Lecture 4. Data types and type classes

Functional Programming

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Why learn (typed) functional
programming?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Why Haskell?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

| of typed purely functional programming

Keep programs easy to reason about by

» data-flow only through function arguments and return
values
» no hidden data-flow through mutable variables/state

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Goal of typed purely functional programming

Keep programs easy to reason about by

» data-flow only through function arguments and return
values
» no hidden data-flow through mutable variables/state

» (almost) unique types
» no inheritance hell

\\\‘W [Faculty of Science

5; b= ‘T Universiteit Utrecht Information and Computing

3 ‘%AL“ Sciences]

Goal of typed purely functional programming

Keep programs easy to reason about by

» data-flow only through function arguments and return
values
» no hidden data-flow through mutable variables/state

» (almost) unique types
» no inheritance hell

» high-level declarative data-structures
> no explicit reference-based data structures

\\‘W [Faculty of Science

5s NS ‘T Universiteit Utrecht Information and Computing

3 ‘%ﬂ» Sciences]

Goal of typed purely functional programming

Keep programs easy to reason about by

» data-flow only through function arguments and return
values
» no hidden data-flow through mutable variables/state

» (almost) unique types
» no inheritance hell

» high-level declarative data-structures
> no explicit reference-based data structures

» function call and return as only control-flow primitive
» no loops, break, continue, goto

SS\\‘W&) [Faculty of Science

2 a S Information and Computing
= B = Universiteit Utrecht < It g

3 %A@ Sciences]

| of typed purely functional programming:
programs that are easy to reason about

So far:

» data-flow only through function arguments and return
values

» no hidden data-flow through mutable variables/state
> instead: tuples!

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

| of typed purely functional programming:
programs that are easy to reason about

Today:

» (almost) unique types
» noinheritance hell
» instead of classes + inheritance: variant types!
> (almost): type classes

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Goal of typed purely functional programming:
programs that are easy to reason about

Today:

» (almost) unique types
» noinheritance hell
» instead of classes + inheritance: variant types!
» (almost): type classes

» high-level declarative data structures

> no explicit reference-based data structures
> instead: (immutable) algebraic data types!

\\\‘W [Faculty of Science

55 b= ‘T Universiteit Utrecht Information and Computing

5 ‘%ﬂ» Sciences]

Goal of typed purely functional programming:
programs that are easy to reason about

Today:

» (almost) unique types
» noinheritance hell
» instead of classes + inheritance: variant types!
» (almost): type classes

» high-level declarative data structures

> no explicit reference-based data structures
> instead: (immutable) algebraic data types!

Next time:
» function call and return as only control-flow primitive

\\‘W [Faculty of Science

5s NS ‘T Universiteit Utrecht Information and Computing

5 ‘%ﬂ» Sciences]

Goals for today

» Define your own algebraic data types:
> tuples (recap), variants, and recursive
» Define your own type classes and instances
» Understand the difference between parametric and
ad-hoc polymorphism
» Understand the value and limitations of algebraic data
types

Chapter 8 (until 8.6) from Hutton’s book

NV [Faculty of Science
é\\\‘w’;})ﬁ a S Information and Computing
z N] % Universiteit Utrecht Sciences]
N

Data types

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

es and logic — Curry-Howard

Observe

» So far: tuples are like AND

> (A, B) holds pairs of an expression of type A AND one
of type B

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Types and logic — Curry-Howard

Observe

» So far: tuples are like AND

» (A, B) holds pairs of an expression of type A AND one
of type B

» New today: variants/sum types are like OR - to hold
expressions that are either of type A OR of type B

Y

[Faculty of Science
=

2 a S Information and Computing
= b é Universiteit Utrecht < It g

8 %AL“\ Sciences]

Types and logic — Curry-Howard

Observe

» So far: tuples are like AND

» (A, B) holds pairs of an expression of type A AND one
of type B

» New today: variants/sum types are like OR - to hold
expressions that are either of type A OR of type B

> Next time: functions are like IMPLIES

» A -> Bholds expressions which produce one of type B,
IF we supply one of type A

[Faculty of Science
Information and Computing
Sciences]

NI
= IN) é; Universiteit Utrecht

8 %ﬂ@

In the previous lectures...

