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Lecture 4. Data types and type classes
Functional Programming
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Why learn (typed) functional
programming?
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Why Haskell?
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Goal of typed purely functional programming

Keep programs easy to reason about by
▶ data-flow only through function arguments and return

values
▶ no hidden data-flow through mutable variables/state

▶ (almost) unique types
▶ no inheritance hell

▶ high-level declarative data-structures
▶ no explicit reference-based data structures

▶ function call and return as only control-flow primitive
▶ no loops, break, continue, goto
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Goal of typed purely functional programming:
programs that are easy to reason about

So far:
▶ data-flow only through function arguments and return

values
▶ no hidden data-flow through mutable variables/state
▶ instead: tuples!
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Goal of typed purely functional programming:
programs that are easy to reason about

Today:
▶ (almost) unique types

▶ no inheritance hell
▶ instead of classes + inheritance: variant types!
▶ (almost): type classes

▶ high-level declarative data structures
▶ no explicit reference-based data structures
▶ instead: (immutable) algebraic data types!

Next time:
▶ function call and return as only control-flow primitive
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Goals for today

▶ Define your own algebraic data types:
▶ tuples (recap), variants, and recursive

▶ Define your own type classes and instances
▶ Understand the difference between parametric and

ad-hoc polymorphism
▶ Understand the value and limitations of algebraic data

types

Chapter 8 (until 8.6) from Hutton’s book
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Data types
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Types and logic – Curry-Howard

Observe
▶ So far: tuples are like AND

▶ (A, B) holds pairs of an expression of type A AND one
of type B

▶ New today: variants/sum types are like OR – to hold
expressions that are either of type AOR of type B

▶ Next time: functions are like IMPLIES
▶ A -> B holds expressions which produce one of type B,

IF we supply one of type A
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In the previous lectures…

…we have only used built-in types!
▶ Basic data types

▶ Int, Bool, Char…
▶ Compound types parametrized by others

▶ Some with a definite number of elements, like tuples
▶ Some with an indefinite number of them, like lists

It’s about time to define our own!
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Direction

data Direction = North
| South
| East
| West

▶ data declares a new data type
▶ The name of the type must start with Uppercase
▶ Then we have a number of constructors separated by |

▶ Each of them also starting by uppercase
▶ The same constructor cannot be used for different types

▶ Such a simple data type is called an enumeration
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Building a list of directions

Each constructor defines a value of the data type

> :t North
North :: Direction

You can use Direction in the same way as Bool or Int

> :t [North, West]
[North, West] :: [Direction]
> :t (North, True)
(North, True) :: (Direction, Bool)
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Pattern matching over directions

To define a function, you proceed as usual:

1. Define the type
directionName :: Direction -> String

2. Enumerate the cases
▶ The cases are each of the constructors

directionName North = _
directionName South = _
directionName East = _
directionName West = _
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Pattern matching over directions

3. Define each of the cases
directionName North = "N"
directionName South = "S"
directionName East = "E"
directionName West = "W"

> map directionName [North, West]
["N","W"]
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Built-in types are just data types

▶ Bool is a simple enumeration
data Bool = False | True

▶ Int and Char can be thought as very long enumerations
data Int = ... | -1 | 0 | 1 | 2 | ...
data Char = ... | 'A' | 'B' | ...
▶ The compiler treats these in a special way
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Points

Data types may store information within them

data Point = Pt Float Float

▶ The name of the constructor is followed by the list of
types of each argument

▶ Constructor and type names may overlap
data Point = Point Float Float
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Using points

▶ To create a point, we use the name of the constructor
followed by the value of each argument
> :t Pt 2.0 3.0
Pt 2.0 3.0 :: Point

▶ To pattern match, we use the name of the constructor
and further matchs over the arguments
norm :: Point -> Float
norm (Pt x y) = sqrt (x*x + y*y)
▶ Do not forget the parentheses!

> norm Pt x y = x * x + y * y
<interactive>:2:6: error:
• The constructor ‘Pt’ should have 2 arguments,
but has been given none
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Constructors are functions

Each constructor in a data type is a function which build a
value of that type given enough arguments

> :t North
North :: Direction -- No arguments
> :t Pt
Pt :: Float -> Float -> Point -- 2 arguments

They can be used just like any other function:

zipPoint :: [Float] -> [Float] -> [Point]
zipPoint xs ys = map (uncurry Pt) (zip xs ys) where

uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry f (x, y) = f x y

-- = [Pt x y | (x, y) <- zip xs ys]
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Shapes

