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MBEA

Evolutionary Algorithms
@ Population-based, stochastic search algorithms
@ Exploitation: selection

@ Exploration: mutation & crossover

Model-Based Evolutionary Algorithms
@ Population-based, stochastic search algorithms

@ Exploitation: selection
o Exploration:

@ Learn a (probabilistic) model from selected solutions
© Generate new solutions from the model (& population)
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GOMEA

Gene-pool Optimal Mixing Evolutionary Algorithm
@ Population-based, stochastic search algorithms

@ Exploitation: selection (by replacement)
o Exploration:

@ Learn a Family-Of-Subsets model
@ Generate new solutions through optimal mixing
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GOMEA: design objectives

© Be able to efficiently learn dependency information (= linkage)
between variables

@ Be able to efficiently decide between competing building blocks

@ Transfer all optimal building blocks from the parents to the
offspring solution
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Family Of Subsets (FOS) model

o Key idea is to identify groups of problem variables that together
make an important contribution to the quality of solutions.

@ These variable groups are interacting in a non-linear way and
should be processed as a block = building block

FOS F
Dependency structure generally called a Family Of Subsets (FOS).
@ Let there be ¢ problem variables xo, x1, ..., x/_1.
@ Let S be a set of all variable indices {0,1,...,¢ —1}.
@ A FOS F is a set of subsets of the set S.
@ FOS F is a subset of the powerset of S (F C P(S5)).
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Example Family Of Subsets (FOS) models:

o Univariate FOS structure
F = {{0},{1},{2}, {3}, {4}, {5}, {6}.{7}. {8}, {9}}
e Marginal Product FOS Structure
F = {{0,1,2},{3},{4,5},{6,7,8,9}}
o Linkage Tree FOS Structure
F =1{{7,5,8,6,9,0,3,2,4,1},
{7,5,8,6,9},{0,3,2,4,1},{7},{5,8,6,9},
{0,3,2,4}, {1}, {5,8,6}, {9}, {0,3}, {2, 4},
{5,8},{6},{0},{3}.{2}, {4}, {5}, {8}}
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Linkage Tree

@ Problem variables in subset are considered to be dependent on
each other but become independent in a child subset.

o ~ Path through dependency space, from univariate to joint.

o Linkage tree has ¢ leaf nodes (= single problem variables) and
¢ — 1 internal nodes.

XX XXX XX XXX
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Linkage Tree Learning

@ Start from univariate structure.

@ Build linkage tree using bottom-up hierarchical clustering
algorithm.

@ Similarity measure:
@ Between individual variables X and Y: mutual information I(X,Y).

I(X,Y) = H(X) + H(Y) — H(X, Y)

© Between cluster groups Xr and Xp: average pairwise linkage
clustering (= unweighted pair group method with a arithmetic

mean: UPGMA).
TUPCMA (X Xp) = I(X,Y).
") = g = X

(H(X),H(Y),H(X,Y) are the marginal and joint entropies)
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Linkage Tree Learning

@ This agglomerative hierarchical clustering algorithm is
computationally efficient.

@ Only the mutual information between pairs of variables needs to
be computed once, which is a O(¢?) operation.

@ The bottom-up hierarchical clustering can also be done in O(¢?)
computation by using the reciprocal nearest neighbor chain
algorithm.

@ note: commonly used bottom-up hierarchical clustering
algorithms (hclust and agnes in R) have O(¢%) complexity.
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Optimal Mixing EA

FOS linkage models specify the linked variables.
A subset of the FOS is used as crossover mask
Crossover is greedy: only improvements (or equal) are accepted.

Each generation a new FOS model is build from selected solutions.

For each solution in the population, all subsets of the FOS are
tried with a donor solution randomly picked from the population
Recombinative OM (ROM) and Gene-pool OM (GOM)

» ROM is GA-like: select single donor solution to perform OM with
» GOM is EDA-like: select new donor solution for each subset in OM
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Gene-pool Optimal Mixing EA

GOMEA ()
Pop < InitPopulation|()
while NotTerminated (Pop)
FOS < BuildFOS (Pop)
forall Sol € Pop
forall SubSet € FOS
Donor < Random (Pop)
Sol < GreedyRecomb (Sol,Donor, Subset, Pop)
return Sol

GreedyRecomb (Sol,Donor, SubSet, Pop)
NewSol < ReplaceSubSetValues (Sol, SubSet,Donor)
if ImprovementOrEqual (NewSol, Sol)
then Sol <« NewSol
return Sol
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Recombinative Optimal Mixing EA

