
Evolutionary Computation

Dirk Thierens

Universiteit Utrecht
The Netherlands

Dirk Thierens (D.Thierens@uu.nl) 1 / 46

Genotype Representations

Genotype representations need to be compatible with the
recombination & mutation operators
Specific problem-dependent examples:

1 Permutation Representation
2 Neural Network Representation
3 Real-Valued Vector Representation

Dirk Thierens (D.Thierens@uu.nl) 2 / 46

Permutation Representation

Permutation problems

Goal
Design suitable representations and genetic operators for
permutation or sequencing problems
Examples

I scheduling
I vehicle routing
I queueing
I ...

Dirk Thierens (D.Thierens@uu.nl) 3 / 46

Permutation Representation

Traveling salesman problem

Find the shortest route while visiting all cities exactly once.

Dirk Thierens (D.Thierens@uu.nl) 4 / 46

Permutation Representation

Permutation problems

travelling salesman
non-binary strings

I p1 = 1 2 3 4 5 6 7 8
I p2 = 4 6 2 1 7 8 5 3
I standard crossover⇒ illegal tours
I c1 = 1 2 3 | 1 7 8 5 3
I c2 = 4 6 2 | 4 5 6 7 8

alternative search space representation
alternative genetic operators

Dirk Thierens (D.Thierens@uu.nl) 5 / 46

Permutation Representation

Insert mutation

randomly select one element from the sequence and insert it at some
other random position in the sequence

A B C D E F G H
⇓

A B D E F C G H

Dirk Thierens (D.Thierens@uu.nl) 6 / 46

Permutation Representation

Swap mutation

randomly select two elements from the sequence and swap their
position

A B C D E F G H
⇓

A B G D E F C H

Dirk Thierens (D.Thierens@uu.nl) 7 / 46

Permutation Representation

Scramble mutation

randomly select a subsequence and scramble all elements in this
subsequence

A B | C D E F | G H
⇓

A B | D F E C | G H

very destructive⇒ limit length of the subsequence

Dirk Thierens (D.Thierens@uu.nl) 8 / 46

Permutation Representation

Mutation operator: 2-opt

randomly select two points along the sequence and invert one of the
subsequences

A B | C D E F | G H
⇓

A B | F E D C | G H

Dirk Thierens (D.Thierens@uu.nl) 9 / 46

Permutation Representation

Mutation operators

TSP: adjacency of elements in permutation is important
→ 2-opt only minimal change
scheduling: relative ordering of elements in permutation is
important
→ 2-opt large change
e.g.: priority queue: line of people waiting for supply of tickets for
different seats on different trains

Dirk Thierens (D.Thierens@uu.nl) 10 / 46

Permutation Representation

Recombination operators

’standard’ crossover operators generate infeasible sequences

A B C D E | F G H
b f d h g | e a c

⇓
A B C D E | e a c
b f d h g | F G H

different aspects
I adjacency
I relative order
I absolute order

⇒whole set of permutation crossover operators proposed !

Dirk Thierens (D.Thierens@uu.nl) 11 / 46

Permutation Representation

Order crossover

p1: A B | C D E F | G H I
p2: h d | a e i c | f b g

⇓
ch: a i C D E F b g h

1 randomly select two crosspoints
2 copy subsequence between crosspoints from p1
3 starting at 2nd crosspoint: fill in missing elements retaining

relative order from p2

Dirk Thierens (D.Thierens@uu.nl) 12 / 46

Permutation Representation

Partially mapped crossover

p1: A B | C D E F | G H I
p2: h d | a e i c | f b g

⇓
ch: h i C D E F a b g

1 randomly select two crosspoints
2 copy p2 to child
3 copy elements between crosspoints from p1 to child while placing

the replaced element from p2 at the location where the replacer is
positioned

Dirk Thierens (D.Thierens@uu.nl) 13 / 46

Permutation Representation

Position crossover

p1: A B C D E F G H I
p2: h d a e i c f b g

⇓
ch: A h C d E F b g I

1 randomly mark k positions
2 copy marked elements from p1 to child
3 scan p2 from left to right and fill in missing elements