A data type may have zero or more constructors, each of
them holding zero or more arguments

data Shape = Rectangle Point Float Float
| Circle Point Float
| Triangle Point Point Point
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Pattern matching over shapes

The function perimeter returns the length of the boundary
of a shape

perimeter :: Shape -> Float

Gentle basic geometry reminder

Prect = 2w + 2h

Pcircle = 2πr

Ptriang = dist(a, b) + dist(b, c) + dist(c, a)

Try it yourself!
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Pattern matching over shapes

Each case starts with a constructor – in uppercase – and
matches the arguments

area :: Shape -> Float
area (Rectangle _ w h) = w * h
area (Circle _ r) = pi * r ^ 2
area (Triangle x y z) = sqrt (s*(s-a)*(s-b)*(s-c))

-- Heron's formula
where a = distance x y

b = distance y z
c = distance x z
s = (a + b + c) / 2

distance (Pt u1 u2) (Pt v1 v2)
= sqrt ((u1-v1)^2+(u2-v2)^2)
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ADTs versus object-oriented classes

abstract class Shape {
abstract float area();

}
class Rectangle : Shape {

public Point corner;
public float width, height;
public float area() { return width * height; }

}
// More for Circle and Triangle
▶ There is no inheritance involved in ADTs
▶ Constructors in an ADT are closed, but you can always

add new subclasses in a OO setting
▶ Classes bundle methods, functions for ADTs are defined

outside the data type
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Nominal versus structural typing

data Point = Pt Float Float
data Vector = Vec Float Float
▶ These types are structurally equal

▶ They have the same number of constructors with the
same number and type of arguments

▶ But for the Haskell compiler, they are unrelated
▶ You cannot use one in place of the other
▶ This is called nominal typing

> :t norm
norm :: Point -> Float
> norm (Vec 2.0 3.0)
Couldn't match ‘Point’ with ‘Vector’
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Lists and trees of numbers

Data types may refer to themselves
▶ They are called recursive data types; for example

data IntList
= EmptyList | Cons Int IntList

data IntTree
= EmptyTree | Node Int IntTree IntTree

▶ Let’s visualize an example!
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Cooking elemList

1. Define the type
elemList :: Int -> IntList -> Bool

2. Enumerate the cases
▶ One equation per constructor

elemList x EmptyList = _
elemList x (Cons y ys) = _

3. Define the cases
elemList x EmptyList = False
elemList x (Cons y ys)

| x == y = True
| otherwise = elemList x ys



[Faculty of Science
Information and Computing

Sciences]
25

Cooking elemTree

Try it yourself!

elemTree :: Int -> IntTree -> Bool
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Cooking elemTree

1. Define the type
elemTree :: Int -> IntTree -> Bool

2. Enumerate the cases
▶ Each constructor needs to come with as many variables

as arguments in its definition

elemTree x EmptyTree = _
elemTree x (Node y rs ls) = _

3. Define the simple (base) cases
elemTree x EmptyTree = False
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Cooking elemTree

4. Define the other (recursive) cases
▶ Each recursive appearance of the data type as an

argument usually leads to a recursive call in the function

elemTree x (Node y rs ls)
| x == y = True
| otherwise = elemTree x rs || elemTree x ls

-- Or simpler
elemTree x (Node y rs ls)

= x == y || elemTree x rs || elemTree x ls
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Cooking treeHeight

The function treeHeight computes the height of a tree,
that is, the length of the maximum path from the root to an
EmptyTree.

> treeHeight (Node 42 (Node 1 EmptyTree EmptyTree)
EmptyTree)

2
> treeHeight EmptyTree
0

Try it yourself!
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Tree height and size

▶ The tree height is the length of the maximum path from
the root to an EmptyTree.

▶ The tree size is the number of nodes it has.

Question
Can you write a single higher-order function which can be
instantiated to both?
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Cooking treeToList

1. Define the type
treeToList :: IntTree -> IntList

2. Enumerate the cases
treeToList EmptyTree = _
treeToList (Node x ls rs) = _

3. Define the simple (base) cases
treeToList EmptyTree = EmptyList

How do we proceed now?
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Cooking treeToList

4. Define the other (recursive) cases
treeToList (Node x ls rs)

= Cons x (concatList ls' rs')
where ls' = treeToList ls

rs' = treeToList rs

-- Left as an exercise to the audience
concatList :: IntList -> IntList

-> IntList
concatList xs = _
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Polymorphic data types

We have seen examples of types which are parametric
▶ Lists like [Int], [Bool], [IntTree]…
▶ Tuples (A, B), (A, B, C) and so on

Functions over these data types can be polymorphic
▶ They work regardless of the parameter of the type