ROMEA ()
Pop < InitPopulation|()
while NotTerminated (Pop)
FOS < BuildFOS (Pop)
forall Sol € Pop
Donor < Random (Pop)
forall SubSet € FOS
Sol < GreedyRecomb (Sol,Donor, Subset, Pop)
return Sol

GreedyRecomb (Sol,Donor, SubSet, Pop)
NewSol < ReplaceSubSetValues (Sol, SubSet,Donor)
if ImprovementOrEqual (NewSol, Sol)
then Sol <« NewSol
return Sol
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Optimal Mixing

@ Characteristic of Optimal Mixing is the use of intermediate
function evaluations (inside variation)
@ Can be regarded as greedy improvement of existing solutions

@ Coined Optimal Mixing because better instances for substructures
are immediately accepted and not dependent on noise coming
from other parts of the solution

@ Building block competition no longer a stochastic decision
making problem that requires a sizable minimal population size

@ Population sizes in GOMEA much smaller than in GAs or EDAs.
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Linkage Tree Genetic Algorithm

@ The LTGA is an instance of GOMEA that uses a Linkage Tree as
FOS model

@ Each generation a new hierarchical cluster tree is build.
@ For each solution in population, traverse tree starting at the top.
@ Nodes (= clusters) in the linkage tree used as crossover masks.

@ Select random donor solution, and its values at the crossover
mask replace the variable values from the current solution.

e Evaluate new solution and accept if better /equal, otherwise reject.
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Convergence model

Univariate FOS model on onemax problem

@ (: string length

@ n: population size

@ p(t): proportion bit "1 at generation ¢
@ 4(t): proportion bit ‘0" at generation ¢

Bit ’0” only survive if parent and donor both have a ‘0" at that index:
o q(t+1) = (1)
° p(t) =1-[1-pO)
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Number of function evaluations FE:

@ In 1 generation:
FE=2p(t)(1 —p(t)] x € xn

o After g generations:

FE
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o After convergence gcono:
FE=2[1-p(0)] x¥¢xn

@ Initial random population (p(0) = 0.5):

= |O(t log ) J
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=0
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Minimal population size

Need to have at least one bit ‘1" at each index:
Prob[success] = [1 — (1 —p(0))"]*
~ 1-([1-p(0)]"
1-0.01 = 1—6[1—%]"

= log,(100¢)
= O(log?)
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Deceptive Trap Function
Interacting, non-overlapping, deceptive groups of variables.

I—k
for(x) = Zfé‘%b (X, itk—1))
i—0

trap(u)
—

Number of ones, u
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Nearest-neighbor NK-landscape

@ Overlapping, neighboring random subfunctions
I—k
fusi () =D fab (x(i..ivk—1)) With £32 (x(i..irk—1)) € [0..1]
i=0

@ eg. 16 subsfcts, length k = 5, overlap 0 = 4 = stringlength ¢ = 20

@ Global optimum computed by dynamic programming
@ Benchmark function: structural information is not known !

@ = Randomly shuffled variable indices.
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Experiments

o Compare GA, EDA, and GOMEA while each are learning the

Marginal Product (MP) FOS structure, and GOMEA learning the

Linkage Tree (LT) as FOS structure.
@ Note:

EDA using MP = Extended Compact GA (ECGA).
GOMEA using LT = Linkage Tree Genetic Algorithm (LTGA).
hBOA = EDA learning a Bayesian network each generation.
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Experiments - Onemax

—_ 10000
N
e
o
o) 1000 >
O
9
L

100
g d
=]
E 10
.-
-
&

1
Y

]
)
g 0.1
o=
=

0.0

0.001" ‘ L

5 50 100 200 400 800 1600 3200 6400 12800 25600

GA-UX GA-MPMX GOMEA-LT
EDA-UF EDA-MPM hBOA

GOMEA-U n*l GOMEA-MPM Beigien

Number of variables

Model-Based Evolutionary Algorithms 22/29



Experiments - Deceptive trap
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Experiments - Overlapping NK
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Experiments
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Figure: LTGA vs. ILS: 100 NK problems

Iterated Local Search: perturbation size each time randomly picked
between 2 and 10 bits (= better than any fixed value).
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Experiments - HIFF
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Experiments - HTrap
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Experiments - MAX-CUT 2D square grid
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Conclusions!

e “Blind” Evolutionary Algorithms are limited in their capability to
detect and exploit partial solutions (building blocks).

@ Optimal Mixing Evolutionary Algorithms efficiently learn
important building blocks and efficiently decide between
competing building blocks

o Linkage Tree appears to be good compromise between FOS model
complexity and search efficiency.

v

Mttp://homepages.cwi.nl/ bosman/source_code.php
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