
0

Lists and recursion
Functional Programming

1

Goals

▶ More list functions
▶ Recursion
▶ List comprehensions

Chapters 5 and 6 from Hutton’s book

2

From previous lectures

Primitives for building lists
▶ [] :: [a] is the empty list
▶ (:) :: a -> [a] -> [a] (the “cons” constructor)

▶ Build a list by putting an element at the front
▶ When we write [1, 2, 3] the compiler translates it to

1 : 2 : 3 : []

Pattern matching over lists

length [] = 0
length (_:xs) = 1 + length xs

3

From previous lectures

Useful list functions
null :: [a] -> Bool

head :: [a] -> a
tail :: [a] -> [a]

reverse :: [a] -> [a]
(++) :: [a] -> [a] -> [a]

sum :: Num a => [a] -> a

replicate :: Int -> a -> [a]

4

Foldable in the interpreter

If you ask for the type of sum in ghci, you get
sum :: (Foldable t, Num a) => t a -> a
▶ This is a more generic version of sum
▶ “Adding up all elements” works for other containers

▶ Think of sets or (binary) trees

5

How to obtain the types shown here

> :t sum
sum :: (Num a, Foldable t) => t a -> a
> :t +d sum
sum :: [Integer] -> Integer

6

Recursion

7

Recursion on natural numbers

Recursion = defining something in terms of itself

fac 0 = 1
fac n = n * fac (n - 1)

0 * m = 0
n * m = m + (n - 1) * m

▶ A case for 0 or 1
▶ A recursive case where the value of n is computed from

the same function applied to n − 1

8

Does our product work?

0 * m = 0 -- (1)
n * m = m + (n - 1) * m -- (2)

2 * 4
= -- apply (2)
4 + (2 - 1) * 4
= -- perform substraction
4 + 1 * 4
= -- apply (2) and perform substraction
4 + (4 + 0 * 4)
= -- apply (1)
4 + (4 + 0)
= -- perform additions
8

9

Recursion can go wrong

No base case
fac n = n * fac (n-1) -- (1)
-- No more equations

fac 1
= -- apply (1), what else?
1 * fac 0
= -- apply (1)
1 * 0 * fac (-1)
= -- apply (1)
1 * 0 * (-1) * fac (-2)
= -- apply (1)
...

10

Recursion can go wrong

Argument does not get smaller

replicate 0 _ = [] -- (1)
replicate n x = x : replicate n x -- (2)

replicate 2 'a'
= -- apply (2)
'a' : replicate 2 'a'
= -- apply (2)
'a' : 'a' : replicate 2 'a'
= -- apply (2)
...

11

Recursion on Lists

length [] = 0
length (_ : xs) = 1 + length xs

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

12

Does our concatenation work?

[] ++ ys = ys -- (1)
(x:xs) ++ ys = x : (xs ++ ys) -- (2)

[1, 2] ++ [3, 4]
= -- remove syntactic sugar for [1, 2]
(1 : 2 : []) ++ [3, 4]
= -- apply (2)
1 : ((2 : []) ++ [3, 4])
= -- apply (2)
1 : (2 : ([] ++ [3, 4]))
= -- apply (1)
1 : 2 : [3, 4]
= -- resugar the resulting list
[1, 2, 3, 4]

13

Hutton’s recipe for recursion

1. Define the type
2. Enumerate the cases
3. Define the simple (base) cases
4. Define the other (recursive) cases

▶ This part involves most of the thinking
▶ The main question:

can I obtain the value of the function if I know its result
for a smaller part (e.g. for the tail of the list)?

5. Generalize and simplify
▶ Remove duplicate equations
▶ Pattern match only as necessary
▶ Infer a more general type

14

Cooking sum

1. Define the type
sum :: [Int] -> Int

2. Enumerate the cases
sum [] = _
sum (x:xs) = _

14

Cooking sum

1. Define the type
sum :: [Int] -> Int

2. Enumerate the cases
sum [] = _
sum (x:xs) = _

15

Cooking sum

3. Define the simple (base) cases
sum [] = 0

4. Define the other (recursive) cases
▶ If I know the result of sum xs, can I get sum (x:xs)?
▶ Just add the head element to that result!

sum (x:xs) = x + sum xs
5. Generalize and simplify

▶ In this case our definition works for any numeric type

sum :: Num a => [a] -> a

16

Cooking elem

elem x xs tells you whether x is an element of xs

> 1 `elem` [1,2]
True
> 3 `elem` [1,2]
False
> 2 `elem` []
False

We usually write elem infix to make it look like 1 ∈ [1, 2]