9

.. we have only used built-in types!

> Basic data types
» Int, Bool, Char...
» Compound types parametrized by others

» Some with a definite number of elements, like tuples
» Some with an indefinite number of them, like lists

It's about time to define our own!

[Faculty of Science
Information and Computing

*&\ % Us Ut hi
%ﬁl§ niversiteit Utrecht S(:iences]

Direction

data Direction = North
| South
| East
| West

» data declares a new data type
» The name of the type must start with Uppercase
» Then we have a number of constructors separated by |

» Each of them also starting by uppercase
» The same constructor cannot be used for different types

» Such asimple data type is called an enumeration

[Faculty of Science
Information and Computing
Sciences]

AW
; N] é; Universiteit Utrecht
w

10

lding a list of directions

Each constructor defines a value of the data type

> :t North
North :: Direction

You can use Direction in the same way as Bool or Int

> :t [North, West]

[North, West] :: [Direction]
> :t (North, True)
(North, True) :: (Direction, Bool)

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

Pattern matching over directions

To define a function, you proceed as usual:

1. Define the type
directionName :: Direction -> String

2. Enumerate the cases
» The cases are each of the constructors

directionName North
directionName South
directionName East
directionName West

[Faculty of Science
Information and Computing
Sciences]

NS
EN \w Universiteit Utrecht
12 NS

tern matching over directions

directionName
directionName
directionName
directionName

["N" s nwu]

& Universiteit Utrecht

North
South
East
West

3. Define each of the cases

IINII
IISII
IIEII
Ilwll

> map directionName [North, West]

[Faculty of Science
Information and Computing
Sciences]

lt-in types are just data types

» Bool is a simple enumeration
data Bool = False | True
» Int and Char can be thought as very long enumerations
data Int -1 101 1] 2]
data Char ["A" | 'B" |
» The compiler treats these in a special way

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Points

Data types may store information within them

data Point = Pt Float Float

» The name of the constructor is followed by the list of
types of each argument

» Constructor and type names may overlap
data Point = Point Float Float

[Faculty of Science
Information and Computing
Sciences]

AW
§ &) % Universiteit Utrecht
15 NS

g points

> To create a point, we use the name of the constructor
followed by the value of each argument
> :t Pt 2.0 3.0
Pt 2.0 3.0 :: Point

[Faculty of Science
Universiteit Utrecht Information and Computlng
Sciences]

Using points

> To create a point, we use the name of the constructor
followed by the value of each argument
> :t Pt 2.0 3.0
Pt 2.0 3.0 :: Point

» To pattern match, we use the name of the constructor
and further matchs over the arguments

norm :: Point -> Float
norm (Pt x y) = sqrt (xxx + yxy)

[Faculty of Science
Information and Computing
Sciences]

NI
§ &) % Universiteit Utrecht
16 NS

Using points

> To create a point, we use the name of the constructor
followed by the value of each argument

> :t Pt 2.0 3.0
Pt 2.0 3.0 :: Point

» To pattern match, we use the name of the constructor
and further matchs over the arguments

norm :: Point -> Float
norm (Pt x y) = sqrt (xxx + yxy)
» Do not forget the parentheses!
>norm Pt x y =x * x +y *xy
<interactive>:2:6: error:
e The constructor ‘Pt’ should have 2 arguments,

but has been given none

Wf/’) [Faculty of Science

é\\\ﬂ é‘. Universiteit Utrecht Information and C()I‘n.])ul,ing
K NJ Sciences]

16 %ﬂ!“

structors are functions

Each constructor in a data type is a function which build a
value of that type given enough arguments

