Lists and recursion

Functional Programming




» More list functions
> Recursion
» List comprehensions

Chapters 5 and 6 from Hutton’s book




om previous lectures

Primitives for building lists

» [1 :: [a]isthe empty list
> (:) :: a -> [a]l -> [a] (the “cons” constructor)
» Build a list by putting an element at the front

» When we write [1, 2, 3] the compiler translates it to
1:2:3:1[

Pattern matching over lists
length [] =0

ﬁ length (_:xs) = 1 + length xs



m previous lectures

replicate ::

Useful list functions
null :: [a] -> Bool

head :: [a] -> a

tail :: [a] -> [a]

reverse :: [a]l -> [a]

(++) 20 [a]l -> [a]l —> [al

sum :: Num a => [a] -> a

Int -> a -> [a]



dable in the interpreter

If you ask for the type of sum in ghci, you get
sum :: (Foldable t, Num a) => t a -> a
» This is a more generic version of sum
» “Adding up all elements” works for other containers
» Think of sets or (binary) trees



to obtain the types shown here

> :t sum

sum :: (Num a, Foldable t) => t a -> a
> :t +d sum

sum :: [Integer] -> Integer




Recursion




cursion on natural numbers

Recursion = defining something in terms of itself

fac 0 = 1
facn =n *x fac (n - 1)
0 *xm=20

n*m=m+ (n- 1) *m

» AcaseforQor1
» Arecursive case where the value of n is computed from
the same function appliedton — 1



s our product work?

0*m=0 -- (1)
n*m=m+ (n-1) *m - (2)
x 4
-- apply (2)

+(2-1) x4

—-- perform substraction

+1 % 4

-- apply (2) and perform substraction
+ (4 +0 x4

-- apply (1)

+ (4 + 0)

-— perform additions

o I > 1 > 0 >N



ursion can go wrong

No base case

facn = n * fac (n-1) - (1)
-— No more equations

fac 1
-— apply (1), what else?
* fac O
-- apply (1)
* 0 x fac (-1)
-- apply (1)
* 0 x (-1) * fac (-2)
-- apply (1)

= 1 = 1 = 1



ursion can go wrong

Argument does not get smaller

replicate 0 _ = [] -- (D
replicate n x = x : replicate n x - (2)

replicate 2 'a'

= —— apply (2)

'a' : replicate 2 'a'

= —— apply (2)

'a' : 'a' : replicate 2 'a'

= —- apply (2)



ursion on Lists

length []
length (_ : xs)

[ ++ ys
(x:x8) ++ ys

ys

X

0
1 + length xs

(xs ++ ys)



s our concatenation work?

ys -- (1)
x : (xs ++ ys) —— (2)

] ++ ys
(x:x8) ++ ys

[1, 2] ++ [3, 4]

-- remove syntactic sugar for [1, 2]
(1 :2: ) ++ [3, 4]

-- apply (2)

: (2 [1) ++ [3, 41)

-— apply (2)

: (2 (01 ++ [3, 41))

-— apply (1)

: 2 : [3, 4]

-- resugar the resulting list
[1, 2, 3, 4]

= 1 = 1 = 1



Hutton’s recipe for recursion

A wnNn =

Define the type

Enumerate the cases

Define the simple (base) cases
Define the other (recursive) cases

» This part involves most of the thinking

» The main question:
can | obtain the value of the function if I know its result
for a smaller part (e.g. for the tail of the list)?

. Generalize and simplify

» Remove duplicate equations
» Pattern match only as necessary
» Infer a more general type






king sum

1. Define the type
sum :: [Int] -> Int
2. Enumerate the cases

sum [] =
sum (x:xs)




Cooking sum

. Define the simple (base) cases

sum [] =0

. Define the other (recursive) cases

> |f | know the result of sum xs, can | get sum (x:xs)?
» Just add the head element to that result!

sum (x:xs) = X + sum XS

. Generalize and simplify

» In this case our definition works for any numeric type

sum :: Num a => [a] -> a



king elem

elem x xs tells you whether x is an element of xs

> 1 “elem” [1,2]

