
[Faculty of Science
Information and Computing

Sciences]
0

Basics
Functional Programming

[Faculty of Science
Information and Computing

Sciences]
1

Goals

▶ Function definitions
▶ Local definitions
▶ Guards and pattern matching

▶ Working with tuples and lists
▶ Layout and comments
▶ Notions about types

▶ What is polymorphism?

Chapters 4 (up to 4.4) and 3 from Hutton’s book

[Faculty of Science
Information and Computing

Sciences]
2

Simple functions

From the previous lecture…

average ns = sum ns `div` length ns

▶ Function average and argument ns are in lowercase
▶ This line defines an equation
▶ Calling a function is done without parentheses

▶ div is used as an operator

[Faculty of Science
Information and Computing

Sciences]
3

Basic list functions

▶ null tells whether a list is empty
▶ head returns the first element in a list
▶ tail returns all but the first element

> null [1,2,3]
False
> head [1,2,3]
1
> tail [1,2,3]
[2,3]

[Faculty of Science
Information and Computing

Sciences]
4

Basic list functions

▶ null tells whether a list is empty
▶ head returns the first element in a list

▶ head fails if the list is empty
▶ tail returns all but the first element

▶ tail fails if the list is empty

> null [1,2,3]
False
> head [1,2,3]
1
> head []
*** Exception: Prelude.head: empty list
> tail [1,2,3]
[2,3]

[Faculty of Science
Information and Computing

Sciences]
5

List constructors

▶ [] is the empty list
▶ x : xs puts element x in front of the list xs

> 1 : []
[1]
> 1 : [2,3]
[1,2,3]

▶ In fact, [1,2,3] is sugar for 1 : (2 : (3 : []))

[Faculty of Science
Information and Computing

Sciences]
6

Types of the basic list functions

▶ What are the types of those functions?

Here is the first one: null checks if a list is empty

null :: [a] -> Bool

What about head, tail, [], and (:)?

head :: [a] -> a
tail :: [a] -> [a]

[] :: [a]
(:) :: a -> [a] -> [a]

[Faculty of Science
Information and Computing

Sciences]
6

Types of the basic list functions

▶ What are the types of those functions?

Here is the first one: null checks if a list is empty

null :: [a] -> Bool

What about head, tail, [], and (:)?

head :: [a] -> a
tail :: [a] -> [a]

[] :: [a]
(:) :: a -> [a] -> [a]

[Faculty of Science
Information and Computing

Sciences]
6

Types of the basic list functions

▶ What are the types of those functions?

Here is the first one: null checks if a list is empty

null :: [a] -> Bool

What about head, tail, [], and (:)?

head :: [a] -> a
tail :: [a] -> [a]

[] :: [a]
(:) :: a -> [a] -> [a]

[Faculty of Science
Information and Computing

Sciences]
7

Conditionals

if condition then expression else expression
abs n = if n < 0 then -n else n

firstordefault def list
=

[Faculty of Science
Information and Computing

Sciences]
8

Conditionals

if condition then expression else expression
abs n = if n < 0 then -n else n

firstordefault def list
= if null list then def else head list

▶ conditionmust be a Bool expression
▶ You always need both branches

▶ What would you return if one is missing?
▶ Remember, everything is an expression

[Faculty of Science
Information and Computing

Sciences]
9

Layout rule

▶ Haskell does not have other delimiters but parentheses
▶ Not completely true, but valid for human-produced code
▶ The grouping is done by indentation

▶ The layout rule applies for indentation
▶ Related elements must start on the same column
▶ In the case of conditionals, no requirements

abs n = if n < 0 abs n = if n < 0
then -n then -n
else n else n

[Faculty of Science
Information and Computing

Sciences]
10

Guards

Instead of conditionals, we use equations with guards

▶ Each guard defines a condition over the arguments
▶ These conditions are checked in order

▶ The first satisfiable one is applied
▶ We typically use otherwise for the default case

abs n | n < 0 = -n
| otherwise = n

[Faculty of Science
Information and Computing

Sciences]
11

Nested conditionals versus guards

sign n = if n < 0
then -1
else if n == 0

then 0
else 1

What does this function do?

It reads much better with guards!

sign n | n < 0 = -1
| n == 0 = 0
| otherwise = 1

-- Why not | n > 0 = 1 ?

[Faculty of Science
Information and Computing

Sciences]
11

Nested conditionals versus guards

sign n = if n < 0
then -1
else if n == 0

then 0
else 1

What does this function do?