17

Cooking elem

1. Define the (approximate) type
elem :: Int -> [Int] -> Bool

2. Enumerate the cases
elem x [] = _
elem x (y:ys) = _

3. Define the simple (base) cases
elem x [] = False

18

Cooking elem

4. Define the other (recursive) cases
▶ We need to distinguish between x equal to y or not

▶ Remember: we cannot repeat a variable in a pattern
▶ If it is, we stop; otherwise, we continue further

elem x (y:ys) | x == y = True
| otherwise = elem x ys

5. Generalize and simplify
▶ We only use (==) to inspect values, so Eq is enough

elem :: Eq a => a -> [a] -> Bool

19

Cooking take

take n xs gets the first n elements of list xs, or the entire
list if there are less than those

> take 2 [1,2,3]
[1,2]
> take 0 [1,2,3]
[]
> take 4 [1,2,3]
[1,2,3]

20

Cooking take

1. Define the type
▶ The type of the elements of the list does not matter

take :: Int -> [a] -> [a]
2. Enumerate the cases

▶ We can match on both the number and list

take 0 [] = _
take 0 (x:xs) = _
take n [] = _
take n (x:xs) = _

21

Cooking take

3. Define the simple (base) cases
▶ If there are no elements to take, we obtain an empty list

take 0 [] = []
take 0 (x:xs) = []
take n [] = []

4. Define the other (recursive) cases
▶ If we have taken 1 element from x:xs, there are only

n-1 left to take from xs
take n (x:xs) = x : take (n-1) xs

22

Cooking take

4. We have the following until now
take 0 [] = []
take 0 (x:xs) = []
take n [] = []
take n (x:xs) = x : take (n-1) xs

5. Generalize and simplify
▶ When the number is 0, the list does not matter
▶ If the list is empty, the number does not matter

take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

23

Question

Define list difference

(\\) :: Eq a => [a] -> [a] -> [a]

▶ Return all elements in the first list except if they appear
in the second

> [1,2] \\ [1]
[2]
> [1,2] \\ [2,3,4]
[1]
> [] \\ [1,2,3]
[]

Hint: use elem to detect if an element appears in the second

23

Question

Define list difference

(\\) :: Eq a => [a] -> [a] -> [a]

▶ Return all elements in the first list except if they appear
in the second

> [1,2] \\ [1]
[2]
> [1,2] \\ [2,3,4]
[1]
> [] \\ [1,2,3]
[]

Hint: use elem to detect if an element appears in the second

24

Cooking init

init xs gives you all the elements except for the last

> init [1,2,3]
[1,2]
> init []
*** Exception: Prelude.init: empty list

1. Define the type
init :: [a] -> [a]

2. Enumerate the cases
▶ The empty list should yield an error

init [] = error "empty list in init"
init (x:xs) = _

24

Cooking init

init xs gives you all the elements except for the last

> init [1,2,3]
[1,2]
> init []
*** Exception: Prelude.init: empty list

1. Define the type
init :: [a] -> [a]

2. Enumerate the cases
▶ The empty list should yield an error

init [] = error "empty list in init"
init (x:xs) = _

25

Cooking init

▶ Here is the trick, we need to distinguish whether we
have just one element in the list – and we are finished –
or we need to get more elements
▶ We do this by further pattern matching

2. Enumerate the cases
init (x:[]) = _
init (x:xs) = _

3. Define the simple (base) cases
init (x:[]) = []

4. Define the other (recursive) cases
init (x:xs) = x : init xs

26

Cooking init

5. Generalize and simplify
▶ We can use [x] to match a one-element list
▶ We do not care about that single element → use _

init :: [a] -> [a]
init [] = error "empty list in init"
init [_] = []
init (x:xs) = x : init xs

27

Cooking sorted

sorted xs returns True if and only if the elements in the list
are in ascending order
> sorted [1,2,3]
True
> sorted [2,1,3]
False
> sorted []
True