True

> 3 “elem” [1,2]
False

> 2 “elem” []
False

We usually write elem infix to make it look like 1 € [1, 2]



king elem

1. Define the (approximate) type
elem :: Int -> [Int] -> Bool
2. Enumerate the cases

elem x [] =
elem x (y:ys)

3. Define the simple (base) cases
elem x [] = False




Cooking elem

. Define the other (recursive) cases

» We need to distinguish between x equal to y or not
» Remember: we cannot repeat a variable in a pattern
> |fitis, we stop; otherwise, we continue further
elem x (y:ys) | x == = True
| otherwise = elem x ys

. Generalize and simplify

» We only use (==) to inspect values, so Eq is enough
elem :: Eq a => a -> [a] -> Bool



king take

take n xs gets the first n elements of list xs, or the entire
list if there are less than those

> take 2 [1,2,3]
[1,2]

> take 0 [1,2,3]
(]

> take 4 [1,2,3]
[1,2,3]



oking take

1. Define the type
» The type of the elements of the list does not matter
take :: Int -> [a] -> [a]
2. Enumerate the cases
» We can match on both the number and list
take 0 [] = _
take 0 (x:xs)
take n []
take n (x:xs)



Cooking take

3. Define the simple (base) cases
» |f there are no elements to take, we obtain an empty list

take 0 [] = [
take 0 (x:xs) = []
take n [] = [

4. Define the other (recursive) cases

> |f we have taken 1 element from x:xs, there are only
n-1 left to take from xs

take n (x:xs) = x : take (n-1) xs

21



0 king take

4. We have the following until now

take 0 [] =[]
take 0 (x:xs) = []
take n [] =[]

x : take (n-1) xs

5. Generalize and simplify
» When the numberis 0, the list does not matter
> |f the list is empty, the number does not matter
take 0 _ = []
take _ [] = [
take n (x:xs) x : take (n-1) xs

take n (x:xs)



stion

Define list difference
(\\) :: Eq a => [a] -> [a] -> [a]

» Return all elements in the first list except if they appear
in the second

> [1,2] \\ [1]

(2]

> [1,2] \\ [2,3,4]
(1]

> [1 \\ [1,2,3]

(]



estion

Define list difference
(\\) :: Eq a => [a] -> [a] -> [a]

» Return all elements in the first list except if they appear
in the second

> [1,2] \\ [1]

(2]

> [1,2] \\ [2,3,4]
(1]

> [1 \\ [1,2,3]

(]

Hint: use elem to detect if an element appears in the second



king init

init xs givesyou all the elements except for the last

> init [1,2,3]

[1,2]

> init []

**x Exception: Prelude.init: empty list



oking init

init xs givesyou all the elements except for the last
> init [1,2,3]

[1,2]

> init []

**x Exception: Prelude.init: empty list

1. Define the type
init :: [a]l -> [a]
2. Enumerate the cases
» The empty list should yield an error
init [] = error "empty list in init"
init (x:xs) = _



Cooking init

25

» Here is the trick, we need to distinguish whether we

have just one element in the list —and we are finished -
or we need to get more elements
> We do this by further pattern matching

. Enumerate the cases

init (x:[]) = _
init (x:xs) = _

. Define the simple (base) cases

init (x:[1) = [

. Define the other (recursive) cases

init (x:xs) = x : init xs



oking init

5. Generalize and simplify

» We can use [x] to match a one-element list
» We do not care about that single element — use _

init :: [a] -> [a]
init [] = error "empty list in init"
init [_] = [

init (x:xs) x : init xs



king sorted

sorted xs returns True if and only if the elements in the list

are in ascending order
> sorted [1,2,3]

True

> sorted [2,1,3]
False

> sorted []

True



fe king sorted

sorted xs returns True if and only if the elements in the list

are in ascending order
> sorted [1,2,3]

True
> sorted [2,1,3]
False
> sorted []
True
1. Define the type
sorted :: [Int] -> Bool

2. Enumerate the cases

sorted []
sorted (x:xs)



Cooking sorted

3. Define the simple (base) cases
sorted [] = True
4. Define the other (recursive) cases
» We need to compare the first and second elements
» We need further pattern matching
» |f they are in the right relation, we check further
sorted (x:[]) = True
sorted (x:y:ys) | x <=y sorted (y:ys)
| otherwise = False

