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Combinatorial optimization problems

Combinatorial optimization

Definition
A combinatorial optimization problem is specified by a finite set of
solutions S and a cost function f that assigns a numerical value to each
solution: f : S→ <.

Graph Coloring
Graph Partitioning
Knapsack Problem
Quadratic Assignment Problem
Bin Packing
Vehicle Routing
Personnel Scheduling
...
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Combinatorial optimization problems

Graph coloring

Definition
Given a graph G = {V,E}where V = {v1, ..., vn} is the set of vertices
and E = {(vi, vj)} (i 6= j) is the set of edges connecting some vertices of
the graph. The goal of graph k-coloring is to assign one of k colors to
each vertex such that no connected vertices have the same color.
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Combinatorial optimization problems

Graph Bipartitioning

Definition
Assume an undirected graph with the set of vertices V and set of
edges E. The number of vertices |V| = n is even. The graph
bipartitioning problem is to find a partitioning of the set of vertices V
into 2 subsets A and B of equal size (|A| = |B|), such that the number of
edges between vertices of A and B is minimal.
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Combinatorial optimization problems

Knapsack Problem

Definition
The knapsack problem consists of a knapsack K with fixed capacity c,
and n items that have a weight wi and profit pi. The goal is to maximize
the sum of the profits of all selected items under the constraint that the
sum of their weights does not exceed the knapsack capacity.

Multi-dimensional knapsack problem: the weight of item i is given by
a D-dimensional vector wi = (wi1, . . . ,wiD) and the knapsack has a
D-dimensional capacity vector (c1, . . . , cD). Need to maximize the sum
of the values of the items in the knapsack so that the sum of weights in
each dimension d does not exceed Wd.
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Multi-start Local Search

Local Search
aka. Neighborhood Search

Local search algorithms iteratively try to improve the current
solution by applying small changes. These changes are made by
search operators.
Only a limited set of solutions can be reached from the current
solution : the neighborhood set.
Local search explores the neighborhood of the current solution
and if a better solution is found it will become the new current
solution. The search continues by exploring the neighborhood of
the new solution.
Local search terminates when no improvement is found in the
neighborhood of the current solution.
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Multi-start Local Search

Local Search
Best versus First Improvement

Best Improvement local search: searches entire neighborhood and
selects the best solution if this is an improvement.
First Improvement local search: selects the first solution
encountered that is an improvement.
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Multi-start Local Search

Multi-start Local Search (MLS)

Local search stops when a local optimum is found
Multi-Start local search simply restarts local search from a random
initial solution
MLS is basically doing a random search in the space of local
optima
Metaheuristics aim to improve upon performance of MLS
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Multi-start Local Search

Local Search for Graph Coloring
Vertex Descent

1 Fix the number of color classes k.
2 For a given solution S, vertex descent iterates over all vertices in a

random order .
3 For each vertex vi all k− 1 vertex moves are tried. The vertex

move of vi which results in the lowest number of conflicting edges
is applied to S (unless no improvement over the current solution
is found; ties are broken at random).

4 When all vertices have been investigated, go back to step 2 unless
the last iteration over all vertices has not resulted in a lower
number of conflicting edges.
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Multi-start Local Search

Local Search for Graph-bipartitioning
Swap neighborhood

1 Given a partition (A,B) of the node set V into two subsets A and B
of equal size.

2 The swap neighborhood of (A,B) is the set of partitions (A′,B′)
obtained by swapping a node of A with a node of B.

3 Each partition has n2

4 neighboring partitions (|V| = n).
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Multi-start Local Search

Local Search for Graph-bipartitioning
Fiduccia-Mattheyses (FM)

1 Start from a partitioning (A,B) of the graph (V,E)
2 Compute for each vertex v the gain Wv obtained by moving the

vertex to the other subset
3 Create 2 arrays A and B with boundaries [- MaxDegree, +

MaxDegree]. Array A (resp. B) stores at position i a list of all
vertices in subset A (resp. B) with gain Wv = i.

4 Both arrays have an associated pointer that keeps track of the
index with maximal value k

5 Initially all vertices of the graph are marked free.
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Multi-start Local Search

6 If |A| > |B| (resp. |A| < |B|) then move the vertex v from A (resp.
B) that has the highest gain Wv to the subset B (resp. A). Mark the
vertex v fixed. Fixed vertices are removed from the arrays A and B.
Update the positions in the arrays A and B of the free nodes that
are connected to the moved vertex.

7 Continue moving vertices until there are no free nodes left. The
resulting partitioning is the same as the one we started with.