1. Define the type
sorted :: [Int] -> Bool

2. Enumerate the cases
sorted [] = _
sorted (x:xs) = _

27

Cooking sorted

sorted xs returns True if and only if the elements in the list
are in ascending order
> sorted [1,2,3]
True
> sorted [2,1,3]
False
> sorted []
True
1. Define the type

sorted :: [Int] -> Bool
2. Enumerate the cases

sorted [] = _
sorted (x:xs) = _

28

Cooking sorted

3. Define the simple (base) cases
sorted [] = True

4. Define the other (recursive) cases
▶ We need to compare the first and second elements

▶ We need further pattern matching
▶ If they are in the right relation, we check further

sorted (x:[]) = True
sorted (x:y:ys) | x <= y = sorted (y:ys)

| otherwise = False

29

Cooking sorted

5. Generalize and simplify
▶ As before, we can use [x] instead of x:[]
▶ We are reusing the whole y:ys in the right-hand side

▶ We can give it a name using @
▶ We avoid matching and rebuilding the list

sorted [] = True
sorted [_] = True
sorted (x : xs@(y : _))

| x <= y = sorted xs
| otherwise = False

30

Cooking zip

zip xs ys turns two lists into a list of tuples

> zip [1,2] [3,4]
[(1,3),(2,4)]
> zip [1,2] [3,4,5]
[(1,3),(2,4)]

If one of the lists runs out of elements, we stop

Try yourself!

30

Cooking zip

zip xs ys turns two lists into a list of tuples

> zip [1,2] [3,4]
[(1,3),(2,4)]
> zip [1,2] [3,4,5]
[(1,3),(2,4)]

If one of the lists runs out of elements, we stop

Try yourself!

31

Cooking zip

1. Define the type
zip :: [a] -> [b] -> [(a,b)]

2. Enumerate the cases
zip [] [] = _
zip [] (y:ys) = _
zip (x:xs) [] = _
zip (x:xs) (y:ys) = _

3. Define the simple (base) cases
zip [] [] = []
zip [] (y:ys) = []
zip (x:xs) [] = []

32

Cooking zip

4. Define the other (recursive) cases
zip (x:xs) (y:ys) = (x,y) : zip xs ys

5. Generalize and simplify
▶ If one of the lists is empty, we don’t care about the other

zip :: [a] -> [b] -> [(a,b)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

33

Cooking merge

Given two sorted lists xs and ys, merge xs ys produces a
new sorted list from those elements

▶ This is the basis of a sorting algorithm called MergeSort

> merge [1,4] [2,3,5]
[1,2,3,4,5]
> merge [] [2,3,5]
[2,3,5]

34

Cooking merge

1. Define the type
merge :: [Int] -> [Int] -> [Int]

2. Enumerate the cases
merge [] [] = _
merge (x:xs) [] = _
merge [] (y:ys) = _
▶ In the last case we have to decide which number is larger

merge (x:xs) (y:ys)
| x <= y = _
| otherwise = _

35

Cooking merge

3. Define the simple (base) cases
merge [] [] = []
merge (x:xs) [] = x:xs
merge [] (y:ys) = y:ys

4. Define the other (recursive) cases
▶ Choose the smallest one and merge the rest

merge (x:xs) (y:ys)
| x <= y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) ys

36

Cooking merge

5. Generalize and simplify
▶ This function works for any type which can be ordered
▶ In the case of an empty list, we just return the other list
▶ We can give names to complete lists to avoid duplication

merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge xss@(x:xs) yss@(y:ys)

| x <= y = x : merge xs yss
| otherwise = y : merge xss ys

37

Cooking reverse

reverse xs gives the same elements in reverse order

> reverse [1,2,3]
[3,2,1]

1. Define the type
reverse :: [a] -> [a]

2. Enumerate the cases
reverse [] = _
reverse (x:xs) = _

38

Cooking reverse

3. Define the simple (base) cases
reverse [] = []

4. Define the other (recursive) cases
▶ Suppose you get [1,2,3], which you split as 1 and [2,3]
▶ The reverse of [2,3] is [3,2], where do you put the 1?
▶ At the end of the reversed list!

reverse (x:xs) = reverse xs ++ [x]

39

Problem with reverse reverse

▶ This definition is very inefficient
▶ Each time you call (++), you need to traverse the whole

list, since the new element goes at the end
▶ If the list has n elements, the amount of steps is

n − 1 + n − 2 + n − 3 + ... + 1 = n · (n − 1)
2

= O(n2)

40

Solution: use an accumulator

▶ There is a standard technique to solve this problem:
using an accumulator
1. Introduce a local definition with an additional parameter

(the accumulator)
2. Figure out the invariant:

invariant: accumulator contains solution for all
elements seen so far.