28



0 king sorted

5. Generalize and simplify
> As before, we can use [x] instead of x: []
» We are reusing the whole y:ys in the right-hand side

» \We can give it a name using @
» We avoid matching and rebuilding the list

sorted [] = True
sorted [_] = True
sorted (x : xs@(y : _))
| x <=y = sorted xs

| otherwise = False



king zip

zip xs ys turns two listsinto a list of tuples

> zip [1,2] [3,4]
[(1,3),(2,4)]

> zip [1,2] [3,4,5]
[(1,3),(2,4)]

If one of the lists runs out of elements, we stop



king zip

zip xs ys turns two listsinto a list of tuples

> zip [1,2] [3,4]
[(1,3),(2,4)]

> zip [1,2] [3,4,5]
[(1,3),(2,4)]

If one of the lists runs out of elements, we stop

Try yourself!



oking zip

1. Define the type
zip :: [a]l -> [b] -> [(a,b)]
2. Enumerate the cases
zip [] 1
zip [] (y:ys)
zip (x:xs) []
zip (x:xs) (y:ys)

3. Define the simple (base) cases

zip [ 1 = [
zip [] (y:ys) = [
zip (x:xs) [] = |l



oking zip

4. Define the other (recursive) cases
zip (x:xs) (y:ys) = (x,y) : zip xs ys
5. Generalize and simplify
> |f one of the lists is empty, we don't care about the other
zip :: [a]l -> [b] -> [(a,b)]
zip [ _ = [
zip _ (] = [
zip (x:xs) (y:ys) (x,y) : zip xs ys




oking merge

Given two sorted lists xs and ys, merge xs ys producesa
new sorted list from those elements

» This is the basis of a sorting algorithm called MergeSort

> merge [1,4] [2,3,5]
[1,2,3,4,5]

> merge [] [2,3,5]
[2,3,5]



oking merge

1. Define the type
merge :: [Int] -> [Int] -> [Int]
2. Enumerate the cases

merge [] 1 = _
merge (x:xs) [] = _
merge [] (y:ys) = _

> In the last case we have to decide which number is larger
merge (x:xs) (y:ys)
| x <= y =
| otherwise =



Cooking merge

35

3. Define the simple (base) cases

merge [] (1 = [l
merge (x:xs) [] = X:Xs
merge [] (y:ys) = y:ys

. Define the other (recursive) cases

» Choose the smallest one and merge the rest
merge (x:xs) (y:ys)

| x <=y = x : merge xs (y:ys)
y : merge (x:xs) ys

| otherwise



Cooking merge

5. Generalize and simplify
» This function works for any type which can be ordered
» In the case of an empty list, we just return the other list
> We can give names to complete lists to avoid duplication

merge :: Ord a => [a] -> [a] -> [a]
merge [] ys = ys
merge xs [] = xs
merge xss@(x:xs) yss@(y:ys)
| x <=y = X : merge Xs yss

| otherwise = y : merge xss ys

36



king reverse

reverse xs gives the same elements in reverse order

> reverse [1,2,3]
[3,2,1]

1. Define the type
reverse :: [a] -> [a]
2. Enumerate the cases

reverse [] =
reverse (x:xs) = _



oking reverse

3. Define the simple (base) cases
reverse [] =[]
4. Define the other (recursive) cases
» Suppose you get [1,2,3], which you splitas 1 and [2,3]

» The reverse of [2,3] is [3,2], where do you put the 1?
» At the end of the reversed list!

reverse (x:xs) = reverse xs ++ [x]



yblem with reverse reverse

» This definition is very inefficient
» Each time you call (++), you need to traverse the whole
list, since the new element goes at the end
> [f the list has n elements, the amount of steps is
(n—1)

n—1+n—2+n—3+...+1=nT=(9(n2)



Solution: use an accumulator

» There is a standard technique to solve this problem:
using an accumulator

1. Introduce a local definition with an additional parameter
(the accumulator)
2. Figure out the invariant:
invariant: accumulator contains solution for all
elements seen so far.
3. Follow Hutton’s recipe, but
» Do not pattern match on the accumulator
» Return the accumulator in the base case
» Update the accumulator in the recursive steps