> :t North

North :: Direction -- No arguments

> :t Pt

Pt :: Float -> Float -> Point -- 2 arguments

[Faculty of Science

2 Universiteit Utrecht Information and Computmg
Sciences]

Constructors are functions

Each constructor in a data type is a function which build a
value of that type given enough arguments

> :t North

North :: Direction -- No arguments

> :t Pt

Pt :: Float -> Float -> Point -- 2 arguments

They can be used just like any other function:

zipPoint :: [Float] -> [Float] -> [Point]
zipPoint xs ys = map (uncurry Pt) (zip xs ys) where
uncurry :: (a -> b -> ¢c) -> (a, b) > ¢
uncurry f (x, y) = f xy
— =[Pt zy | (z, y) < zip zs ys]

@W& [Faculty of Science
) . S rmati a) bing
S U= Universiteit Utrecht Information and (()fn})uhng
% “‘. Sciences]

17 K/

A data type may have zero or more constructors, each of
them holding zero or more arguments

data Shape = Rectangle Point Float Float
| Circle Point Float
| Triangle Point Point Point

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

tern matching over shapes

The function perimeter returns the length of the boundary
of a shape

perimeter :: Shape -> Float

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

tern matching over shapes

The function perimeter returns the length of the boundary
of a shape

perimeter :: Shape -> Float

Gentle basic geometry reminder

Prect == 2w + 2h
Priccle = 27

Prriang = dist(a, b) + dist(b, ¢) + dist(c, a)
Try it yourself!

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

Pattern matching over shapes

Each case starts with a constructor —in uppercase —and
matches the arguments

area :: Shape -> Float
area (Rectangle _ w h) =w x h
area (Circle _r) =pix*xr~ 2

area (Triangle x y z) = sqrt (s*(s-a)*(s-b)*(s-c))

-— Heron's formula

where a = distance x y
b = distance y z
c = distance x z
s=(a+b+c) /2

distance (Pt ul u2) (Pt vi v2)
= sqrt ((ul-v1) 2+(u2-v2)~2)

&\ & [Faculty of Science
AL a Ge-q rmati a) bing
= UZ Universiteit Utrecht Information and (()fn})uhn;,
V,@ “\' Sciences]

20

ADTs versus object-oriented classes

abstract class Shape {
abstract float area();
}
class Rectangle : Shape {
public Point corner;
public float width, height;
public float area() { return width * height; }

}
// More for Circle and Triangle

» Thereis no inheritance involved in ADTs

» Constructorsin an ADT are closed, but you can always
add new subclasses in a OO setting

» Classes bundle methods, functions for ADTs are defined
outside the data type

[Faculty of Science

*i\ &) Information and Computing
= Universiteit Utrecht v S puting
%‘I§ Sciences]

21

Nominal versus structural typing

Pt Float Float
Vec Float Float

data Point
data Vector

> These types are structurally equal
» They have the same number of constructors with the
same number and type of arguments
» But for the Haskell compiler, they are unrelated

> You cannot use one in place of the other
» This is called nominal typing

> :t norm

norm :: Point -> Float

> norm (Vec 2.0 3.0)

Couldn't match ‘Point’ with ‘Vector’

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

22

Data types may refer to themselves
» They are called recursive data types; for example

data IntlList
= EmptyList | Cons Int IntList

data IntTree
= EmptyTree | Node Int IntTree IntTree

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Data types may refer to themselves
» They are called recursive data types; for example

data IntlList
= EmptyList | Cons Int IntList

data IntTree
= EmptyTree | Node Int IntTree IntTree

> Let's visualize an example!