3. Follow Hutton’s recipe, but
▶ Do not pattern match on the accumulator
▶ Return the accumulator in the base case
▶ Update the accumulator in the recursive steps

4. Initialize the accumulator in the main call

41

sum with accumulator

Define sum using an accumulator

sum [1,2,3,4] = 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]
= 1 + 2 + 3 + sum [4]
= 1 + 2 + 3 + 4 + sum []

▶ Observation: Always of the form ‘a + sum xs’
▶ Introduce the function sum' that has as invariant:

sum' acc xs = acc + sum xs

41

sum with accumulator

Define sum using an accumulator

sum [1,2,3,4] = 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]
= 1 + 2 + 3 + sum [4]
= 1 + 2 + 3 + 4 + sum []

▶ Observation: Always of the form ‘a + sum xs’
▶ Introduce the function sum' that has as invariant:

sum' acc xs = acc + sum xs

41

sum with accumulator

Define sum using an accumulator

sum [1,2,3,4] = 1 + sum [2,3,4]
= 1 + 2 + sum [3,4]
= 1 + 2 + 3 + sum [4]
= 1 + 2 + 3 + 4 + sum []

▶ Observation: Always of the form ‘a + sum xs’
▶ Introduce the function sum' that has as invariant:

sum' acc xs = acc + sum xs

42

Implementing sum'

▶ invariant: ‘sum' acc xs = acc + sum xs

sum' :: Int -> [Int] -> Int
sum' acc [] = _
sum' acc (x:xs) = _

Invariant tells us that:

sum' :: Int -> [Int] -> Int
sum' acc [] = acc
sum' acc (x:xs) = sum' (acc + x) xs

so:

sum :: [Int] -> Int
sum xs = sum' 0 xs

42

Implementing sum'

▶ invariant: ‘sum' acc xs = acc + sum xs

sum' :: Int -> [Int] -> Int
sum' acc [] = _
sum' acc (x:xs) = _

Invariant tells us that:

sum' :: Int -> [Int] -> Int
sum' acc [] = acc
sum' acc (x:xs) = sum' (acc + x) xs

so:

sum :: [Int] -> Int
sum xs = sum' 0 xs

42

Implementing sum'

▶ invariant: ‘sum' acc xs = acc + sum xs

sum' :: Int -> [Int] -> Int
sum' acc [] = _
sum' acc (x:xs) = _

Invariant tells us that:

sum' :: Int -> [Int] -> Int
sum' acc [] = acc
sum' acc (x:xs) = sum' (acc + x) xs

so:

sum :: [Int] -> Int
sum xs = sum' 0 xs

43

sum with accumulator

Define sum using an accumulator.

We can also apply η-reduction and use a case expression.

sum :: [Int] -> Int
sum = sum' 0

where
sum' :: Int -> [Int] -> Int
sum' acc xs = case xs of

[] -> acc
(x:xs) -> sum' (acc+x) xs

44

reverse with an accumulator

1. Introduce a local definition with an additional
parameter to hold the interim result
reverse xs = _

where
reverse' :: [a] -> [a] -> [a]
reverse' acc xs = _

45

reverse with an accumulator

2. Figure out the invariant
reverse [1,2,3,4]

= reverse [2,3,4] ++ [1]
= (reverse [3,4] ++ [2]) ++ [1]
= reverse [3,4] ++ ([2] ++ [1])
= ...

Invariant:
reverse' acc xs == reverse xs ++ acc

45

reverse with an accumulator

2. Figure out the invariant
reverse [1,2,3,4]

= reverse [2,3,4] ++ [1]
= (reverse [3,4] ++ [2]) ++ [1]
= reverse [3,4] ++ ([2] ++ [1])
= ...

Invariant:
reverse' acc xs == reverse xs ++ acc

46

reverse with an accumulator

3. Follow Hutton’s recipe, but
▶ Do not pattern match on the accumulator
▶ Return the accumulator in the base case
▶ Update the accumulator in the recursive steps

reverse xs = _
where
reverse' acc [] = acc
reverse' acc (x:xs) = reverse' (x:acc) xs

4. Initialize the accumulator in the main call
▶ When we start, we haven’t accumulated any element yet

reverse xs = reverse' [] xs
where
reverse' acc [] = acc
reverse' acc (x:xs) = reverse' (x:acc) xs

47

Recursion and Re-use (cooking inits)

inits xs returns the initial segments of xs, that is, all the
lists which are prefixes of the original one
> inits [1,2,3]
[[],[1],[1,2],[1,2,3]]
> inits []
[[]]