4. Initialize the accumulator in the main call

40



with accumulator

Define sum using an accumulator



with accumulator

Define sum using an accumulator

sum [2,3,4]

2 + sum [3,4]

2 + 3 + sum [4]
2+ 3+ 4 + sum []

sum [112,3,4] -

+ o+ 4+ o+

1
=1
=1

1



1 with accumulator

Define sum using an accumulator

sum [2,3,4]

2 + sum [3,4]

2 + 3 + sum [4]
2+ 3+ 4+ sum []

sum [1,2,3,4] =

+ o+ 4+ o+

1
=1
=1

1

» Observation: Always of the form ‘a + sum xs’
» Introduce the function sum' that has as invariant:

sum' acc Xs = acc + sum Xs



lementing sum'

> invariant: ‘sum' acc xs = acc + sum xs

sum' :: Int -> [Int] -> Int
sum' acc []
sum' acc (x:xs)



plementing sum'

> invariant: ‘sum' acc xs = acc + sum xs

sum' :: Int -> [Int] -> Int
sum' acc []
sum' acc (x:xs)

Invariant tells us that:

sum' :: Int -> [Int] -> Int
sum' acc [] = acc
sum' acc (x:xs) sum' (acc + x) xs



plementing sum'

sum'

sum'

SO:

sum
sum XS

sum' acc []
sum' acc (x:xs)

sum' acc []
sum' acc (x:xs)

[Int]
sum' O

> invariant: ‘sum' acc xs = acc + sum xs

Int -> [Int] -> Int

Invariant tells us that:

Int -> [Int] -> Int
= acc
sum' (acc + x) xs

-> Int
Xs



1 with accumulator

Define sum using an accumulator.

We can also apply n-reduction and use a case expression.

sum :: [Int] -> Int
sum = sum' O
where
sum' :: Int -> [Int] -> Int
sum' acc xs = case xs of

[ -> acc
(x:xs) —-> sum' (acc+x) Xs



erse with an accumulator

1. Introduce a local definition with an additional
parameter to hold the interim result
reverse Xs = _
where
reverse' :: [a]l -> [a] -> [a]
reverse' acc xs = _



erse with an accumulator

2. Figure out the invariant
reverse [1,2,3,4]
reverse [2,3,4] ++ [1]
= (reverse [3,4] ++ [2]) ++ [1]
= reverse [3,4] ++ ([2] ++ [1])



erse with an accumulator

2. Figure out the invariant
reverse [1,2,3,4]
reverse [2,3,4] ++ [1]
= (reverse [3,4] ++ [2]) ++ [1]
= reverse [3,4] ++ ([2] ++ [1])

Invariant:

reverse' acc xs == reverse xs ++ acc



reverse with an accumulator

3. Follow Hutton's recipe, but

» Do not pattern match on the accumulator
» Return the accumulator in the base case
» Update the accumulator in the recursive steps

reverse xs = _
where
reverse' acc [] = acc

reverse' acc (x:xs) = reverse' (x:acc) xs

4. Initialize the accumulator in the main call
» When we start, we haven't accumulated any element yet
reverse xs = reverse' [] xs
where
reverse' acc [] = acc
reverse' acc (x:xs) reverse' (x:acc) xs

46



Recursion and Re-use (cooking inits)

inits xs returns the initial segments of xs, that s, all the
lists which are prefixes of the original one

> inits [1,2,3]

[n,r43,01,21,01,2,311

> inits []

(0]

1. Define the type
inits :: [al -> [[a]]
2. Enumerate the cases
inits [] =
inits (x:xs)

47



Cooking initial segments

3. Define the simple (base) cases
inits [] = [[1]
4. Define the other (recursive) cases
» Suppose you have [1,2,3], thatis, 1 : [2,3]
» The initial segments of [2,3] are [[1,[2], [2,3]], what
do you do with the 1?
> |f you put the 1in front of every list, you get
(f11,01,21,[1,2,3]1]
> We are almost there! We are just missing the extra
empty list at the front

inits (x:xs) = [] : prefixWith x (inits xs)

