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What ?

Evolutionary Algorithms
Population-based, stochastic search algorithms
Exploitation: selection
Exploration: mutation & crossover

Model-Based Evolutionary Algorithms
Population-based, stochastic search algorithms
Exploitation: selection
Exploration:

1 Learn a model from selected solutions
2 Generate new solutions from the model (& population)
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What ?

Probabilistic Model-Based Evolutionary Algorithms (MBEA)
a.k.a. Estimation of Distribution Algorithms (EDAs)
a.k.a. Probabilistic Model-Building Genetic Algorithms
a.k.a. Iterated Density Estimation Evolutionary Algorithms

MBEA = Evolutionary Computing + Machine Learning

Note: model not necessarily probabilistic
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Why ?

Goal: Black Box Optimization
Little known about the structure of the problem
Clean separation optimizer from problem definition
Easy and generally applicable

Approach
* Classical EAs: need suitable representation & variation operators
* Model-Based EAs: learn structure from good solutions
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Discrete Representation

Typically binary representation
Higher order cardinality: similar approach
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Probabilistic Model-Building Genetic Algorithm

Type of Models
Univariate: no statistical interaction between variables considered.
Bivariate: pairwise dependencies learned.
Multivariate: higher-order interactions modeled.
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Univariate PMBGA
Model

* Model: probability vector [p1, . . . , p`] (`: string length)
* pi: probability of value 1 at string position i

* p(X) =
∏`

i=1 p(xi) (p(xi): univariate marginal distribution)
Learn model: count proportions of 1 in selected population
Sample model: generate new solutions with specified probabilities
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Univariate PMBGA

Different Variants
PBIL (Baluja; 1995)

I Prob. vector incrementally updated over successive generations
UMDA (Mühlenbein, Paass; 1996)

I No incremental updates: example above
Compact GA (Harik, Lobo, Goldberg; 1998)

I Models steady-state GA with tournament selection
DEUM (Shakya, McCall, Brown; 2004)

I Uses Markov Random Field modeling
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A hard problem for the univariate model
Data

000000
111111
010101
101010
000010
111000
010111
111000
000111
111111

Marginal Product model

P̂(X0X1X2) P̂(X3X4X5)

000 0.3 0.3
001 0.0 0.0
010 0.2 0.2
011 0.0 0.0
100 0.0 0.0
101 0.1 0.1
110 0.0 0.0
111 0.4 0.4

Univariate model

P̂(X0) P̂(X1) P̂(X2) P̂(X3) P̂(X4) P̂(X5)

0 0.5 0.4 0.5 0.5 0.4 0.5
1 0.5 0.6 0.5 0.5 0.6 0.5

What is the probability of generating 111111?
Univariate model: 0.5 · 0.6 · 0.5 · 0.5 · 0.6 · 0.5 = 0.0225
MP model: 0.4 · 0.4 = 0.16 (7 times larger!)
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Learning problem structure on the fly

Without a “good” decomposition of the problem, important
partial solutions (building blocks) are likely to get disrupted in
variation.
Disruption leads to inefficiency.
Can we automatically configure the model structure favorably?
Selection increases proportion of good building blocks and thus
“correlations” between variables of these building blocks.
So, learn which variables are “correlated”.
See the population (or selection) as a data set.
Apply statistics / probability theory / probabilistic modeling.
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Bivariate PMBGA

Model
Need more than just probabilities of bit values
Model pairwise interactions: conditional probabilities

MIMIC (de Bonet, Isbell, Viola; 1996)
I Dependency Chain

COMIT (Baluja, Davies; 1997)
I Dependency Tree

BMDA (Pelikan , Mühlenbein; 1998)
I Independent trees (forest)
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Entropy

Random variable X with probability distribution function p(X)

Entropy H(X) is a measure of uncertainty about a random
variable X:

H(X) =
∑
x∈X

−p(x) log p(x)

Conditional entropy H(Y|X) is a measure of uncertainty
remaining about Y after X is known (what X does not say about Y):