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Cooking elemList

1. Define the type
elemlList :: Int -> IntList -> Bool

2. Enumerate the cases
» One equation per constructor
elemList x EmptylList = _
elemList x (Cons y ys) =

3. Define the cases

elemList x EmptyList = False
elemList x (Cons y ys)

| x ==y = True

| otherwise = elemlist x ys

[Faculty of Science
Information and Computing
Sciences]

i\\ %/(.)
7 N ‘5‘ Universiteit Utrecht
24 N

king elemTree

Try it yourselF!

elemTree :: Int -> IntTree -> Bool

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Cooking elemTree

1. Define the type
elemTree :: Int -> IntTree -> Bool

2. Enumerate the cases
» Each constructor needs to come with as many variables

as arguments in its definition
elemTree x EmptyTree =
elemTree x (Node y rs 1ls) =

3. Define the simple (base) cases

elemTree x EmptyTree = False

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

26

Cooking elemTree

4. Define the other (recursive) cases
» Each recursive appearance of the data type as an
argument usually leads to a recursive call in the function
elemTree x (Node y rs 1s)
| x ==y = True
| otherwise = elemTree x rs || elemTree x 1ls

elemTree x (Node y rs 1s)
=x ==y || elemTree x rs || elemTree x 1s

[Faculty of Science
Information and Computing
Sciences]

AW
; N] é; Universiteit Utrecht
w

27

Cooking treeHeight

The function treeHeight computes the height of a tree,
that is, the length of the maximum path from the root to an
EmptyTree.

> treeHeight (Node 42 (Node 1 EmptyTree EmptyTree)

EmptyTree)
2
> treeHeight EmptyTree
0

Try it yourself!

&\ & [Faculty of Science
AL a Ge-q rmati a) bing
= UZ Universiteit Utrecht Information and (()fn})uhn;,
V,@ “\' Sciences]

28

Tree height and size

» The tree heightis the length of the maximum path from
the root to an EmptyTree.
» The tree size is the number of nodes it has.

Question

Can you write a single higher-order function which can be
instantiated to both?

[Faculty of Science
Information and Computing
Sciences]

AW
§ &) % Universiteit Utrecht
29 1 “

oking treeToList

1. Define the type
treeTolist :: IntTree -> IntList
2. Enumerate the cases

treeToList EmptyTree =
treeToList (Node x 1ls rs)

3. Define the simple (base) cases
treeToList EmptyTree = EmptyList

How do we proceed now?

[Faculty of Science

Universiteit Utrecht Information and Computmg
Sciences]

oking treeToList

4. Define the other (recursive) cases
treeToList (Node x 1s rs)
= Cons x (concatList 1s' rs')
where 1ls' = treeTolist 1ls
rs' = treeTolist rs

-— Left as an exzercise to the audience
concatList :: IntList -> IntList

-> IntlList
concatList xs = _

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Polymorphic data types

We have seen examples of types which are parametric
> Lists like [Int], [Booll, [IntTree]...
» Tuples (A, B), (A, B, C)andsoon

Functions over these data types can be polymorphic
» They work regardless of the parameter of the type
(#++) :: [a] -> [a] —> [al
zip :: [a]l -> [b] -> [(a, b)]

[Faculty of Science
Information and Computing
Sciences]

Sy
% &) § Universiteit Utrecht
32 N

Optional values

Maybe T represents a value of type T which might be absent

data Maybe a = Nothing
| Just a

» In the declaration of a polymorphic data type, the name
Maybe is followed by one or more type variables
> Type variables start with a lowercase letter
» The constructors may refer to the type variables in their
arguments
» In this case, Just holds a value of type a

\\‘Wf/} [Faculty of Science
N = a - ati a) ing
= é Universiteit Utrecht Information and Computing

N
3 “{{{{AA» Sciences]

ional values

> :t Just True
Maybe Bool

> :t Nothing
Maybe a

Note that Nothing has a polymorphic type, since there is no
information to fix what a is

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Cooking find

find p xs finds the first element in xs which satisfies p

» Such an element may not exist
» Think of find even [1,3],0or find even []

» Other languages resort to null or magic -1 values
» Haskell always marks a possible absence using Maybe

1. Define the type
find :: (a -> Bool) -> [a] -> Maybe a
2. Enumerate the cases
find p []
find p (x:xs)

[Faculty of Science
Information and Computing
Sciences]