8 FM keeps track of all valid partitionings during the search process
and returns the one with the lowest cut size.

9 Repeat the FM procedure until no further improvement is found.
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Multi-start Local Search

Local Search for Knapsack Problem
Combined neighborhood

Solutions are represented by a binary vector Xs ∈ {0, 1}n. Random
initial solutions can violate the capacity constraint: make them feasible
by randomly removing items until the knapsack is filled below its
capacity.

1 All items are considered in a random order and added to the
current solution if they do not make the solution unfeasible.

2 The solution obtained after step 1 is further improved by
considering all possible swaps between items that are in the
current solution and those that are not. Whenever an item can be
replaced by another item such that the fitness increases but the
capacity constraint does not become violated the swap is
performed.
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Multi-start Local Search

Non-blind vs. blind knapsack problem

In the non-blind knapsack problem algorithms can use the
information of the weight and profit of individual items. A
well-known fast and efficient greedy heuristic is to:

I Sort all items in descending order of their profit/weight ratio
I Add items in this order if their addition does not violate the

capacity constraint

Benchmark knapsack problem: generate the weights and profits
of 500 items uniformly at random from the interval [10...50].
The capacity is half the sum of the weights.
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Multi-start Local Search

Fitness values found with the greedy heuristic and the greedy
heuristic + local search:

Knapsack Greedy Greedy +
problem solution local search
[10:50] 10544 10545

Fitness values found with multi-start local search after 1000 LS
restarts:

Knapsack Minimum 25 perc. Median 75 perc. Maximum
problem fitness fitness fitness fitness fitness
[10:50] 10099 10142 10161 10181 10218

A lot of room for improvement ! ⇒Metaheuristic search
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Multi-start Local Search
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Iterated Local Search

Metaheuristic Search

Metaheuristics are search methods that aim to enhance the
performance of multi-start local search by applying a problem
independent strategy
For many combinatorial optimization problems, metaheuristic
search algorithms are among the best performing techniques
Each metaheuristic specifies its own problem independent
strategy.
To be successful, the problem independent strategy of the
metaheuristic (its search bias) has to coincide with the structure of
the problem instance.
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Iterated Local Search

Iterated Local Search (ILS)

The search strategy of iterated local search consists of applying
small perturbations on local optima and restarting local search
from the perturbed solution.
Ideally the ILS perturbation step should move the search just
outside the basin of attraction of the current local optimum
If the new local optimum is better than the old one, ILS will
continue searching from the new solution, otherwise it will return
to the previous local optimum.
ILS will be most successful in search space structures where the
neighboring local optima have highly correlated fitness values.
ILS is in fact performing a stochastic greedy search in the space of
local optima.
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Iterated Local Search
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Figure: Experimental results for 20 independent runs with 1000 calls to the
local search operator. Best fitness values for ILS with perturbation probability
Pmut = 0.01, 0.03, 0.05 and the same 3 search operators simultaneously
applied in the adaptive pursuit allocation algorithm (data set [10:50]).
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Iterated Local Search

Adaptive ILS

ILS is sensitive to the choice of the perturbation step size.
In general it is impossible to know the optimal value without
experimenting with different values.
Adaptive algorithms try to learn good values during the search.
Example: Adaptive Pursuit strategy chooses between a set of k
search operators with varying probability.
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Iterated Local Search
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Genetic Local Search

Genetic Local Search (GLS)

GLS maintains a fixed size set of the best local optima
encountered so far.
New starting solutions for the local search operator are generated
by recombining two local optima from the population.
GLS will be most successful in search space structures where local
optima have important partial solutions in common - and are thus
shielded from destruction by a crossover operator - or have
different partial solutions that can be juxtaposed to form
important larger partial solutions.
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Genetic Local Search

GLS for the Knapsack problem

Parent pair selected at random
Create single offspring by uniform crossover + local search
No duplicate solutions allowed in the population
Offspring competes with worst solution in population
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Genetic Local Search
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Figure: Experimental results for 20 independent runs with 1000 calls to the
local search operator. Best fitness values obtained with ILS with perturbation
probability Pmut = 0.01, 0.03, 0.05 and GLS with population size n = 5, 10, 20
(data set [10:50]).
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Genetic Local Search
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Figure: Maximum and minimum Hamming distance between the population
(size n = 20) and the optimal solution, and between the improving solutions
and the optimal solution for a single GLS run
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Genetic Local Search

Uniform crossover protects the items with high profit/weight
ratio and does not consider the items with low profit/weight ratio
UX implicitly transforms the blind knapsack problem into a quasi
non-blind knapsack problem
Crossover can have multiple search biases:

1 Random sampling within a specific subspace
2 Juxtaposing partial solutions from two parent solutions

(example: graph coloring)
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Genetic Local Search