Dirk Thierens (D.Thierens@uu.nl) 14 / 46

Permutation Representation

Maximal preservative crossover

p1: A B | C D E F | G H I
p2: h d | a e i c | f b g

⇓
ch: i a C D E F b g h

1 randomly select two crosspoints
2 copy subsequence between crosspoints from p1
3 add successively an adjacent element from p2 starting at last

element in child
4 if already placed: take adjacent element from p1

Dirk Thierens (D.Thierens@uu.nl) 15 / 46

Permutation Representation

Cycle crossover

p1: A B C D E F G H I
p2: f c d a e b h i g
cy: 1 1 1 1 2 1 3 3 3

⇓
ch: A B C D E F h i g

1 mark cycles
2 cross full cycles

⇒ emphasizes absolute position above adjacency or relative order

Dirk Thierens (D.Thierens@uu.nl) 16 / 46

Permutation Representation

edge recombination

parent tours [ABCDEF] & [BDCAEF]

edge map:

city edges
A B F C E
B A C D F
C B D A
D C E B
E D F A
F A E B

Dirk Thierens (D.Thierens@uu.nl) 17 / 46

Permutation Representation

edge recombination algorithm:

1 choose initial city from one parent
2 remove current city from edge map
3 if current city has remaining edges

goto step 4
else
goto step 5

4 choose current city edge with fewest remaining edges
5 if still remaining cities, choose one with fewest remaining cities

Dirk Thierens (D.Thierens@uu.nl) 18 / 46

Permutation Representation

1 random choice⇒ B
2 next candidates: A C D F

choose from C D F (same edge number)⇒ C
3 next candidates: A D

(edgelist D < edgelist A)⇒ D
4 next candidate: E⇒ E
5 next candidates: A F

tie breaking⇒ A
6 next candidate: F⇒ F

resulting tour: [BCDEAF]

Dirk Thierens (D.Thierens@uu.nl) 19 / 46

Permutation Representation

Fitness correlation coefficients

genetic operators should preserve useful fitness characteristics
between parents and offspring
calculate the fitness correlation coefficient to quantify this
k-ary operator: generate n sets of k parents
apply operator to each set to create children
compute fitness of all individuals
{f (pg1), f (pg2), ..., f (pgn}
{f (cg1), f (cg2), ..., f (cgn}

Dirk Thierens (D.Thierens@uu.nl) 20 / 46

Permutation Representation

Fitness correlation coefficients

Fp : mean fitness of the parents
Fc : mean fitness of the children
σ(Fp) = standard deviation of fitness parents
σ(Fc) = standard deviation of fitness children
cov(Fp,Fc) =

∑n
i=1

(f (pgi)−Fp)(f (cgi)−Fc)

n
covariance between fitness parents and fitness children
operator fitness correlation coefficient ρop:

ρop =
cov(Fp,Fc)

σ(Fp)σ(Fc)

Dirk Thierens (D.Thierens@uu.nl) 21 / 46

Permutation Representation

Traveling Salesman problem: mutation operators

various mutation operators applicable
I 2opt mutation (2OPT)
I swap mutation (SWAP)
I insert mutation (INS)

performance: 2OPT > INS > SWAP
mutation fitness correlation coefficients ρmutate :

ρ2OPT 0.86
ρINS 0.80
ρSWAP 0.77

Dirk Thierens (D.Thierens@uu.nl) 22 / 46

Permutation Representation

Traveling Salesman problem: crossover operators

various crossover operators in applicable
I cycle crossover (CX)
I partially matched crossover (PMX)
I order crossover (OX)
I edge crossover (EX)

performance: EX > OX > PMX > CX
crossover correlation coefficients ρcross :

ρEX 0.90
ρOX 0.72
ρPMX 0.61
ρCX 0.57

Dirk Thierens (D.Thierens@uu.nl) 23 / 46

Neural Network Representation

A Non-Redundant Neural Network Representation
for Genetic Recombination

Multi-later perceptrons (MLPs) have a number of functional
equivalent symmetries that make them difficult to optimize with
genetic recombination operators.
The functional mapping implemented MLPs is not unique to one
specific set of weights.
Can we represent MLPs such that the redundancy is eliminated ?