48



king initial segments

prefixWith i a —> [[a]l]l —> [[a]]
prefixWith p [] (]
prefixwith p (ys:yss) (p:ys) : prefixWith p yss



fe king initial segments

prefixWith i a —> [[a]l]l —> [[a]]
prefixWith p [] (]
prefixwith p (ys:yss) (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!

prefixWith p yss = map (p:) yss



Cooking initial segments

49

prefixWith ::a —> [[al]l -> [[all
prefixWith p [] (]
prefixwith p (ys:yss) (p:ys) : prefixWith p yss

prefixWith p yss prefixes every list in yss with a p. Reuse!
prefixWith p yss = map (p:) yss

Use map:

(011
[ : map (x:) (inits xs)

inits []
inits (x:xs)



List comprehensions




comprehensions

[ expr | x <~ list ]
Succint notation for building new lists from old ones

addone :: Num a => [a] -> [a]
addone xs = [x + 1 | x <- xs]

> “Foreachxinxs, returnx + 1"
» Very similar to mathematical notation

{z+1|z € xs}




'irds

[ expr | x <- list, condition ]

-— Check ts a number ts divisible by 2
even :: Integer -> Bool

sumeven :: [Integer] -> Integer
sumeven xs = sum [x | x <- xs, even xJ

» “Take all x in xs such that x is even”

» The result of a comprehension is another list
» We can further consume it with other functions
> In this case, we use sum



s with a list comprehension

(011
[1 : map (x:) (inits xs)

inits []
inits (x:xs8)

or

(0l

[1 : [ x:rs | rs <- inits xsl]

inits []
inits (x:xs)



More List comprehensions; Pattern matching

[ expr | pattern <- list ]

heads :: [[a]l]]l -> [a]
heads xs = [y | (y:_) <- xs]

» Only includes those elements which match the pattern
» In this case, non-empty lists
> heads [[1,2],[1,[3,4,51]
[1,3]
» We can introduce new names, as we do with usual
pattern matching
> In this case, we refer to the head in the result

54



55

Multiple clauses

We can have multiple generators and guards

» Generators provide every possible combination
> [(x,y) | x <= [1,2], y <= [3,4]]
[(1,3),(1,4),(2,3),(2,4)]

» Generators and conditions may refer to each other
> [(x,y) | x <= [1,2,3], y <= [1,2,3], x <=yl
(1,1,01,2),1,3,(2,2),(2,3),(3,3)]
> [(x,y) | x <= [1,2,3], v <= [x .. 3]]
[1,1,1,2),1,3),(2,2),(2,3),(3,3)]



e numbers up to a bound

» Problem: Compute all primes < n




e numbers up to a bound

» Problem: Compute all primes < n

1. Anumber x is a prime iff (z > 2 and) it has exactly two
factors
2. fisafactor of x if the remainder of 7 iszero




Prime numbers up to a bound

» Problem: Compute all primes < n

1. Anumber z is a prime iff (x > 2 and) it has exactly two
factors
2. fisafactor of z if the remainder of % iszero

Good style: divide the problem in parts and refine it

primes  :: Int -> [Int]
primes n = [ x | x <- [2 .. n], isPrime x ]
where isPrime x = _

57/



Prime numbers up to a bound

» Problem: Compute all primes < n

1. Anumber z is a prime iff (x > 2 and) it has exactly two
factors
2. fisafactor of z if the remainder of % iszero

Good style: divide the problem in parts and refine it

primes  :: Int -> [Int]
primes n = [ x | x <~ [2 .. n], isPrime x ]
where isPrime x = length (factors x) ==
factors x

58



Prime numbers up to a bound

» Problem: Compute all primes < n

1. Anumber z is a prime iff (x > 2 and) it has exactly two
Factors
2. fisafactor of x if the remainder of % iszero

Good style: divide the problem in parts and refine it

primes  :: Int -> [Int]
primes n = [ x | x <- [2 .. n], isPrime x ]
length (factors x) ==
[f | £<- [1 .. x]

, X mod” f ==

where isPrime x

factors x

]