S
; &) é Universiteit Utrecht

&
35 YN

king find

3. Define the simple (base) cases
find _ [] = Nothing
4. Define the other (recursive) cases

find p (x:xs) | p x = Just x
| otherwise = find p xs

[Faculty of Science

Universiteit Utrecht Information and Computlng
Sciences]

min terms of find

Let’s define a small utility function

isJust :: Maybe a -> Bool
isJust Nothing = False
isJust (Just _) = True

Then we can define elem as a composition of other functions

elem :: Eq a => a -> [a] -> Bool
elem x = isJust . find (== x)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

es for any type

We can generalize our IntTree data type

» This is a polymorphic and recursive data type
» Mind the parentheses around the arguments

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

More recipes with trees

Lecture 6

Many more operations over trees!
» Including search trees

&‘W [Faculty of Science
E— a S Information and Computing
ZVF Universiteit Utrecht e —

™

efits and downsides of ADTs

+ Immutable and persistent

+ Pattern matching and recursion

— Limited to directed, acyclic data types

— Incur complexity cost for persistence

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Type classes

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ymorphism: definitions across many types

Parametric polymorphism - Generics

» Define once, not inspecting type
» Works at every instance of parametric data type
(infinitely many)

reverse :: [a] -> [a]

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Polymorphism: definitions across many types

Parametric polymorphism - Generics

» Define once, not inspecting type
» Works at every instance of parametric data type
(infinitely many)

reverse :: [a] —-> [a]

Ad-hoc polymorphism - Overloading

» Define many times, inspecting types
» Works at finitely many types, called instances of type
class, e.g. Num, Eq

(#) :: Num a => a -> a -> a
» Warning! Terminology conflict with other languages

\\‘W [Faculty of Science

5s = ‘T Universiteit Utrecht Information and Computing

43 ‘%ﬂ» Sciences]

ymorphism

Mixing polymorphism
> Mixing examples 1 & 2:

foo :: 777

foo x = x ==

bar :: 7?77
bar x y = (x + 7, y == y)
» Mixing example 3:

baz :: 777

baz x y = (x + 7, y)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ymorphism

Mixing polymorphism
> Mixing examples 1 & 2:

foo :: (Eq a, Num a) => a -> Bool
foo x = x ==

bar :: 7?77
bar x y = (x + 7, y == y)
» Mixing example 3:

baz :: 777

baz x y = (x + 7, y)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ymorphism

Mixing polymorphism
» Mixing 2 type classes

foo :: (Eq a, Num a) => a -> Bool
foo x = x ==

bar :: (Eq a, Num b) => b -> a -> (b, Bool)
bar x y = (x + 7, y == y)

» Mixing example 3:

baz :: 777

baz x y = (x + 7, y)

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

ymorphism

Mixing polymorphism
» Mixing 2 type classes

foo :: (Eq a, Num a) => a -> Bool
foo x = x ==

bar :: (Eq a, Num b) => b -> a -> (b, Bool)
bar x y = (x + 7, y == y)

» Mixing ad-hoc and parametric polymorphism

baz :: Num b => b -> a -> (b, a)
baz x y = (x + 7, y)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Class definition

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

» The name of the type class starts with Uppercase
» We declare a type variable — a in this case — to stand for
the overloaded type in the rest of the declaration
» Each type class defines one or more methods which
must be implemented for each instance
» We do not write the constraint in the methods

NV [Faculty of Science

Eg\‘iwf% Universiteit Utrecht Information and Computing
N

K/

48 %ﬂ!“

Sciences]

Missing instances

> Pt 2.0 3.0 == Pt 2.0 3.0
<interactive>:2:1: error:
e No instance for (Eq Point)
arising from a use of ‘==’

» You have to give the instance declaration for your own
data types, even for built-in type classes
» In some cases, the compiler can write them for you

NV [Faculty of Science
é\\‘wﬁ)ﬁ . . . Information and Computing
7‘;‘{{{{‘1§ Universiteit Utrecht Sciences]

