata are processed reliably
- enough samples present for statistically reliable information
- enough samples survive the disruption of variation operators

イロトメ 御 トメ ミトメ ミトリ 毛

Building Blocks

Building block hypothesis

= building blocks can be juxtaposed to form near optimal solutions

Consequences

- ¹ schema sampling is a statistical decision process: **variance considerations**
- ² building blocks must be juxtaposed before convergence: **mixing analysis**
- ³ low order schemata might give misleading information: **deceptive problems** メロトメ 倒 トメ 君 トメ 君 トー