1. Define the type
inits :: [a] -> [[a]]

2. Enumerate the cases
inits [] = _
inits (x:xs) = _

48

Cooking initial segments

3. Define the simple (base) cases
inits [] = [[]]

4. Define the other (recursive) cases
▶ Suppose you have [1,2,3], that is, 1 : [2,3]
▶ The initial segments of [2,3] are [[],[2],[2,3]], what

do you do with the 1?
▶ If you put the 1 in front of every list, you get

[[1],[1,2],[1,2,3]]
▶ We are almost there! We are just missing the extra

empty list at the front

inits (x:xs) = [] : prefixWith x (inits xs)

49

Cooking initial segments

prefixWith :: a -> [[a]] -> [[a]]
prefixWith p [] = []
prefixwith p (ys:yss) = (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!

prefixWith p yss = map (p:) yss

Use map:

inits [] = [[]]
inits (x:xs) = [] : map (x:) (inits xs)

49

Cooking initial segments

prefixWith :: a -> [[a]] -> [[a]]
prefixWith p [] = []
prefixwith p (ys:yss) = (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!

prefixWith p yss = map (p:) yss

Use map:

inits [] = [[]]
inits (x:xs) = [] : map (x:) (inits xs)

49

Cooking initial segments

prefixWith :: a -> [[a]] -> [[a]]
prefixWith p [] = []
prefixwith p (ys:yss) = (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!

prefixWith p yss = map (p:) yss

Use map:

inits [] = [[]]
inits (x:xs) = [] : map (x:) (inits xs)

50

List comprehensions

51

List comprehensions

[expr | x <- list]
Succint notation for building new lists from old ones

addone :: Num a => [a] -> [a]
addone xs = [x + 1 | x <- xs]

▶ “For each x in xs, return x + 1”
▶ Very similar to mathematical notation

{x + 1 | x ∈ xs}

52

Guards

[expr | x <- list, condition]
-- Check is a number is divisible by 2
even :: Integer -> Bool

sumeven :: [Integer] -> Integer
sumeven xs = sum [x | x <- xs, even x]

▶ “Take all x in xs such that x is even”
▶ The result of a comprehension is another list

▶ We can further consume it with other functions
▶ In this case, we use sum

–

53

Inits with a list comprehension

inits [] = [[]]
inits (x:xs) = [] : map (x:) (inits xs)

or

inits [] = [[]]
inits (x:xs) = [] : [x:rs | rs <- inits xs]

54

More List comprehensions; Pattern matching

[expr | pattern <- list]
heads :: [[a]] -> [a]
heads xs = [y | (y:_) <- xs]

▶ Only includes those elements which match the pattern
▶ In this case, non-empty lists

> heads [[1,2],[],[3,4,5]]
[1,3]

▶ We can introduce new names, as we do with usual
pattern matching
▶ In this case, we refer to the head in the result

55

Multiple clauses

We can have multiple generators and guards

▶ Generators provide every possible combination
> [(x,y) | x <- [1,2], y <- [3,4]]
[(1,3),(1,4),(2,3),(2,4)]

▶ Generators and conditions may refer to each other
> [(x,y) | x <- [1,2,3], y <- [1,2,3], x <= y]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
> [(x,y) | x <- [1,2,3], y <- [x .. 3]]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

56

Prime numbers up to a bound

▶ Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two
factors

2. f is a factor of x if the remainder of x
f is zero

56

Prime numbers up to a bound

▶ Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two
factors

2. f is a factor of x if the remainder of x
f is zero

57

Prime numbers up to a bound

▶ Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two
factors

2. f is a factor of x if the remainder of x
f is zero

Good style: divide the problem in parts and refine it

primes :: Int -> [Int]
primes n = [x | x <- [2 .. n], isPrime x]

where isPrime x = _

58

Prime numbers up to a bound

▶ Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two
factors

2. f is a factor of x if the remainder of x
f is zero

Good style: divide the problem in parts and refine it

primes :: Int -> [Int]
primes n = [x | x <- [2 .. n], isPrime x]

where isPrime x = length (factors x) == 2
factors x = _

59

Prime numbers up to a bound

▶ Problem: Compute all primes ≤ n

1. A number x is a prime iff (x ≥ 2 and) it has exactly two
factors

2. f is a factor of x if the remainder of x
f is zero

Good style: divide the problem in parts and refine it

primes :: Int -> [Int]
primes n = [x | x <- [2 .. n], isPrime x]

where isPrime x = length (factors x) == 2
factors x = [f | f <- [1 .. x]

