Basics

Functional Programming

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

» Function definitions
» Local definitions
» Guards and pattern matching
» Working with tuples and lists
» Layout and comments
» Notions about types
» What is polymorphism?

Chapters 4 (up to 4.4) and 3 from Hutton's book

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

ple functions

From the previous lecture...
average ns = sum ns div’~ length ns

» Function average and argument ns are in lowercase
» This line defines an equation
» Calling a function is done without parentheses

» divisused asan operator

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

sic list Functions

» null tells whether a list is empty
» head returns the first elementin a list
> tail returns all but the first element

> null [1,2,3]
False

> head [1,2,3]
1

> tail [1,2,3]
[2,3]

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Basic list functions

» null tells whether a list is empty
> head returns the first elementin a list
> head fails if the list is empty

> tail returns all but the first element
> tail failsif the list is empty

> null [1,2,3]

False

> head [1,2,3]

1

> head []

x Exception: Prelude.head: empty list
> tail [1,2,3]

[2,3]

\ & [Faculty of Science
$ N é Universiteit Utrecht Information and C()fn})uting
V,@ “\ Sciences]

4

constructors

» []isthe empty list
> x : xs putselementxin front of the list xs

> 1 : []
[1]

> 1 : [2,3]
[1,2,3]

» Infact, [1,2,3]issugarfor1 : (2 : (3 : [1))

[Faculty of Science

£ Universiteit Utrecht Information and Computmg
Sciences]

es of the basic list functions

» What are the types of those functions?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

pes of the basic list Functions

» What are the types of those functions?

Here is the first one: null checks if a list is empty
null :: [a] -> Bool

What about head, tail, [],and (:)?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

pes of the basic list Functions

» What are the types of those functions?

Here is the first one: null checks if a list is empty
null :: [a] -> Bool

What about head, tail, [],and (:)?

head :: [a] -> a
tail :: [a] -> [a]

0 :: [al
(:) :: a-> [a] —> [a]

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

ditionals

if condition then expression else expression

abs n = if n < 0O then —n else n

firstordefault def list

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

nditionals

if condition then expression else expression

abs n = if n < O then -n else n

firstordefault def list
= if null list then def else head list

» condition must be a Bool expression
» You always need both branches

» What would you return if one is missing?
» Remember, everything is an expression

[Faculty of Science
Universiteit Utrecht Information and ComPutlng
Sciences]

Layout rule

» Haskell does not have other delimiters but parentheses
> Not completely true, but valid for human-produced code
» The grouping is done by indentation

» The layout rule applies for indentation

> Related elements must start on the same column
» In the case of conditionals, no requirements

abs n = if n < O abs n = if n < O

then -n
else n

then -n
else n

&\ ﬁ) [Faculty of Science
SN = rmati a) bing
%n é Universiteit Utrecht Information and Computing

9

Sciences]

Guards

Instead of conditionals, we use equations with guards

» Each guard defines a condition over the arguments
» These conditions are checked in order

» The first satisfiable one is applied
> We typically use otherwise for the default case

absn | n <O = -n
| otherwise = n
NV [Faculty of Science
é\\\‘l‘”}é Universiteit Utrecht Information and Computing
o %{AAL§ Sciences]

ted conditionals versus guards

sign n = if n < O

then -1

else if n == 0
then 0O
else 1

What does this function do?

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

ted conditionals versus guards

sign n = if n < O

then -1

else if n == 0
then 0O
else 1

What does this function do?