59



nctional) QuickSort

» Divide and conquer approach
1. Pick a pivot
2. Partition the elements smaller and larger than the pivot
3. Sort those partitions
4. Put together the list



nctional) QuickSort

» Divide and conquer approach
1. Pick a pivot
> The first element in the list works

2. Partition the elements smaller and larger than the pivot
3. Sort those partitions
4. Put together the list

quicksort [] = [
quicksort (pivot:rest)

undefined



(Functional) QuickSort

» Divide and conquer approach

1. Pick a pivot

2. Partition the elements
3. Sort those partitions

4. Put together the list

quicksort [] =[]
quicksort (pivot:rest)
where smaller = [x |
larger = [x |

undefined
<- rest, x <= pivotl]
<- rest, x > pivot]

Mo

62



(Functional) QuickSort

» Divide and conquer approach

1. Pick a pivot
2. Partition the elements smaller and larger than the pivot

3. Sort those partitions
4. Put together the list

quicksort [] =[]

quicksort (pivot:rest)

quicksort smaller ++ [pivot] ++ quicksort larger
where smaller = [x | x <- rest, x <= pivot]
larger = [x | x <- rest, x > pivot]

63



stion

Define replicate using comprehensions




stion

Define replicate using comprehensions

replicate :: Int -> a -> [a]
replicate n x = [x | _ <= [1 .. n]]




More List Functions




oking Final segments

tails xs returns the final segments of xs, that is, all the
lists which are suffixes of the original one

> tails [1,2,3]
(r1,2,31,02,31,[3]1,[1]
> tails [2,3]

[ [2,3],[31, 1]
> tails [3]
[ (31,01

tails :: [a] -> [[al]
tails [] = [[]]

tails ts@(_:xs) = ts :

tails xs



67

Final segments using initial segments

Final segments of xs seem related to initial segments of
reverse Xs

> tails [1,2,3]
(f+,2,31,02,31,[3]1, ]
> inits [3,2,1]
[, 31,13,21,103,2,11]

» There are two problems with the second result

1. Each of the inner lists is reversed
2. The whole outer list is reversed

> Let's fix this and give an alternative definition of tails



qal segments using initial segments

» To reverse each of the inner lists we use a list
comprehension

> [reverse i | i <- inits [3,2,1]]
(01,r31,12,31,11,2,3]1]
» This leads to this final definition
tails xs = reverse [reverse i
| i <- inits (reverse xs)]



Fizzbuzz

» Write fizzbuzz using direct recursion; test if some
element is divisible by n (and by m) only once.

fizzbuzz :: (Int, Int) -> [Int]
-> ([Int], [Int], [Int])

A call of the form fizzbuzz (m, n) xs should return a
triple with a list in each element:

» The first list contains elements of xs divisible by m
» The second list those divisible by n (and not by m)
» The third list should contain the rest

69



buzz

fizzbuzz (m,n) xs = fb xs

where
b [] = ([1,0,0D
fb (x:xs) = case ( x 'mod™ m == 0
, X mod  n == 0
) of
(True, _ ) -> (x:ms,ns, rs)
(_ , True) -> (ms, x:ns,rs)
( ,_ ) -> (ms, mns, x:rs)
where

(ms,ns,rs) = fb xs



buzz

fizzbuzz (m,n) xs = fb xs

where
b [] = ([1,0,0D
fb (x:xs) = case ( x 'mod™ m == 0
, X mod  n == 0
) of
(True, _ ) -> (x:ms,ns, rs)
(_ , True) -> (ms, x:ns,rs)
( ,_ ) -> (ms, mns, x:rs)
where

(ms,ns,rs) = fb xs

» Exercise: write fizzbuzz using a comprehensions



Final words

Defining recursive functions is like riding a bicycle: it
looks easy when someone else is doing it, may seem
impossible when you first try to do it yourself, but be-
comes simple and natural with practice.

— From "Programming in Haskell”

» On the other hand, don't get too attached to recursion
» Many of these examples have better implementations
using higher-order functions
» Which happens to be the topic for next lecture!

771



	Recursion
	List comprehensions
	More List Functions