, x `mod` f == 0
]

60

(Functional) QuickSort

▶ Divide and conquer approach
1. Pick a pivot
2. Partition the elements smaller and larger than the pivot
3. Sort those partitions
4. Put together the list

61

(Functional) QuickSort

▶ Divide and conquer approach
1. Pick a pivot

▶ The first element in the list works

2. Partition the elements smaller and larger than the pivot
3. Sort those partitions
4. Put together the list

quicksort [] = []
quicksort (pivot:rest) = undefined

62

(Functional) QuickSort

▶ Divide and conquer approach
1. Pick a pivot
2. Partition the elements
3. Sort those partitions
4. Put together the list

quicksort [] = []
quicksort (pivot:rest) = undefined

where smaller = [x | x <- rest, x <= pivot]
larger = [x | x <- rest, x > pivot]

63

(Functional) QuickSort

▶ Divide and conquer approach
1. Pick a pivot
2. Partition the elements smaller and larger than the pivot
3. Sort those partitions
4. Put together the list

quicksort [] = []
quicksort (pivot:rest) =
quicksort smaller ++ [pivot] ++ quicksort larger
where smaller = [x | x <- rest, x <= pivot]

larger = [x | x <- rest, x > pivot]

64

Question

Define replicate using comprehensions

replicate :: Int -> a -> [a]
replicate n x = [x | _ <- [1 .. n]]

64

Question

Define replicate using comprehensions

replicate :: Int -> a -> [a]
replicate n x = [x | _ <- [1 .. n]]

65

More List Functions

66

Cooking final segments

tails xs returns the final segments of xs, that is, all the
lists which are suffixes of the original one
> tails [1,2,3]
[[1,2,3],[2,3],[3],[]]
> tails [2,3]
[[2,3],[3],[]]
> tails [3]
[[3],[]]

tails :: [a] -> [[a]]
tails [] = [[]]
tails ts@(_:xs) = ts : tails xs

67

Final segments using initial segments

Final segments of xs seem related to initial segments of
reverse xs

> tails [1,2,3]
[[1,2,3],[2,3],[3],[]]
> inits [3,2,1]
[[],[3],[3,2],[3,2,1]]

▶ There are two problems with the second result
1. Each of the inner lists is reversed
2. The whole outer list is reversed

▶ Let’s fix this and give an alternative definition of tails

68

Final segments using initial segments

▶ To reverse each of the inner lists we use a list
comprehension

> [reverse i | i <- inits [3,2,1]]
[[],[3],[2,3],[1,2,3]]

▶ This leads to this final definition
tails xs = reverse [reverse i

| i <- inits (reverse xs)]

69

Fizzbuzz

▶ Write fizzbuzz using direct recursion; test if some
element is divisible by n (and by m) only once.

fizzbuzz :: (Int, Int) -> [Int]
-> ([Int], [Int], [Int])

A call of the form fizzbuzz (m, n) xs should return a
triple with a list in each element:

▶ The first list contains elements of xs divisible by m
▶ The second list those divisible by n (and not by m)
▶ The third list should contain the rest

70

Fizzbuzz

fizzbuzz (m,n) xs = fb xs
where
fb [] = ([],[],[])
fb (x:xs) = case (x `mod` m == 0

, x `mod` n == 0
) of

(True, _) -> (x:ms,ns, rs)
(_ , True) -> (ms, x:ns,rs)
(_ , _) -> (ms, ns, x:rs)

where
(ms,ns,rs) = fb xs

▶ Exercise: write fizzbuzz using a comprehensions

70

Fizzbuzz

fizzbuzz (m,n) xs = fb xs
where
fb [] = ([],[],[])
fb (x:xs) = case (x `mod` m == 0

, x `mod` n == 0
) of

(True, _) -> (x:ms,ns, rs)
(_ , True) -> (ms, x:ns,rs)
(_ , _) -> (ms, ns, x:rs)

where
(ms,ns,rs) = fb xs

▶ Exercise: write fizzbuzz using a comprehensions

71

Final words

Defining recursive functions is like riding a bicycle: it
looks easy when someone else is doing it, may seem
impossible when you first try to do it yourself, but be-
comes simple and natural with practice.

– From ”Programming in Haskell”

▶ On the other hand, don’t get too attached to recursion
▶ Many of these examples have better implementations

using higher-order functions
▶ Which happens to be the topic for next lecture!

	Recursion
	List comprehensions
	More List Functions