It reads much better with guards!

signn | n <0 = -1
| n == =0
| otherwise = 1
-— Why not | n >0 =172

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ted conditionals versus guards

Good style
Prefer guards overs conditionals

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

distance px py gx qy =
sqrt ((px - gx)*(px - qx) + (py - qy)*(py - ay))

expression where name = expression

distance px py gx qy = sqrt (xDiff + yDiff)

where
xDiff = square (px - gx)
yDiff = square (py - qy)
square z = z * 2z

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

distance px py gx qy =
sqrt ((px - qx)*(px - gx) + (py - qy)*(py - qy))

let Name = expression in expression

distance px py qx qy =
let xDiff = square (px - gx)
yDiff square (py - qy)
square z = z * z
in sqrt (xDiff + yDiff)

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Local definitions

expression where name = expression

let Name = expression in expression

» Local definitions assign a name to an expression
» In the larger expression, this name is available

» Multiple benefits

» Maintainability: reduce repetition of code
» Performance: the expression is only computed once
» Documentation: assign names to concepts

&\ & [Faculty of Science
A2 a Ge-q rmati a) bing
= UZ Universiteit Utrecht Information and (()fn})uhn;,
V,@ “\' Sciences]

15

» You can have more than one local definition
» Definitions may refer to each other
» The layout rule kicks in

» All definition must start in the same column
» Aligning ='s is not mandated, but good style

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

vs Where

» where when thinking top down
> let when thinking bottom up

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

t vs Where

» where when thinking top down
> let when thinking bottom up

> let is an expression; where is Not.

foo x = show (let y = x*x in y*y) ++ " someString"
bar x | £ x < 5 = undefined

| £ x == = undefined

| otherwise = undefined

where
f y = undefined

[Faculty of Science
Information and Computing
Sciences]

Universiteit Utrecht

> Lists are sequences of elements of the same type
» Unknown length, uniform type
[True, False] :: [Booll]

» Tuples are made of a number of components
» Known length, different types
(True, 'a') :: (Bool, Char)
(1, 'b', 3) :: (Int, Char, Int)
» Useful for returning several values

[Faculty of Science
Universiteit Utrecht Information and Computing

Sciences]

le Examples

Creating tuples:

trunc :: Double -> (Int,Double)
trunc x = let i = floor x
in (i, x - fromIntegral i)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Tuple Examples

Creating tuples:

trunc :: Double -> (Int,Double)
trunc x = let i = floor x
in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (gx,qy) = sqrt (xDiff + yDiff)
where
tpl = squareBoth (px - gx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

xDiff
yDiff

fst tpl
snd tpl

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

19

Tuple Examples

20

W
%“ é Universiteit Utrecht

Creating tuples:

remainder :: Double —-> (Int,Double)
remainder x = let i = floor x
in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (gx,qy) = sqrt (xDiff + yDiff)
where
tpl = squareBoth (px - gx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

(xDiff, yDiff) = tpl

[Faculty of Science
Information and Computing
Sciences]

-— Euclidean distance between two points
distance (px, py) (gx, qy) =

sqrt (xDiff + yDiff) -- some comment
where
{- mults
line comments are also
possible -}

» -- comments skip until the end of the line
» {- comments skip until its matching -}
» Warning! These comments nest

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

attern matching, fac

From the previous lecture...

fac 0 = 1
fac n = n * fac (n-1)

» The first equation is chosen if the arguments is 0
» Otherwise, the second branch is executed
» Thisis an example of pattern matching

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

tern matching, replicate

» Foracall replicate n x,

> |fnis 0, we return an empty list
» Otherwise, we attach a copy of x to the result of
replicating the element n-1 times

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ttern matching, replicate

» Foracall replicate n x,

> |fnis 0, we return an empty list
» Otherwise, we attach a copy of x to the result of
replicating the element n-1 times

replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n x = x : replicate (n-1) x

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Pattern matching, replicate

» Foracall replicate n x

» |fnis0, wereturn an empty list
» Otherwise, we attach a copy of x to the result of
replicating the element n-1 times

replicate :: Int —> a —> [al
replicate 0 _ (]
replicate n x = x : replicate (n-1) x

» Good style: use _if you don't care about a value

&\ & [Faculty of Science
A2 a Ge-q rmati a) bing
= UZ Universiteit Utrecht Information and (()fn})uhn;,
V,@ “\' Sciences]