H(Y|X) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x)

p(x, y)
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Mutual information

The mutual information I(X,Y) of two random variables is a
measure of the variables’ mutual dependence.
Mutual information is more general than the correlation
coefficient (= linear relation between real-valued variables)
Mutual information determines how similar the joint distribution
p(X,Y) is to the products of factored marginal distribution
p(X)p(Y):

I(X,Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
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Mutual information and entropy

Mutual information in relation to entropy:

I(X,Y) = H(Y)−H(Y|X)

= H(X)−H(X|Y)
= H(X) + H(Y)−H(X,Y)

Mutual information can thus be seen as the amount of uncertainty
in Y, minus the amount of uncertainty in Y which remains after X
is known, which is equivalent to the amount of uncertainty in Y
which is removed by knowing X
Mutual information is the amount of information (that is,
reduction in uncertainty) that knowing either variable provides
about the other
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Bivariate PMBGA

MIMIC
Model: chain of pairwise dependencies.

p(X) =
∏`−1

i=1 p(xi+1|xi)p(x1).
MIMIC greedily searches for the optimal permutation of variables
that minimizes Kullack-Leibler divergence.
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Bivariate PMBGA

MIMIC
Joint probability distribution over a set of random variables,
X = Xi is:
p(X) = p(X1|X2...Xn)p(X2|X3...Xn)...p(Xn−1|Xn)p(Xn)

Given only pairwise conditional probabilities, p(Xi|Xj) and
unconditional probabilities, p(Xi), we want to approximate the
true joint distribution as close as possible
Given a permutation of numbers between 1 and n: π = i1i2...in
define a class of probability distributions pπ(X):

pπ(X) = p(Xi1 |Xi2)p(Xi2 |Xi3)...p(Xin−1 |Xin)p(Xin)
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Bivariate PMBGA

MIMIC
Goal is to find a permutation π that maximizes the agreement
between pπ(X) and the true joint distribution p(X)

Agreement between distributions can be measured by the
Kullback-Leibler divergence:

D(p(X)||pπ(X)) =
∑
x∈X

p(x) log
p(x)

pπ(x)

= −H(p) + H(Xi1 |Xi2) + ...+ H(Xin−1 |Xin) + H(Xin)

The optimal permutation π minimizes the sum of the conditional
entropies:

H(Xi1 |Xi2) + ...+ H(Xin−1 |Xin) + H(Xin)
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Bivariate PMBGA

MIMIC: algorithm
1 in = argminj H(Xj)

2 ik = argmint H(Xt|Xik+1), where
t 6= ik+1...in and k = n− 1,n− 2, ..., 2, 1

Generating samples from the distribution:
1 Choose a value for Xin based on the probability p(Xin)

2 for k = n− 1,n− 2, ..., 2, 1, choose an element Xik based on the
conditional probability p(Xik |Xik+1)

Both algorithms run in O(n2)
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Bivariate PMBGA

COMIT
Optimal dependency tree instead of linear chain.
Compute fully connected weighted graph between problem
variables.
Weights are the mutual information I(X,Y) between the variables.

I(X,Y) =
∑

y∈Y
∑

x∈X p(x, y) log p(x,y)
p(x)p(y) .

COMIT computes the maximum spanning tree of the weighted
graph.
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Bivariate PMBGA

COMIT
The approximating probability model is restricted to
factorizations in which the conditional probability distribution for
any random variable depends on the value of at most one other
random variable:

p(X) =

n∏
i=1

p(Xi|Xparent(i))

p(X) is the class of distributions with a tree as graphical model
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Bivariate PMBGA

COMIT
The optimal tree model (Chow and Liu, 1968):

1 Create fully connected, weighted graph G
2 Each vertex Vi corresponds to random variable Xi
3 Each weight Wij for the edge between Vi and Vj is equal to the

mutual information I(Xi,Xj) between Xi and Xj
4 The edges in the maximum spanning tree of G determine an

optimal set of n− 1 conditional probabilities with which to
approximate the joint probability distribution.