It reads much better with guards!

sign n | n < 0 = -1
| n == 0 = 0
| otherwise = 1

-- Why not | n > 0 = 1 ?

[Faculty of Science
Information and Computing

Sciences]
12

Nested conditionals versus guards

Good style
Prefer guards overs conditionals

[Faculty of Science
Information and Computing

Sciences]
13

Local definitions

distance px py qx qy =
sqrt ((px - qx)*(px - qx) + (py - qy)*(py - qy))

expression where name = expression

distance px py qx qy = sqrt (xDiff + yDiff)
where
xDiff = square (px - qx)
yDiff = square (py - qy)
square z = z * z

[Faculty of Science
Information and Computing

Sciences]
14

Local definitions

distance px py qx qy =
sqrt ((px - qx)*(px - qx) + (py - qy)*(py - qy))

let name = expression in expression
distance px py qx qy =

let xDiff = square (px - qx)
yDiff = square (py - qy)
square z = z * z

in sqrt (xDiff + yDiff)

[Faculty of Science
Information and Computing

Sciences]
15

Local definitions

expression where name = expression

let name = expression in expression

▶ Local definitions assign a name to an expression
▶ In the larger expression, this name is available

▶ Multiple benefits
▶ Maintainability: reduce repetition of code
▶ Performance: the expression is only computed once
▶ Documentation: assign names to concepts

[Faculty of Science
Information and Computing

Sciences]
16

Local definitions

▶ You can have more than one local definition
▶ Definitions may refer to each other

▶ The layout rule kicks in
▶ All definition must start in the same column
▶ Aligning =’s is not mandated, but good style

[Faculty of Science
Information and Computing

Sciences]
17

Let vs Where

▶ wherewhen thinking top down
▶ letwhen thinking bottom up

▶ let is an expression; where is not.

foo x = show (let y = x*x in y*y) ++ " someString"

bar x | f x < 5 = undefined
| f x == 5 = undefined
| otherwise = undefined

where
f y = undefined

[Faculty of Science
Information and Computing

Sciences]
17

Let vs Where

▶ wherewhen thinking top down
▶ letwhen thinking bottom up

▶ let is an expression; where is not.

foo x = show (let y = x*x in y*y) ++ " someString"

bar x | f x < 5 = undefined
| f x == 5 = undefined
| otherwise = undefined

where
f y = undefined

[Faculty of Science
Information and Computing

Sciences]
18

Tuples

▶ Lists are sequences of elements of the same type
▶ Unknown length, uniform type

[True, False] :: [Bool]
▶ Tuples are made of a number of components

▶ Known length, different types
(True, 'a') :: (Bool, Char)
(1, 'b', 3) :: (Int, Char, Int)

▶ Useful for returning several values

[Faculty of Science
Information and Computing

Sciences]
19

Tuple Examples

Creating tuples:

trunc :: Double -> (Int,Double)
trunc x = let i = floor x

in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (qx,qy) = sqrt (xDiff + yDiff)
where

tpl = squareBoth (px - qx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

xDiff = fst tpl
yDiff = snd tpl

[Faculty of Science
Information and Computing

Sciences]
19

Tuple Examples

Creating tuples:

trunc :: Double -> (Int,Double)
trunc x = let i = floor x

in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (qx,qy) = sqrt (xDiff + yDiff)
where
tpl = squareBoth (px - qx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

xDiff = fst tpl
yDiff = snd tpl

[Faculty of Science
Information and Computing

Sciences]
20

Tuple Examples

Creating tuples:

remainder :: Double -> (Int,Double)
remainder x = let i = floor x

in (i, x - fromIntegral i)

Extracting from tuples:

distance (px, py) (qx,qy) = sqrt (xDiff + yDiff)
where
tpl = squareBoth (px - qx, py - qy)
squareBoth (xD,yD) = (xD*xD, yD*yD)

(xDiff, yDiff) = tpl

[Faculty of Science
Information and Computing

Sciences]
21

Comments

-- Euclidean distance between two points
distance (px, py) (qx, qy) =

sqrt (xDiff + yDiff) -- some comment
where

{- multi
line comments are also
possible -}

▶ -- comments skip until the end of the line
▶ {- comments skip until its matching -}

▶ Warning! These comments nest

[Faculty of Science
Information and Computing

Sciences]
22

Pattern matching, fac

From the previous lecture…

fac 0 = 1
fac n = n * fac (n-1)

▶ The first equation is chosen if the arguments is 0
▶ Otherwise, the second branch is executed
▶ This is an example of pattern matching