24

Pattern matching for lists and tuples

» The syntax for construction can be used for matching
» Information is extracted by giving names to the parts
» As usual, starting with lowercase

null [] = True
null _ = False
length [] =0

length (_ : xs)

1 + length xs

squareBoth (xD,yD) = (xD*xD, yD*yD)

\ & [Faculty of Science
}U é Universiteit Utrecht Information and C()fn})uting
V,@ “\' Sciences]

25

tern matching, conjunction

» For Bools, we can list all the possible values

conj :: Bool -> Bool -> Bool
conj True True = True
conj True False = False
conj False True = False
conj False False = False

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Pattern matching, conjunction

» For Bools, we can list all the possible values
conj :: Bool -> Bool -> Bool

conj True True
conj True Fals
conj False True
conj False Fals

e

e

= True

False
= False
False

> But thisis very repetitive!
» All last three equations return False

conj True True
conj a b

True
False

> even better, use _instead of aand b

& é Universiteit Utrecht
S

26 '{%ﬂ!.

[Faculty of Science
Information and Computing
Sciences]

Nested patterns

> Instead of just giving a name, you can further pattern
match in a list or tuple

> You can go as deep as you want

trimstart (' ' : xs) = trimstart xs
trimstart ('\t' : xs) = trimstart xs
trimstart xs = XS

iszero (0, 0) True
iszero _ = False

sumifthree (a : b : ¢ : [1)
sumifthree _

a+b+c

]
(@)

\ ﬁ' [Faculty of Science
§ O % Universiteit Utrecht Information and C()fn})ul,ing
t{% “‘ Sciences]

27

tern matching versus guards with ==

0
1 + length (tail xs)

length xs | xs == []
| otherwise

Two problems with this definition:

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Pattern matching versus guards wit

0
1 + length (tail xs)

length xs | xs == []
| otherwise

Two problems with this definition:

== js more expensive than matching
» You need to call tail

Good style for defining a function

» Pattern matching, maybe with guards
> But not guards with ==

\\\‘W [Faculty of Science

5; b= ‘T Universiteit Utrecht Information and Computing

28 ‘%ﬂ» Sciences]

Pattern matching versus guards wit

0
1 + length (tail xs)

length xs | xs == []
| otherwise

The correct way to write length is:

length [] =0
length (_ : xs) 1 + length xs

» Substitute check of [1 by pattern matching
» Access the tail of the list by matching (_ : xs)

\\\‘W [Faculty of Science

5; b= ‘T Universiteit Utrecht Information and Computing

29 ‘%ﬂ» Sciences]

arcise: define the existsPositive Function

existsPositive xs should return True if and only if (at
least) one of the elements in the list xs is positive, that is,
greater than 0

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at
least) one of the elements in the list xs is positive, that is,
greater than 0

existsPositive [] False
existsPositive (x:xs8) | x > O

| otherwise = existsPositive xs

True

&\ & [Faculty of Science
N = . - rmati E) ing
S U= Universiteit Utrecht Information and (()fn})uhn;,
V,@ “\ Sciences]

30

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at
least) one of the elements in the list xs is positive, that s,
greater than 0

existsPositive [] False

existsPositive (x:xs)

x > 0 || existsPositive xs

Next lecture is devoted to functions over lists

[Faculty of Science
Information and Computing
Sciences]

A
§ &) é Universiteit Utrecht
31 N

From the previous lecture...

» Operators are functions whose name is exclusively
made out of symbols

» Operators are written between the arguments
» Both for definition and call

True && True = True
&& _ = False

» Anywhere else, you need to use parentheses
(&&) :: Bool -> Bool -> Bool

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

- ociativity and precedence

How should we read the following expressions?
1+2-3 1*x2+3/4
We make it explicit by introducing parentheses

1+(2-23) 1 *2) + 3/ 4)

» We say that + associates to the right
» So1 + 2 + 3means1 + (2 + 3)

E » We say that x and / have higher precedence than +

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Declaring associativity and precedence

infixr/infix1l/infix precedence operator

» infixr and infix1 declare associativity
» infix makes the operator non-associative
» ==and /=are examples of those
» Precedence ranges between 1 and 9
» Function application has the highest number, 10
infixr 3 &&

[Faculty of Science
Information and Computing

B = Universiteit Utrecht B
“" Sciences]

34 '{%ﬂ!.