5 Note that all ordered trees conforming the unordered spanning tree
model identical distributions.
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Bivariate PMBGA

COMIT: algorithm
1 Calculate unconditional and conditional probabilities p(Xi) and

p(Xi,Xj), and the mutual information I(Xi,Xj).
2 Select arbitrary random variable Xr as root of the tree
3 Find the pair of variables Xin and Xout, where Xin is already in the

tree and Xout is not, with the maximum mutual information
I(Xin,Xout)

4 Add Xout to the tree with Xin as parent, repeat until all variables
are in the tree
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Bivariate PMBGA

COMIT
Algorithm runs in O(n2) (same as MIMIC)
Because it is a variant of Prim’s algorithm for finding maximum
spanning trees the resulting tree maximizes the sum:

n∑
i=1

I(Xi|Xparent(i))

Therefore it minimizes the Kullback-Leibler divergence between
the joint probability distribution and the second order
approximation probability model (proof: Chow and Liu, 1968)
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Bivariate PMBGA

BMDA
BMDA also builds tree model.
Model not necessarily fully connected: set of trees or forrest.
Pairwise interactions measured by Pearson’s chi-square statistics.
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Multivariate PMBGA

Marginal Product Model
Extended Compact GA (ECGA) (Harik; 1999) was first EDA going
beyond pairwise dependencies.
Greedily searches for the Marginal Product Model that minimizes
the minimum description length (MDL).

p(X) =
∏G

g=1 p(Xg)

Choose the probability distribution with the lowest MDL score.
Start from simplest model: the univariate factorization.
Join two groups that result in the largest improvement in the used
scoring measure.
Stop when no joining of two groups improves the score further.
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Multivariate PMBGA

Minimum Description Length (MDL)
MDL is a measure of complexity (Information Theory).
MDL(M,D) = DModel + DData

1 Model complexity DModel: complexity of describing the model.
2 Compressed population complexity DData: complexity of describing

the data within the model (= measure of goodness of the
probability distribution estimation).

Best model = the one with the lowest MDL score.
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Minimum Description Length score

MDL
Model Complexity DModel = log2(N + 1)

∑
i(2

Si − 1)
Compressed Population Complexity DData = N

∑
i H(Mi)

Combined Complexity = Model Complexity + Compressed
Population Complexity

N : Population size
Si : size of partition i
Mi : marginal distribution of the partition i
H(Mi) : entropy of the marginal distribution of the partition i
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Multivariate PMBGA

Learning MP model
1 Start from univariate FOS:

{{0}, {1}, {2}, . . . , {l− 2}, {l− 1}}
2 All possible pairs of partitions are temporarily merged:

{{0, 1}, {2}, . . . , {l− 2}, {l− 1}}
{{0, 2}, {1}, . . . , {l− 2}, {l− 1}}

...
{{0}, {1, 2}, . . . , {l− 2}, {l− 1}}

...
{{0}, {1}, {2}, . . . , {l− 2, l− 1}}

3 Compute MDL score of each factorization.
4 Choose the best scoring factorization if better than current.
5 Repeat until no better scoring factorization is found.
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Small example

population size N = 8, string length l = 4

1 0 0 0
1 1 0 1
0 1 1 1
1 1 0 0
0 0 1 0
0 1 1 1
1 0 0 0
1 0 0 1
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Marginal Product Model: [I1], [I2], [I3], [I4]

[I1] [I2] [I3] [I4]

1 5/8 1 4/8 1 3/8 1 4/8
0 3/8 0 4/8 0 5/8 0 4/8

Marginal Product Model: [I1, I3], [I2], [I4]

[I1, I3] [I2] [I4]

11 0/8 1 4/8 1 4/8
10 5/8 0 4/8 0 4/8
01 3/8
00 0/8
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Entropy calculations:
1 Marginal Product Model: [I1], [I2], [I3], [I4]