[Faculty of Science
Information and Computing

Sciences]
23

Pattern matching, replicate

▶ For a call replicate n x,
▶ If n is 0, we return an empty list
▶ Otherwise, we attach a copy of x to the result of

replicating the element n-1 times

replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n x = x : replicate (n-1) x

[Faculty of Science
Information and Computing

Sciences]
23

Pattern matching, replicate

▶ For a call replicate n x,
▶ If n is 0, we return an empty list
▶ Otherwise, we attach a copy of x to the result of

replicating the element n-1 times

replicate :: Int -> a -> [a]
replicate 0 x = []
replicate n x = x : replicate (n-1) x

[Faculty of Science
Information and Computing

Sciences]
24

Pattern matching, replicate

▶ For a call replicate n x,
▶ If n is 0, we return an empty list
▶ Otherwise, we attach a copy of x to the result of

replicating the element n-1 times

replicate :: Int -> a -> [a]
replicate 0 _ = []
replicate n x = x : replicate (n-1) x

▶ Good style: use _ if you don’t care about a value

[Faculty of Science
Information and Computing

Sciences]
25

Pattern matching for lists and tuples

▶ The syntax for construction can be used for matching
▶ Information is extracted by giving names to the parts

▶ As usual, starting with lowercase

null [] = True
null _ = False

length [] = 0
length (_ : xs) = 1 + length xs

squareBoth (xD,yD) = (xD*xD, yD*yD)

[Faculty of Science
Information and Computing

Sciences]
26

Pattern matching, conjunction

▶ For Bools, we can list all the possible values
conj :: Bool -> Bool -> Bool
conj True True = True
conj True False = False
conj False True = False
conj False False = False

▶ But this is very repetitive!
▶ All last three equations return False

conj True True = True
conj a b = False

▶ even better, use _ instead of a and b

[Faculty of Science
Information and Computing

Sciences]
26

Pattern matching, conjunction

▶ For Bools, we can list all the possible values
conj :: Bool -> Bool -> Bool
conj True True = True
conj True False = False
conj False True = False
conj False False = False

▶ But this is very repetitive!
▶ All last three equations return False

conj True True = True
conj a b = False

▶ even better, use _ instead of a and b

[Faculty of Science
Information and Computing

Sciences]
27

Nested patterns

▶ Instead of just giving a name, you can further pattern
match in a list or tuple
▶ You can go as deep as you want

trimstart (' ' : xs) = trimstart xs
trimstart ('\t' : xs) = trimstart xs
trimstart xs = xs

iszero (0, 0) = True
iszero _ = False

sumifthree (a : b : c : []) = a + b + c
sumifthree _ = 0

[Faculty of Science
Information and Computing

Sciences]
28

Pattern matching versus guards with ==

length xs | xs == [] = 0
| otherwise = 1 + length (tail xs)

Two problems with this definition:

▶ == is more expensive than matching
▶ You need to call tail

Good style for defining a function

▶ Pattern matching, maybe with guards
▶ But not guards with ==

[Faculty of Science
Information and Computing

Sciences]
28

Pattern matching versus guards with ==

length xs | xs == [] = 0
| otherwise = 1 + length (tail xs)

Two problems with this definition:

▶ == is more expensive than matching
▶ You need to call tail

Good style for defining a function

▶ Pattern matching, maybe with guards
▶ But not guards with ==

[Faculty of Science
Information and Computing

Sciences]
29

Pattern matching versus guards with ==

length xs | xs == [] = 0
| otherwise = 1 + length (tail xs)

The correct way to write length is:

length [] = 0
length (_ : xs) = 1 + length xs

▶ Substitute check of [] by pattern matching
▶ Access the tail of the list by matching (_ : xs)

[Faculty of Science
Information and Computing

Sciences]
30

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at
least) one of the elements in the list xs is positive, that is,
greater than 0

existsPositive [] = False
existsPositive (x:xs) | x > 0 = True

| otherwise = existsPositive xs

[Faculty of Science
Information and Computing

Sciences]
30

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at
least) one of the elements in the list xs is positive, that is,
greater than 0

existsPositive [] = False
existsPositive (x:xs) | x > 0 = True

| otherwise = existsPositive xs

[Faculty of Science
Information and Computing

Sciences]
31

Exercise: define the existsPositive function

existsPositive xs should return True if and only if (at
least) one of the elements in the list xs is positive, that is,
greater than 0

existsPositive [] = False
existsPositive (x:xs) = x > 0 || existsPositive xs

Next lecture is devoted to functions over lists

[Faculty of Science
Information and Computing

Sciences]
32

Operators

From the previous lecture…
▶ Operators are functions whose name is exclusively

made out of symbols
▶ Operators are written between the arguments

▶ Both for definition and call
True && True = True
_ && _ = False

▶ Anywhere else, you need to use parentheses
(&&) :: Bool -> Bool -> Bool

[Faculty of Science
Information and Computing

Sciences]
33

Associativity and precedence

How should we read the following expressions?