Types

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Xpressions have types

Type = collection of related values

» In Haskell, every expression has a type
» We write it as expression :: type

True :: Bool

'a' :: Char

[1, 21 :: [Int]

(1,'a') :: (Int,Char)

not :: Bool -> Bool

» This includes applied functions

1+ 2 :: Int

not True :: Bool

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

Static typing and type safety

» Haskell forbids executing code with type errors
> This is known as static typing
» Other languages are dynamically typed
» E.g., Python, JavaScript, Ruby...
» Asaresult, no run-time error may arise from this
> We say that Haskell programs are type safe
» Some “valid” expressions are rejected
» Code execution is not taken into account

if True then 1 else False

&\ & [Faculty of Science
N = . - rmati E) ing
S U= Universiteit Utrecht Information and (()fn})uhn;,
t{% “\ Sciences]

S

pe checking and inference

Generalrule:iff :: A -> Bande :: A thenf e :: B

This rule can be used in two ways:

» To check whether an application is correct

not :: Bool -> Bool
'a' :: Char
not 'a'

-— Couldn't match ezxpected type ‘Bool’
== with actual type ‘Char’
» Toinfer the result of an expression
f :: Bool -> String
f True :: String -- No further details needed!

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Basic types

» Bool: logical values, that is, either True of False
» Char: single characters like ‘a’
» Integral types:
» Int: machine integers with a fixed range
> maxBound :: Int
9223372036854775807
> Integer: integers with unlimited range
» Floating-point types:
» Numbers with a decimal comma
> Float: single-precision
» Double: double-precision, take up more space

[Faculty of Science
Information and Computing
Sciences]

W
§ &) % Universiteit Utrecht
39 NS

Compound types

These types are parametrized by other types

» Lists [T], uniform sequences of Ts
» Tuples come in different arities

» Pairs (T1, T2)

» Triples (T1, T2, T3)

» ...upto62inGHCB8.0.1

» FunctionsTi -> T2 -> ... -> R

Types can be nested as much as we want

[Faculty of Science
Information and Computing
Sciences]

A
§ &) % Universiteit Utrecht
40 KNy

e differences

([1) 2]) [True])

[(1, True), (2, False)]

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

e differences

-— 4 Tuple of lists
([1, 2], [Truel) :: ([Int], [Booll)

-— 4+ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

e differences

-— 4 Tuple of lists

([1, 21, [Truel) :: ([Int], [Booll)
-— 4+ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int

g :: Int -> Int -> Int

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

e differences

([1, 21, [Truel)

[(1, True), (2, False)]

f :: (Int, Int) -> Int -—-

g :: Int -> Int -> Int -

>f (1, 2) -- 0K
>gl2 - 0K
> g (1, 2)

-— Couldn't match expected
- with actual

& Universiteit Utrecht

4 Tuple of lists
([Int]l, [Booll)
4 List of tuples
[(Int, Bool)]

Takes one argument
which s a pair
Takes two arguments

type ‘Int’
type ‘(Int, Int)’

[Faculty of Science
Information and Computing
Sciences]

e differences

([1, 21, [Truel)

[(1, True), (2, False)]

f :: (Int, Int) -> Int -—-

g :: Int -> Int -> Int -

>f (1, 2) -- 0K
>gl2 - 0K
> g (1, 2)

-— Couldn't match expected
- with actual

& Universiteit Utrecht

4 Tuple of lists
([Int]l, [Booll)
4 List of tuples
[(Int, Bool)]

Takes one argument
which s a pair
Takes two arguments

type ‘Int’
type ‘(Int, Int)’

[Faculty of Science
Information and Computing
Sciences]

ctions are first-class citizens

-— Functions can be put in a list
[+, (»), ()] :: [Int -> Int -> Int]
[C&&), (11)] :: [Bool -> Bool -> Bool]

-— Elements must agree in their type
[(+), (&&)] -- Type error!