Dirk Thierens (D.Thierens@uu.nl) 24 / 46

Neural Network Representation

MLP genotype representation

MLP genotype by concatenating all weights to a vector
Mapping from input vector X to output vector Y
(transfer function: hyperbolic tangent tanh)

Y = tanh(W × tanh(V × X))

V: matrix of weights from input layer to hidden layer
W: matrix of weights from hidden layer to output layer.

Dirk Thierens (D.Thierens@uu.nl) 25 / 46

Neural Network Representation

The structural-functional redundancy

A number of structurally different neural nets have the same
input-output mapping
These networks form a finite group of symmetries defined by two
transformations.
Any member of this group can be constructed from any other
member by a sequence of these transformations.

1 The first transformation is a permutation of hidden neurons.
Interchanging the hidden neurons including their incoming and
outgoing connection weights does not change the functional
mapping of the network.

2 The second transformation is obtained by flipping the weight
signs of the incoming and outgoing connection weights of a
hidden neuron. Since the transfer function is an odd symmetric
function this sign flipping leaves the overall network mapping
unchanged.

Dirk Thierens (D.Thierens@uu.nl) 26 / 46

Neural Network Representation

MLP redundancies

+

-+ + + +

+ ++ + --

+-

- + +

+ -

+

+ + + +

- - - -

+

_

Dirk Thierens (D.Thierens@uu.nl) 27 / 46

Neural Network Representation

A network with a single hidden layer of n neurons has a total of n!
permutations.
Any combination of the n hidden neurons can have their weight
signs flipped, this results in 2n networks.
Since the two transformations are independent of each other, there
are a total of 2nn! structurally different but functionally identical
networks.
In (Chen, Lu, & Hecht-Nielsen, 1993) it is proven that all the
functionally equivalent neural networks are compositions of
hidden node permutations and sign flips.

Dirk Thierens (D.Thierens@uu.nl) 28 / 46

Neural Network Representation

For the traditional local weight optimization algorithms this
redundancy poses no problem since they only look in the
immediate neighborhood of the current point of the search space.
Global optimization algorithms however will try to explore the
whole connection weight search space and this is a factor 2nn!
bigger than it really ought to be for the network to function as a
universal function approximator.
For the genetic algorithm the problem is not only one of scale but
also of crossover efficiency: functional equivalent near optimal
networks often give rise to totally inappropriate networks after
straightforward recombination because their weight structure is
only equivalent up to a certain amount of transformations.

Dirk Thierens (D.Thierens@uu.nl) 29 / 46

Neural Network Representation

Non-Redundant genotype coding

The functional redundancies can be eliminated if we transform each
neural network to a canonical network with a unique representation in
each functional equivalence class.

1 Transformation 1: Flip the weight signs of a hidden neuron
whenever its bias weight is negative, so only hidden neurons with
a positive bias are allowed in the non-redundant neural network
representation.

2 Transformation 2: Rearrange all hidden neurons in each hidden
layer such that the bias weights are sorted in ascending order.

Dirk Thierens (D.Thierens@uu.nl) 30 / 46

Neural Network Representation

Neural network transformation:
1 ∀ hidden neurons:

if (bias < 0)
flip signs of each node weight

2 ∀ hidden layer:
sort neurons in increasing bias

order

The two transformations do not interfere with each other so all the 2nn!
equivalent networks are transformed to a single canonical form

Dirk Thierens (D.Thierens@uu.nl) 31 / 46

Neural Network Representation

Crossover correlation coefficient ρX

Elimination of the structural redundancies from the genotype
representation ensures that the crossover operator transmits more
information from the parent strings to the offspring.
This information preservation can be quantified by comparing the
crossover correlation coefficient for the redundant and
non-redundant genotype coding.
The crossover correlation coefficient is a statistical feature
expressing how correlated the fitness landscape appears to the
crossover operator.
The fitness landscape is defined by the combination of the fitness
function and the specific genotype coding.
The more correlated a landscape appears to be for a specific
operator the more efficient the GA search will be because the
higher the correlation coefficient the more information is
transmitted from the parents to the children.