Crossover for graph coloring

Two different representations:
1 Assignment representation

I Configuration: assignment of colors to vertices

s : V → {1, ..., k}
I Basic information unit: pair vertex-color
I Crossover: assignment crossover

s(v) = s1(v) or s2(v)

2 Partition representation
I Configuration: partition of vertices

s = {V1, ...,Vk}
I Basic information unit: subset of vertices

Vi = {v1, ..., vn}
I Crossover: partition crossover
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Genetic Local Search
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Genetic Local Search

Partition crossover

1 Build a partial configuration of maximum size from subclasses of
the color classes of the two parents

2 Complete the partial solution to obtain a full configuration

Given two parents s1 = {V1
1, ...,V1

k} and s2 = {V2
1, ...,V2

k}, the partial
configuration is a set {V1, ...,Vk} of disjoint sets of vertices having the
following properties:

each subset Vi is included in a class of one of the two parents, so
all Vi are independent sets
the union of the Vi has a maximal size
about half of the Vi is imposed to be included in a class of parent 1
and the other half in a class of parent 2
⇒ the influence of the two parents is equilibrated
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Genetic Local Search

The Greedy Partitioning Crossover: GPX

Input: parent solutions s1 = {V1
1, ...,V1

k} and s2 = {V2
1, ...,V2

k}
Output: s = {V1, ...,Vk}
do for `(1 ≤ ` ≤ k)

* if ` is odd, then A := 1, else A := 2
* choose i such that VA

i has maximum cardinality
* V` := VA

i
* remove the vertices of V` from s1 and s2

Randomly assign the remaining vertices of V − (V1 + ...+ Vk)
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Genetic Local Search

Example GPX

parent s1 = {(ABC), (DEFG), (HIJ)}
parent s2 = {(CDEG), (AFI), (BHJ)}
offspring s = {}

Choose largest color class from s1:
parent s1 = {(ABC), (HIJ)}
parent s2 = {(C), (AI), (BHJ)}
offspring s = {(DEFG)}

Choose largest color class from s2:
parent s1 = {(AC), (I)}
parent s2 = {(C), (AI)}
offspring s = {(DEFG), (BHJ)}

Choose largest color class from s1:
parent s1 = {(I)}
parent s2 = {(I)}
offspring s = {(DEFG), (BHJ), (AC)}
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Genetic Local Search

Example GPX cont’d

Randomly assign vertex I:
parent s1 = {}
parent s2 = {}
offspring s = {(DEFG), (BHJI), (AC)}
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Genetic Local Search

Experimental results

Benchmark results1 on a set of difficult and large DIMACS graphs
Crossover for graph coloring: partitioning crossover much better
suited than assignment crossover
Hybrid GA: GPX crossover + vertex descent local search gives
excellent results
Able to find the best known solutions for most graphs in the
DIMACS benchmark
Able to find new best solutions for some largest graphs in the
benchmark

1Celia A. Glass and Adam Prügel-Bennett. (2003). Genetic Algorithm for
Graph Coloring: Exploration of Galinier and Hao’s Algorithm. Journal of
Combinatorial Optimization.
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Genetic Local Search
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Probabilistic Model Building Local Search

PMBGAs: principles

1 Probability distributions model dependencies between problem
variables present in good solutions

2 Selection makes these fitness-based dependencies stand out
3 Estimating a probability model over the selected solutions

identifies these dependencies
4 Drawing new samples from the probability model will respect the

dependencies
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Probabilistic Model Building Local Search

PMBLS

Probabilistic model-building GA + local search = PMBLS
Bivariate probabilistic model: learns the pairwise dependencies
between problem variables
Building a dependency tree = maximum spanning tree over the
dependency graph
New solutions obtained by sampling from the dependency tree
Bivariate PMBLS for Graph Bipartitioning
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Probabilistic Model Building Local Search

Bivariate Probabilistic Model for Graph Bipartitioning

1 Redundancy problem
I Redundancy problem easy to solve for crossover
I Probabilistic model: count frequencies that two vertices are in same

partition
I (00 or 11) versus (01 or 10)

2 Dependency value
I Dependency tree build over most extreme frequency values
I Low values as important as high values
I Build dependency tree over max(p, 1-p) values

3 Computational complexity
I Standard Bivariate PMBGA computes pairwise frequencies

between all variables: O(|V|2)
I Computational complexity would be larger than the complexity of

the FM local search !
I Solution: reduce computational complexity by only considering the

pairwise interactions between connected vertices
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Probabilistic Model Building Local Search
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Probabilistic Model Building Local Search

Experiments

All solutions obtained by applying FM local search algorithm to the
initial and offspring solution.

MLS: generate 1000 local optima with FM algorithm from random
initial solution
GLS: steady-state GA population size 50, parents randomly
selected, uniform crossover, offspring competes with the worst
solution in the population.
PMBLS: population size 100, dependency tree constructed from 50
best solutions, 50 new samples added.