1 + 2 - 3 1 * 2 + 3 / 4

Wemake it explicit by introducing parentheses

1 + (2 - 3) (1 * 2) + (3 / 4)

▶ We say that + associates to the right
▶ So 1 + 2 + 3means 1 + (2 + 3)

▶ We say that * and / have higher precedence than +

[Faculty of Science
Information and Computing

Sciences]
34

Declaring associativity and precedence

infixr/infixl/infix precedence operator
▶ infixr and infixl declare associativity
▶ infixmakes the operator non-associative

▶ == and /= are examples of those
▶ Precedence ranges between 1 and 9

▶ Function application has the highest number, 10

infixr 3 &&

[Faculty of Science
Information and Computing

Sciences]
35

Types

[Faculty of Science
Information and Computing

Sciences]
36

Expressions have types

Type = collection of related values

▶ In Haskell, every expression has a type
▶ We write it as expression :: type

True :: Bool
'a' :: Char
[1, 2] :: [Int]
(1,'a') :: (Int,Char)
not :: Bool -> Bool

▶ This includes applied functions
1 + 2 :: Int
not True :: Bool

[Faculty of Science
Information and Computing

Sciences]
37

Static typing and type safety

▶ Haskell forbids executing code with type errors
▶ This is known as static typing
▶ Other languages are dynamically typed

▶ E.g., Python, JavaScript, Ruby…

▶ As a result, no run-time error may arise from this
▶ We say that Haskell programs are type safe

▶ Some “valid” expressions are rejected
▶ Code execution is not taken into account

if True then 1 else False

[Faculty of Science
Information and Computing

Sciences]
38

Type checking and inference

General rule: if f :: A -> B and e :: A, then f e :: B

This rule can be used in two ways:

▶ To check whether an application is correct
not :: Bool -> Bool
'a' :: Char
not 'a'
-- Couldn't match expected type ‘Bool’
-- with actual type ‘Char’

▶ To infer the result of an expression
f :: Bool -> String
f True :: String -- No further details needed!

[Faculty of Science
Information and Computing

Sciences]
39

Basic types

▶ Bool: logical values, that is, either True of False
▶ Char: single characters like ‘a’
▶ Integral types:

▶ Int: machine integers with a fixed range
> maxBound :: Int
9223372036854775807

▶ Integer: integers with unlimited range
▶ Floating-point types:

▶ Numbers with a decimal comma
▶ Float: single-precision
▶ Double: double-precision, take up more space

[Faculty of Science
Information and Computing

Sciences]
40

Compound types

These types are parametrized by other types

▶ Lists [T], uniform sequences of Ts
▶ Tuples come in different arities

▶ Pairs (T1, T2)
▶ Triples (T1, T2, T3)
▶ …up to 62 in GHC 8.0.1

▶ Functions T1 -> T2 -> ... -> R

Types can be nested as much as we want

[Faculty of Science
Information and Computing

Sciences]
41

Some differences

([1, 2], [True])

[(1, True), (2, False)]

[Faculty of Science
Information and Computing

Sciences]
42

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int

g :: Int -> Int -> Int

[Faculty of Science
Information and Computing

Sciences]
42

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int

g :: Int -> Int -> Int

[Faculty of Science
Information and Computing

Sciences]
43

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int -- Takes one argument
-- which is a pair

g :: Int -> Int -> Int -- Takes two arguments

> f (1, 2) -- OK
> g 1 2 -- OK
> g (1, 2)
-- Couldn't match expected type ‘Int’
-- with actual type ‘(Int, Int)’

[Faculty of Science
Information and Computing

Sciences]
44

Some differences

-- ↓ Tuple of lists
([1, 2], [True]) :: ([Int], [Bool])

-- ↓ List of tuples
[(1, True), (2, False)] :: [(Int, Bool)]

f :: (Int, Int) -> Int -- Takes one argument
-- which is a pair

g :: Int -> Int -> Int -- Takes two arguments

> f (1, 2) -- OK
> g 1 2 -- OK
> g (1, 2)
-- Couldn't match expected type ‘Int’
-- with actual type ‘(Int, Int)’

[Faculty of Science
Information and Computing

Sciences]
45

Functions are first-class citizens

-- Functions can be put in a list
[(+), (*), (-)] :: [Int -> Int -> Int]
[(&&), (||)] :: [Bool -> Bool -> Bool]

-- Elements must agree in their type
[(+), (&&)] -- Type error!