Entropy([I1]) = −(5/8)log2(5/8)− (3/8)log2(3/8) = 0.954

Entropy([I2]) = −(4/8)log2(4/8)− (4/8)log2(4/8) = 1

Entropy([I3]) = −(3/8)log2(3/8)− (5/8)log2(5/8) = 0.954

Entropy([I4]) = −(4/8)log2(4/8)− (4/8)log2(4/8) = 1

2 Marginal Product Model: [I1, I3], [I2], [I4]

Entropy([I1, I3]) = −(5/8)log2(5/8)− (3/8)log2(3/8) = 0.954

Entropy([I2]) = −(4/8)log2(4/8)− (4/8)log2(4/8) = 1

Entropy([I4]) = −(4/8)log2(4/8)− (4/8)log2(4/8) = 1
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Marginal Product Model: [I1], [I2], [I3], [I4]
Model Complexity = log2(9)(1 + 1 + 1 + 1) = 12.7
Compressed Population Complexity = 8 (0.945 + 1 + 0.954 + 1) =
31.3
Combined Complexity = 12.7 + 31.3 = 44
Marginal Product Model: [I1, I3], [I2], [I4]
Model Complexity = log2(9)(3 + 1 + 1) = 15.8
Compressed Population Complexity = 8 (0.945 + 1 + 1) = 23.6
Combined Complexity = 15.8 + 23.6 = 39.4
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MPM Combined Complexity
[I1, I2][I3][I4] 46.7
[I1, I3][I2][I4] 39.4
[I1, I4][I2][I3] 46.7
[I1][I2, I3][I4] 46.7
[I1][I2, I4][I3] 45.6
[I1][I2][I3, I4] 46.7
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MPM Combined Complexity
[I1, I3, I2][I4] 48.6
[I1, I3, I4][I2] 48.6
[I1, I3][I2, I4] 41.4

The Marginal Product Model: [I1, I3], [I2], [I4] has the lowest combined
complexity so it is the best model to compress the population and
therefore captures the most dependencies in the set of solutions.
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Example: Deceptive Trap Function

Building block length k = 4; Number of building blocks m = 10.

GA: uniform crossover, tournament selection (s = 16):
Population size subfunctions solved function evals.

100 3.9 740
500 5.2 5100

1000 6.1 15600
5000 6.8 100000

10000 7.3 248000
20000 8.0 614000
50000 7.9 1560000

100000 8.8 3790000
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Example: Deceptive Trap Function

Extended Compact GA:
Population size subfunctions solved function evals.

100 4.0 750
200 5.2 1460
300 7.1 2610
500 9.3 4000
600 9.9 5040

1000 10.0 7300
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Conclusion

Simple Genetic Algorithms are limited in their capability to mix or
recombine non-linked building blocks

1 Design linkage into problem representation and recombination
operator

or
2 Learn linkage by using probabilistic model building genetic

algorithm
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Multivariate PMBGA

Bayesian Network
Probability vector, dependency tree, and marginal product model
are limited probability models.
Bayesian network much more powerful model.

I Acyclic directed graph.
I Nodes are problem variables.
I Edges represent conditional dependencies.
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Multivariate PMBGA
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Multivariate PMBGA

Bayesian network learning
Similar to ECGA: scoring metric + greedy search
Scoring metric: MDL or Bayesian measure
Greedy search:

I Initially, no variables are connected.
I Greedily either add, remove, or reverse an edge between two

variables.
I Until local optimum is reached.
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Multivariate PMBGA

Bayesian Network PMBGAs variants
Bayesian Optimization Algorithm (BOA)
(Pelikan, Goldberg, Cantú-Paz; 1998)
Estimation of Distribution Networks Algorithm (EBNA)
(Etxeberria, Larrañaga; 1999)
Learning Factorized Distribution Algorithm (LFDA)
(Mühlenbein, Mahnig, Rodriguez; 1999)

Similarities: All use Bayesian Network as probability model.
Dissimilarities: All use different method to learn BN.
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Hierarchical BOA
hBOA (Pelikan, Goldberg; 2001)
Decomposition on multiple levels.

I Bayesian network learning by BOA
Compact representation.

I Local Structures to represent conditional probabilities.
Preservation of alternative solutions.

I Niching with Restricted Tournament Replacement
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Multivariate PMBGA

Markov Network
Markov Netwok EDA
(MN-EDA: Santana, 2005) (DEUM: Shakya & McCall, 2007).
Probability model is undirected graph.
Factorise the joint probability distribution in cliques of the
undirected graph and sample it.
Most recent version: Markovian Optimisation Algorithm (MOA)
(Shakya & Santana, 2008).
MOA does not explicitly factorise the distribution but uses the
local Markov property and Gibbs sampling to generate new
solutions.
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