-— Functions can be arguments and results
-— 'flip' takes one function and swaps the order
flip :: (2 > b > ¢) -> (b -> a -> ¢)

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

length is polymorphic

length [1, 2, 3]
length [True, Falsel
length "abcd"

> length can be applied to any expression which is a list
> In type terms, to any [T], regardless of T
> We say that length is polymorphic
» From Greek, MNMoAupop@lopdcg “of many forms/shapes”

» How does this show up in the type?
length :: [a] -> Int

» Types starting with lowercase are variables
» They can be substituted with whatever we need

[Faculty of Science
Information and Computing
Sciences]

A
§ &) % Universiteit Utrecht
46 % “

ther polymorphic list functions

null :: [al -> Bool
(++) :: [l -> [a] -> [a] -- Concatenation
reverse :: [a] -> [a]

Important! A variable has to be substituted uniformly
throughout the whole type

[1, 2] ++ [3, 4] :: [Int]
-— UK, 'a' is substituted by 'Int'

[1, 2] ++ [True, False]

—-= Couldn't match expected type ‘Int’

== with actual type ‘Bool’
This is the #1 type error in Haskell programming

[Faculty of Science
Universiteit Utrecht Information and ComPutlng
Sciences]

ld your own polymorphic function

id x = x

What is the type of id?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Build your own polymorphic function

id x = x
What is the type of id?

1. Itis a function with one argument
» o — 3 foryet unknown o and 3

2. We return the same type we are given
» o — «forayet unknown type

3. There are no further constraints for x

» We reach the final typea -> a
» This function works for any type

&\ & [Faculty of Science
N = . - rmati E) ing
S U= Universiteit Utrecht Information and (()fn})uhn;,
t{% “\ Sciences]

48

rring the type of id id

Expect these kind of problems in the exam

id id :: 7

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Inferring the type of id id

49

Expect these kind of problems in the exam
id id :: 7
1. Disambiguate the names of variables for each id
» Firstid :: a — «
» Secondid ::8 — f3
2. IfFf :: A -> B,inf ewemusthavee :: A
» In this case, « must be 3 —
» Thus, firstid ::(8 — B8) — (8 — B)
3. Theresult type of £ eisB
» In thiscase, id id ::8 —
4. Finally, replace by variables types without constraints
» id id :: a -> a
[Faculty of Science

Information and Computing
g
Sciences]

W
%“ % Universiteit Utrecht

lements in a list have to match

> :t sin

sin :: Float -> Float

> :t [sin, id]

[sin,id] :: [Float -> Float]

1. We can choose any type for the ain id
2. All elements in a list must have the same type
3. The only solution is to make a be Float

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

ments in a list have to match

What about these?

> :t [length, head]
> :t [head, null]
> :t [tail, nulll

[Faculty of Science
Information and Computing

Universiteit Utrecht Sei
ciences]

Elements in a list have to match

What about these?

\4
ct

[length, head]
> :t [head, null]
> :t [tail, null]

> :t [length, head]

[length,head] :: [[Int] -> Int]
> :t [head, null]
[head,null] :: [[Bool]l —> Bool]

> :t [tail, nulll
Couldn't match type ‘[al’ with ‘Bool’

&\ & [Faculty of Science
N = . - rmati E) ing
S U= Universiteit Utrecht Information and (()fn})uhn;,
t{% “\ Sciences]

51

erloaded addition

In Haskell, addition works for different types:
>1+ 2 -- Integers

S

>1.0 + 2.5 -- Floating-point

SH5

But not for any type!