-- Functions can be arguments and results
-- 'flip' takes one function and swaps the order
flip :: (a -> b -> c) -> (b -> a -> c)

[Faculty of Science
Information and Computing

Sciences]
46

length is polymorphic

length [1, 2, 3] -- OK
length [True, False] -- OK
length "abcd" -- OK

▶ length can be applied to any expression which is a list
▶ In type terms, to any [T], regardless of T
▶ We say that length is polymorphic

▶ From Greek, Πολυμορφισμός “of many forms/shapes”

▶ How does this show up in the type?
length :: [a] -> Int
▶ Types starting with lowercase are variables
▶ They can be substituted with whatever we need

[Faculty of Science
Information and Computing

Sciences]
47

Other polymorphic list functions

null :: [a] -> Bool
(++) :: [a] -> [a] -> [a] -- Concatenation
reverse :: [a] -> [a]

Important! A variable has to be substituted uniformly
throughout the whole type

[1, 2] ++ [3, 4] :: [Int]
-- OK, 'a' is substituted by 'Int'

[1, 2] ++ [True, False]
-- Couldn't match expected type ‘Int’
-- with actual type ‘Bool’
This is the #1 type error in Haskell programming

[Faculty of Science
Information and Computing

Sciences]
48

Build your own polymorphic function

id x = x

What is the type of id?

1. It is a function with one argument
▶ α → β for yet unknown α and β

2. We return the same type we are given
▶ α → α for a yet unknown type α

3. There are no further constraints for x
▶ We reach the final type a -> a
▶ This function works for any type

[Faculty of Science
Information and Computing

Sciences]
48

Build your own polymorphic function

id x = x

What is the type of id?

1. It is a function with one argument
▶ α → β for yet unknown α and β

2. We return the same type we are given
▶ α → α for a yet unknown type α

3. There are no further constraints for x
▶ We reach the final type a -> a
▶ This function works for any type

[Faculty of Science
Information and Computing

Sciences]
49

Inferring the type of id id

Expect these kind of problems in the exam

id id :: ?

1. Disambiguate the names of variables for each id
▶ First id :: α → α
▶ Second id ::β → β

2. If f :: A -> B, in f ewemust have e :: A
▶ In this case, α must be β → β
▶ Thus, first id ::(β → β) → (β → β)

3. The result type of f e is B
▶ In this case, id id ::β → β

4. Finally, replace by variables types without constraints
▶ id id :: a -> a

[Faculty of Science
Information and Computing

Sciences]
49

Inferring the type of id id

Expect these kind of problems in the exam

id id :: ?
1. Disambiguate the names of variables for each id

▶ First id :: α → α
▶ Second id ::β → β

2. If f :: A -> B, in f ewemust have e :: A
▶ In this case, α must be β → β
▶ Thus, first id ::(β → β) → (β → β)

3. The result type of f e is B
▶ In this case, id id ::β → β

4. Finally, replace by variables types without constraints
▶ id id :: a -> a

[Faculty of Science
Information and Computing

Sciences]
50

Elements in a list have to match

> :t sin
sin :: Float -> Float
> :t [sin, id]
[sin,id] :: [Float -> Float]

1. We can choose any type for the a in id
2. All elements in a list must have the same type
3. The only solution is to make a be Float

[Faculty of Science
Information and Computing

Sciences]
51

Elements in a list have to match

What about these?

> :t [length, head]
> :t [head, null]
> :t [tail, null]

> :t [length, head]
[length,head] :: [[Int] -> Int]
> :t [head, null]
[head,null] :: [[Bool] -> Bool]
> :t [tail, null]
Couldn't match type ‘[a]’ with ‘Bool’

[Faculty of Science
Information and Computing

Sciences]
51

Elements in a list have to match

What about these?