Dirk Thierens (D.Thierens@uu.nl) 32 / 46

Neural Network Representation

Two spirals classification problem

Multi-layer perceptrons need several hidden neurons to be able to
discriminate between the two spirals.

-4

-2

0

2

4

-4 -2 0 2 4

Y

X

Dirk Thierens (D.Thierens@uu.nl) 33 / 46

Neural Network Representation

Crossover correlation coefficient ρX

Two NN structures: one with 1 hidden layer of 15 neurons,
another with 2 hidden layers with 15 and 5 hidden neurons.
ρX computed by recombining 2500 randomly generated parent
pairs for the redundant and non-redundant representation.

NNs redundant non-redundant
2-15-1 0.456 0.892

2-15-5-1 0.598 0.903

ρX for the non-redundant representation is much higher⇒
crossover transmits more information from the parent NNs to the
offspring NNs and thus will lead to more efficient GA search.

Dirk Thierens (D.Thierens@uu.nl) 34 / 46

Neural Network Representation

Experiment

Hybrid genetic algorithm + backpropagation (BP) as local search
Population of 30 neural networks
One-point crossover
Parents optimized by BP for 100 epochs, children optimized for
200 epochs
Elitist family competition: best 2 of 2 parents and their 2 children
survive
Fitness is Sum-of-Squared classification error on test set

Dirk Thierens (D.Thierens@uu.nl) 35 / 46

Neural Network Representation

Experimental result

Non-redundant NN genotype representation leads to much more
efficient search (note the log scale of the SSE of best NN in population)

0.01

0.1

1

10

100

5 10 15 20 25 30 35 40 45 50

SS
E

generations

non-redundant genotype
redundant genotype

Dirk Thierens (D.Thierens@uu.nl) 36 / 46

Real-Valued Vector Representation

Evolutionary Strategies

Evolutionary Strategies (ES) are Evolutionary algorithms
specifically developed for real-valued, semi-continuous,
parameter optimization
Key characteristic: ES use an advanced mutation operator which
controls its own mutability→ self-adaptation
Genotype representation also includes a set of strategy parameters
encoding the mutation probability distribution

Dirk Thierens (D.Thierens@uu.nl) 37 / 46

Real-Valued Vector Representation

ES representation

Fitness function: f (x1, . . . , xn) : <n → <
Genotype representation of an individual solution:

(x1, ..., xn, σ
2
1, ..., σ

2
n, c12, ..., cn−1,n)

Parameters (x1, . . . , xn) need to be optimized
Individual solution consists of 3 parts:

1 ~x: problem variables⇒ Fitness f (~x)
2 ~σ: standard deviations⇒ variances
3 ~α: rotation angles⇒ covariances

Dirk Thierens (D.Thierens@uu.nl) 38 / 46

Real-Valued Vector Representation

ES representation

The strategy parameter set (~σ, ~α) is part of the individual and
represents the probability function for its mutation
Strategy parameters (σ2

1, ..., σ
2
n, c12, ..., cn−1,n) specify the

n-dimensional normal distribution describing how X is mutated
The n-dimensional normal probability density function:

p(X = x1, . . . , xn) =
exp(− 1

2 XTC−1X)√
(2π)n|C|

C: correlation matrix (cij); |C| determinant
⇒ rotation angles αij : tan 2αij = 2cij/(σ

2
i − σ2

j)

cfr. 1-dimensional Gaussian function:

f (x) =
1√

2πσ2
exp

(x−µ)2

2σ2

Dirk Thierens (D.Thierens@uu.nl) 39 / 46

Real-Valued Vector Representation

ES representation

Amount of strategy parameters decided by the user: global search
reliability and robustness increases at the cost of computing time
when number of strategy parameters increases
Commonly used settings:

1 only single standard deviation controlling the mutation of all
problem parameters xi (no correlated mutations):

σ1 = . . . = σn; cij = 0 (i 6= j)