> lal + Ibl
No instance for (Num Char)
arising from a use of ‘+’

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

erloaded addition

Addition cannot be given the following type
(+) ::a->a->a
because it does not work for any type.

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Overloaded addition

Addition cannot be given the following type
(+) :: a—>a ->a
because it does not work for any type.

Let’s ask GHC what is its real type:
> it (+)
(+) :: Num a => a -> a -> a
» The Num a before the => symbol is a constraint
> |t restricts (+) to types which satisfy the constraint
» |n this case a must be “numeric”
> Num is called a type class

» Warning! Not to be confused with C++/C#/Java classes

NV [Faculty of Science
g‘g\\\‘w’;})ﬁ . . . Information and Computing
z N] % Universiteit Utrecht
N
53 o

Sciences]

sic type classes

» Num for numeric types
» Includes (+), (%), abs, among others
» For example, Int, Integer, Float, and Double have Num
instances.
» Char or [Int] are not numeric

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

Basic type classes

» Num for numeric types

> Eq for types which support equality checks
(==) :: Eqg a => a -> a -> Bool
(/=) :: Eq a => a -> a -> Bool
» Int, Char, Bool, ..., have Eq instances
> Also [T] if Tisitself a member of Eq
> Like [Int] or String
» But not function types
> sin == cos
No instance for (Eq (Float -> Float))

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

55

Basic type classes

» Num for numeric types

> Eq for types which support equality checks
» 0Ord for types which in addition have an ordering

(), () :: 0rd a=>a —-> a —> Bool
(<=), (>=) :: Ord a => a -> a -> Bool
min, max :: Ord a => a -> a -> a

» Int, Char, Bool, .., have Ord instances
> Every type which is 0rd is also Eq

&\ & [Faculty of Science
A2 a Ge-q rmati e) bing
%n % Universiteit Utrecht Information and Computing

56

Sciences]

Basic type classes

Num For numeric types
Eq for types which support equality checks
Ord for types which in addition have an ordering

vVvyyy

Show for turning things into strings

show :: Show a => a -> String

age :: Int -> String
age y = "You are " ++ show y ++ " years old"

» Almost everything is in Show, but not functions
> We need a explicit call to show to preserve type safety

&\ & [Faculty of Science
N = . - rmati E) ing
S U= Universiteit Utrecht Information and (()fn})uhn;,
t{% “\ Sciences]

57/

Basic type classes

58

» Num for numeric types

» Eq for types which support equality checks

» 0rd for types which in addition have an ordering
» Show for turning things into strings

» And many more!

You can also define your own (later in the course)

[Faculty of Science
Information and Computing
Sciences]

W
%“ % Universiteit Utrecht

Parse errors are not type errors

> isZero x = x =0
<interactive>:1:14: error:
parse error on input ‘=’

Parse error = code does not follow the syntax

» The structure of the code cannot be understood
» In this case, where does the real definition start?

» Parsing happens before typing
» Check the shape and the upper/lowercase distinction

[Faculty of Science
Information and Computing
Sciences]

NI
§ &) % Universiteit Utrecht
59 NS

Parse errors are not type errors

> isZero x = x =0
<interactive>:1:14: error:
parse error on input ‘=’

Parse error = code does not follow the syntax

» The structure of the code cannot be understood
» In this case, where does the real definition start?

» Parsing happens before typing
» Check the shape and the upper/lowercase distinction

> isZero x = x == 0

[Faculty of Science
Information and Computing
Sciences]

NI
§ &) % Universiteit Utrecht
59 NS

Important concepts

> Every expression has a type
» Types are used in two different ways
» Checking that types match
» Inferring a type for an expression
» Two forms of polymorphism

» Functions that work for any type, parametric
» Functions that work for a subset of types, ad-hoc

Check exercises at the end of chapter 3 of Hutton's book

&\ & [Faculty of Science
N = . - rmati E) ing
S U= Universiteit Utrecht Information and (()fn})uhn;,
t{% “\ Sciences]

60

	Types