Dirk Thierens (Universiteit Utrecht) MLS → ILS → GLS → PMBLS 38 / 46



Probabilistic Model Building Local Search

Benchmark graphs

Widely used benchmark problems: U500.d and G500.p graphs
U500.d graphs

I 500 vertices: randomly chosen within the unit square
I vertices within distance

√
d

500π are connected
I expected vertex degree = d
I d = 0.05, 0.10, 0.20, 0.40

G500.p graphs
I 500 vertices: with probability p connection between any pair
I expected vertex degree = p(500− 1)
I p = 0.005, 0.01, 0.02, 0.04
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Probabilistic Model Building Local Search

Performance
Fixed number of local optima

Table: multi-start local search, genetic local search, and the bi-variate
probabilistic model-building GA: each generating 1000 local optima - this is,
1000 calls of FM.

MLS GLS PMBLS
mean std mean std mean std

U500.05 8.62 1.90 4.24 1.35 3.62 0.98
U500.10 26.06 0.42 26.02 0.14 26 0
U500.20 178 0 178 0 178 0
U500.40 412 0 412 0 412 0
G500.005 53.28 0.85 51.3 0.46 51.48 0.57
G500.01 223.52 1.66 218.36 0.84 219.2 1.48
G500.02 630.64 1.48 627.68 1.05 627.94 1.17
G500.04 1749.98 2.45 1745.54 1.51 1746.5 1.85
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Probabilistic Model Building Local Search

Table: two-tail p-values for the unpaired t-test: values smaller than 0.05
indicate a statistical significant difference between the mean values of the
best local optima found.

MLS/GLS MLS/PMBLS GLS/PMBLS
U500.05 < 0.001 < 0.001 0.010
U500.10 0.524 0.315 0.315
U500.20 - - -
U500.40 - - -
G500.005 < 0.001 < 0.001 0.085
G500.01 < 0.001 < 0.001 < 0.001
G500.02 < 0.001 < 0.001 0.245
G500.04 < 0.001 < 0.001 0.005
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Probabilistic Model Building Local Search

Efficiency
Fixed run time

Table: multi-start local search, genetic local search, and the bi-variate
probabilistic model-building GA: run time for 1000 optima with PMBLS ≈
1250 optima with MLS ≈ 1500 optima with GLS.

MLS GLS PMBLS
mean std mean std mean std

U500.05 8.54 1.71 3.48 1.39 3.62 0.98
U500.10 26 0 26 0 26 0
U500.20 178 0 178 0 178 0
U500.40 412 0 412 0 412 0
G500.005 53.5 0.83 51.14 0.35 51.48 0.57
G500.01 223.48 1.71 218.4 1.11 219.2 1.48
G500.02 630.62 1.77 627.46 0.94 627.94 1.17
G500.04 1749.38 2.49 1745.34 1.35 1746.5 1.85
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Probabilistic Model Building Local Search

Table: two-tail p-values for the unpaired t-test: values smaller than 0.05
indicate a statistical significant difference between the mean values of the
best local optima found.

MLS/GLS MLS/PMBLS GLS/PMBLS
U500.05 < 0.001 < 0.001 0.562
U500.10 - - -
U500.20 - - -
U500.40 - - -
G500.005 < 0.001 < 0.001 < 0.001
G500.01 < 0.001 < 0.001 0.003
G500.02 < 0.001 < 0.001 0.026
G500.04 < 0.001 < 0.001 < 0.001
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Probabilistic Model Building Local Search

Observations

Geometric graphs U500.10, U500.20, and U500.40 are easy enough
for MLS to find the optimal solution
U500.05 graph: MLS outperformed by GLS and PMBLS; PMBLS
outperforms GLS for a fixed number of calls to FM, but this
difference disappears when GLS can explore 50% more local
optima (= same run time)
Random graphs G500.p: MLS always outperformed by GLS and
PMBLS
Random graphs G500.p: GLS slightly more efficient than PMBLS
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Probabilistic Model Building Local Search

Discussion

Both metaheuristics (GLS and PMBLS) have better performance
and efficiency than MLS
PMBLS has a better performance than GLS for the difficult
geometric graph U500.05, however efficiency-wise there is no
difference
For the random graph problems (G500.p) the efficiency gain of
GLS makes it the preferred technique
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Conclusion

Conclusion

Local search is a powerful paradigm to solve large scale
combinatorial problems
Multi-Start local search is basically a random search in the space
of local optima
Metaheuristics try to improve the efficiency of MLS following a
problem independent search strategy
Practitioner’s point of view:

natural progression from MLS→ ILS→ GLS→ PMBLS
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