2 individual standard deviations controlling the mutation of all
problem parameters xi (no correlated mutations)::

σ1, . . . , σn; cij = 0 (i 6= j)

3 complete covariance matrix: σ1, . . . , σn; cij 6= 0 (i 6= j)

Dirk Thierens (D.Thierens@uu.nl) 40 / 46

Real-Valued Vector Representation

ES mutation I

1 Case 1: one single standard deviation controls the mutation of all
problem parameters xi (no correlated mutations):

σ = σ1 = . . . σn; cij = 0 (i 6= j)

2 First, the strategy parameters are mutated. N(0, 1) = a normally
distributed random number (mean = 0, variance = 1):

σ′ = σe
N(0,1)√

n

lower limit ε : if σ′ < ε⇒ σ′ := ε

3 Second, problem parameters are mutated with the new strategy
parameter:

x′i = xi + σ′Ni(0, 1)

Dirk Thierens (D.Thierens@uu.nl) 41 / 46

Real-Valued Vector Representation

ES mutation II

1 Case 2: individual standard deviations controlling the mutation of
all problem parameters xi (no correlated mutations)::

σ1, . . . , σn; cij = 0 (i 6= j)

2 First, the strategy parameters are mutated:

σ′i = σie
N(0,1)√

2n
+

Ni(0,1)√
2
√

n

lower limit ε : if σ′i < ε⇒ σ′i := ε

3 Second, problem parameters are mutated with new strategy
parameters:

x′i = xi + σ′iNi(0, 1)

Dirk Thierens (D.Thierens@uu.nl) 42 / 46

Real-Valued Vector Representation

ES mutation III

1 case 3: complete covariance matrix: σ1, . . . , σn; cij 6= 0 (i 6= j)
2 First, the strategy parameters are mutated:

σ′i = σie
N(0,1)√

2n
+

Ni(0,1)√
2
√

n

α′j = αj + βNj(0, 1)

β ≈ 0.0873 (5o in radians), N(0, 1): standard normal distribution
3 Second, problem parameters are mutated with new strategy

parameters:
~x′ = ~x + ~N(~0, ~σ′, ~α′)

~N: n-dimensional normal distribution

Dirk Thierens (D.Thierens@uu.nl) 43 / 46

Real-Valued Vector Representation

ES recombination

Creates one offspring from several parents that are selected at
random from the parent population
Problem parameters and strategy parameters are differently
recombined:

1 problem parameters: select at random 2 parents of the µ parents for
each parameter xi and take their average

xoffspring
i =

1
2
(xparenti

1
i + xparenti

2
i)

2 standard deviations: select at random 2 parents of the µ parents and
take at random one of the two parent values

σ
offspring
i = σ

parent1
i or σ

parent2
i

3 rotation angles: not recombined

Dirk Thierens (D.Thierens@uu.nl) 44 / 46

Real-Valued Vector Representation

ES selection

ES applies a high selection pressure: from µ parents λ offspring
are generated with λ >> µ (typically, λ ≈ 5 to 10 times µ)
Common ’standard’ values: µ = 15, λ = 100
The best µ solutions of the λ offspring are selected for the next
generation - this is, (µ, λ)-selection - or, the best µ solutions of the
µ parents and the λ offspring are selected for the next generation -
this is, (µ+ λ)-selection
Experimental results: self-adaptation works better with (µ, λ)
selection

Dirk Thierens (D.Thierens@uu.nl) 45 / 46

Real-Valued Vector Representation

Self-adaptation: necessary conditions

Necessary conditions found by experiments to let self-adaptation
work well:

Generation of a surplus offspring: λ > µ

(µ, λ)-selection to guarantee extinction of misadapted individuals
(as opposed to (µ+ λ)

Intermediate selective pressure, eg. (µ, λ) = (15, 100)
Multiple parents necessary: µ > 1
Recombination also applied on strategy parameters (more
specifically the use of intermediate recombination)

Dirk Thierens (D.Thierens@uu.nl) 46 / 46

	Permutation Representation
	Neural Network Representation
	Real-Valued Vector Representation