> :t [length, head]
> :t [head, null]
> :t [tail, null]

> :t [length, head]
[length,head] :: [[Int] -> Int]
> :t [head, null]
[head,null] :: [[Bool] -> Bool]
> :t [tail, null]
Couldn't match type ‘[a]’ with ‘Bool’

[Faculty of Science
Information and Computing

Sciences]
52

Overloaded addition

In Haskell, addition works for different types:
> 1 + 2 -- Integers
3
> 1.0 + 2.5 -- Floating-point
3.5

But not for any type!

> 'a' + 'b'
No instance for (Num Char)
arising from a use of ‘+’

[Faculty of Science
Information and Computing

Sciences]
53

Overloaded addition

Addition cannot be given the following type
(+) :: a -> a -> a
because it does not work for any type.

Let’s ask GHC what is its real type:
> :t (+)
(+) :: Num a => a -> a -> a
▶ The Num a before the => symbol is a constraint
▶ It restricts (+) to types which satisfy the constraint

▶ In this case amust be “numeric”
▶ Num is called a type class

▶ Warning! Not to be confused with C++/C#/Java classes

[Faculty of Science
Information and Computing

Sciences]
53

Overloaded addition

Addition cannot be given the following type
(+) :: a -> a -> a
because it does not work for any type.

Let’s ask GHC what is its real type:
> :t (+)
(+) :: Num a => a -> a -> a
▶ The Num a before the => symbol is a constraint
▶ It restricts (+) to types which satisfy the constraint

▶ In this case amust be “numeric”
▶ Num is called a type class

▶ Warning! Not to be confused with C++/C#/Java classes

[Faculty of Science
Information and Computing

Sciences]
54

Basic type classes

▶ Num for numeric types
▶ Includes (+), (*), abs, among others

▶ For example, Int, Integer, Float, and Double have Num
instances.

▶ Char or [Int] are not numeric

[Faculty of Science
Information and Computing

Sciences]
55

Basic type classes

▶ Num for numeric types
▶ Eq for types which support equality checks

(==) :: Eq a => a -> a -> Bool -- Equals
(/=) :: Eq a => a -> a -> Bool -- Not equals
▶ Int, Char, Bool, …, have Eq instances
▶ Also [T] if T is itself a member of Eq

▶ Like [Int] or String
▶ But not function types

> sin == cos
No instance for (Eq (Float -> Float))

[Faculty of Science
Information and Computing

Sciences]
56

Basic type classes

▶ Num for numeric types
▶ Eq for types which support equality checks
▶ Ord for types which in addition have an ordering

(<), (>) :: Ord a => a -> a -> Bool
(<=), (>=) :: Ord a => a -> a -> Bool
min, max :: Ord a => a -> a -> a
▶ Int, Char, Bool, .., have Ord instances
▶ Every type which is Ord is also Eq

[Faculty of Science
Information and Computing

Sciences]
57

Basic type classes

▶ Num for numeric types
▶ Eq for types which support equality checks
▶ Ord for types which in addition have an ordering
▶ Show for turning things into strings

show :: Show a => a -> String

age :: Int -> String
age y = "You are " ++ show y ++ " years old"
▶ Almost everything is in Show, but not functions
▶ We need a explicit call to show to preserve type safety

[Faculty of Science
Information and Computing

Sciences]
58

Basic type classes

▶ Num for numeric types
▶ Eq for types which support equality checks
▶ Ord for types which in addition have an ordering
▶ Show for turning things into strings
▶ And many more!

You can also define your own (later in the course)

[Faculty of Science
Information and Computing

Sciences]
59

Parse errors are not type errors

> isZero x = x = 0
<interactive>:1:14: error:

parse error on input ‘=’

Parse error = code does not follow the syntax

▶ The structure of the code cannot be understood
▶ In this case, where does the real definition start?

▶ Parsing happens before typing
▶ Check the shape and the upper/lowercase distinction

> isZero x = x == 0

[Faculty of Science
Information and Computing

Sciences]
59

Parse errors are not type errors

> isZero x = x = 0
<interactive>:1:14: error:

parse error on input ‘=’

Parse error = code does not follow the syntax

▶ The structure of the code cannot be understood
▶ In this case, where does the real definition start?

▶ Parsing happens before typing
▶ Check the shape and the upper/lowercase distinction

> isZero x = x == 0

[Faculty of Science
Information and Computing

Sciences]
60

Important concepts

▶ Every expression has a type
▶ Types are used in two different ways

▶ Checking that types match
▶ Inferring a type for an expression

▶ Two forms of polymorphism
▶ Functions that work for any type, parametric
▶ Functions that work for a subset of types, ad-hoc

Check exercises at the end of chapter 3 of Hutton’s book

	Types