49 s

ance declarations

Pt x y ==
Pt xy /=

True

Universiteit Utrecht

Pt uv
Pt u v

instance Eq Point where

x::u&&y::
x/=ully/=

A%
A%

» Almost like the class declaration, except that

» The type variable is substituted by a real type
> Instead of method types, you give the implementation

> Pt 2.0 3.0 == Pt 2.0 3.0

[Faculty of Science
Information and Computing
Sciences]

Conditional and recursive instances

Type class instances for polymorphic types may depend on
their parameters

» For example, equality of lists, tuples, and trees
» These requisites are listed in front of the declaration

instance (Eq a, Eq b) => Eq (a, b) where
(x, y) == (u, v) =x==ud& y==v

instance Eq a => Eq [a] where

0 == [] = True
W == _ = False
_ == [] = False
(x:x8) == (y:ys) = =y & xs == ys
\\‘W [Faculty of Science

5s NS ‘T Universiteit Utrecht Information and Computing

51 ‘%ﬂ» Sciences]

Overlapping instances

52

Imagine that | want tuples of Ints to work slightly different

instance Eq (Int, Int) where
(x, y) == (u, v) =x * v==y*u

You cannot do this! This instance overlaps with the other
one given for generic tuples

[Faculty of Science
Information and Computing

&y
%ﬂ§ niversiteit Utrecht e —

ursive instances

Write the Eq instance for the Tree data type:

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ursive instances

Write the Eq instance for the Tree data type:

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
EmptyTree == EmptyTree
= True
(Node x1 11 r1) == (Node x2 12 r2)
x1l == x2 && 11 == 12 && rl == 12

False

[Faculty of Science

Universiteit Utrecht Information and Computmg
Sciences]

Superclasses

A class might demand that other class is implemented

» We say that such a class has a superclass
» For example, any class with an ordering — 0rd — has to
implement equality —Eq

class Eq a => Ord a where
(<),), (=), (>=) :: a -> a —> Bool
min, max i a > a —-> a

instance (0Ord a, Ord b) => Ord (a, b) where
(x, y) < (u, vJ | x==1u =y <v
| otherwise = x < u

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

54

The meanings of =>

» In atype, it constrains a polymorphic function
elem :: Eq a => a -> [a] -> Bool
> In a class declaration, it introduces a superclass
class Eq a => Ord a where
» Allinstances of 0rd must be instances of Eq
> In aninstance declaration, it defines a requisite
instance Eq a => Eq [a] where
» Alist [T] supports equality only if T supports it

Before => you write an assumption or precondition

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

55

Default definitions

We could also write the following instance Eq Point

instance Eq Pt where
P coo = PE 000 =
p /: q = not (p == q)

In fact, this definition of (/=) works for any type
» You can include a default definition in Eq
» If aninstance does not have a explicit definition for that
method, the default one is used
class Eq a where
(==), (/=) :: a -> a -> Bool
x /=y =not (x ==y)

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

56

Default definitions

» You could have also defined (/=) outside of the class
(/=) :: Eq a => a -> a -> Bool
x /=y = not (x == y)
» This definition cannot be overriden in each instance

» Why do we prefer (/=) to live in the class?

» Performance! For some data types it is cheaper to check
for disequality than for equality

[Faculty of Science
Information and Computing
Sciences]

AW
§ &) % Universiteit Utrecht
57 NS

Automatic derivation

» Writing equality checks is boring

» Go around all constructors and arguments
» Writing order checks is even more boring
» Turning something into a string is also boring

Let the compiler work for you!

data Point = Pt Float Float
deriving (Eq, Ord, Show)

Historical note: many of the advances in automatic
derivation of type classes where done here at UU

[Faculty of Science
Information and Computing
Sciences]

A
7 &) § Universiteit Utrecht
58 NS

mple: scalable things

Both shapes and vector have a notion of scaling
» Scale the size or scale the norm

class Scalable s where
scale :: Float > s -> s

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Example: scalable things

Both shapes and vector have a notion of scaling
» Scale the size or scale the norm

class Scalable s where
scale :: Float > s -> s

instance Scalable Vector where
scale s (Vec x y) = Vec (s*x) (s*y)

instance Scalable Shape where
scale s (Rectangle p w h)
scale s (Circle pr)
scale s (Triangle x y z)

Rectangle p (s*w) (s*h)
Circle p (s*r)
-- This %s hard

@W@ [Faculty of Science
B o ofl rmati) o
S U= Universiteit Utrecht Information and Computing

59 {%M@. Sciences]

Generic functions for scalable things

» Some functions now work over any scalable thing

double :: Scalable s => s -> s
double = scale 2.0

» We may generic instances for composed scalables

instance Scalable s => Scalable [s] where
scale s = map (scale s)

&\ & [Faculty of Science
A = rmati a) bing
= UZ Universiteit Utrecht Information and C ()fn})uhn;,
V,@ “\' Sciences]

60

Exercise

Think about a generic notion (like scaling)

Define a type class with the least primitive operations
Think of instances for that type class

Think of derived operations using the type class

Post it in the FP Team!

U B~ W =

N [Faculty of Science
5 /); a S Information and Computing
=~ Universiteit Utrecht o

Sy
2 M= Sciences
61 N]

Summary

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ine your own data types!

Data types in Haskell are simple and cheap to define
» Introduce one per concept in your program

-— the following definition

data Status = Stopped | Running
data Process Process ... Status ...
-— 25 better than

data Process = Process ... Bool

-— what does 'True' represent here?

» Use type classes to share commonalities

Universiteit Utrecht

[Faculty of Science
Information and Computing
Sciences]

ortant concepts

» Algebraic data types: tuples, variants, recursive (e.g.,
trees!)
» how to write functions on them using pattern matching

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

bortant concepts

» Algebraic data types: tuples, variants, recursive (e.g.,
trees!)
» how to write functions on them using pattern matching

» Parameterized data types:
» parametric polymorphism

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Important concepts

> Algebraic data types: tuples, variants, recursive (e.g.,
trees!)

» how to write functions on them using pattern matching

» Parameterized data types:
» parametric polymorphism

» Type classes and their instances:
» ad-hoc polymorphism

NV [Faculty of Science
g‘g\‘w’%)ﬁ . . . Information and Computing
%{ATL§ Universiteit Utrecht Sciences]

64 »

Overloaded syntax

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

eric constants’ weird type

What is going on?

> :t 3

3 :: Num t => t

Numeric constants can be turned into any Num type

> 3 :: Integer

3

> 3 :: Float

3.0

> 3 :: Rational -- Type of fractions

3% 1 -— Numerator J, Demominator

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ge syntax

The range syntax [n .. m] is ashorthand for

enumFromTo n m

enumFromTo lives in the class Enum

» Bool and Char are instances, among others
> ['at ., "g]
"abcdefghijklmnopqrstuvwxyz"

[Faculty of Science
2 Universiteit Utrecht Information and Computmg
Sciences]

Maore range syntax

enumFrom :ioa => [a]
enumFromThenTo :: a -> a -> a -> [a]

» enumFrom does not specify a bound for the range
> The list is possibly infinite
> take 5 [1 ..]
[1,2,3,4,5]
» enumFromThenTo generates a list where each pair of
adjacent elements has the same distance
> [1.0, 1.2 .. 2.0]
[1.0,1.2,1.4,1.5999999999999999,
1.7999999999999998,1.9999999999999998]

@W& [Faculty of Science
B o ofl rmati) o
S U= Universiteit Utrecht Information and Computing

o {%M@- Sciences]

iving Enum

enumFromTo can be automatically derived for enumerations
» Data types without data in their constructors

data Direction = North | South | East | West
deriving (Eq, Ord, Show, Enum)

> [South .. West]
== [South, East, West]

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

	Why learn (typed) functional programming?
	Why Haskell?
	Data types
	Type classes
	Summary
	Overloaded syntax