(++) :: [a] -> [a] -> [a]
zip :: [a] -> [b] -> [(a, b)]
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Optional values

Maybe T represents a value of type Twhich might be absent

data Maybe a = Nothing
| Just a

▶ In the declaration of a polymorphic data type, the name
Maybe is followed by one or more type variables
▶ Type variables start with a lowercase letter

▶ The constructors may refer to the type variables in their
arguments
▶ In this case, Just holds a value of type a
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Optional values

> :t Just True
Maybe Bool
> :t Nothing
Maybe a

Note that Nothing has a polymorphic type, since there is no
information to fix what a is
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Cooking find

find p xs finds the first element in xswhich satisfies p
▶ Such an element may not exist

▶ Think of find even [1,3], or find even []
▶ Other languages resort to null or magic -1 values
▶ Haskell always marks a possible absence using Maybe

1. Define the type
find :: (a -> Bool) -> [a] -> Maybe a

2. Enumerate the cases
find p [] = _
find p (x:xs) = _
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Cooking find

3. Define the simple (base) cases
find _ [] = Nothing

4. Define the other (recursive) cases
find p (x:xs) | p x = Just x

| otherwise = find p xs
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elem in terms of find

Let’s define a small utility function

isJust :: Maybe a -> Bool
isJust Nothing = False
isJust (Just _) = True

Then we can define elem as a composition of other functions

elem :: Eq a => a -> [a] -> Bool
elem x = isJust . find (== x)
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Trees for any type

We can generalize our IntTree data type
▶ This is a polymorphic and recursive data type
▶ Mind the parentheses around the arguments

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)
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More recipes with trees

Lecture 6
Many more operations over trees!
▶ Including search trees
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Benefits and downsides of ADTs

+ Immutable and persistent

+ Pattern matching and recursion

− Limited to directed, acyclic data types

− Incur complexity cost for persistence
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Type classes
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Polymorphism: definitions across many types

Parametric polymorphism - Generics
▶ Define once, not inspecting type
▶ Works at every instance of parametric data type

(infinitely many)

reverse :: [a] -> [a]
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Polymorphism: definitions across many types

Parametric polymorphism - Generics
▶ Define once, not inspecting type
▶ Works at every instance of parametric data type

(infinitely many)

reverse :: [a] -> [a]

Ad-hoc polymorphism - Overloading
▶ Define many times, inspecting types
▶ Works at finitely many types, called instances of type

class, e.g. Num, Eq
(+) :: Num a => a -> a -> a

▶ Warning! Terminology conflict with other languages
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Polymorphism

Mixing polymorphism
▶ Mixing examples 1 & 2:

foo :: ???
foo x = x == 7

bar :: ???
bar x y = (x + 7, y == y)

▶ Mixing example 3:

baz :: ???
baz x y = (x + 7, y)
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Polymorphism

Mixing polymorphism
▶ Mixing examples 1 & 2:

foo :: (Eq a, Num a) => a -> Bool
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▶ Mixing example 3:
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Polymorphism

Mixing polymorphism
▶ Mixing 2 type classes

foo :: (Eq a, Num a) => a -> Bool
foo x = x == 7

bar :: (Eq a, Num b) => b -> a -> (b, Bool)
bar x y = (x + 7, y == y)

▶ Mixing example 3:

baz :: ???
baz x y = (x + 7, y)
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Polymorphism

Mixing polymorphism
▶ Mixing 2 type classes

foo :: (Eq a, Num a) => a -> Bool
foo x = x == 7

bar :: (Eq a, Num b) => b -> a -> (b, Bool)
bar x y = (x + 7, y == y)

▶ Mixing ad-hoc and parametric polymorphism

baz :: Num b => b -> a -> (b, a)
baz x y = (x + 7, y)
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Class definition

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

▶ The name of the type class starts with Uppercase
▶ We declare a type variable – a in this case – to stand for

the overloaded type in the rest of the declaration
▶ Each type class defines one or more methods which

must be implemented for each instance
▶ We do not write the constraint in the methods
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Missing instances

> Pt 2.0 3.0 == Pt 2.0 3.0
<interactive>:2:1: error:

• No instance for (Eq Point)
arising from a use of ‘==’

▶ You have to give the instance declaration for your own
data types, even for built-in type classes
▶ In some cases, the compiler can write them for you
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Instance declarations

instance Eq Point where
Pt x y == Pt u v = x == u && y == v
Pt x y /= Pt u v = x /= u || y /= v

▶ Almost like the class declaration, except that
▶ The type variable is substituted by a real type
▶ Instead of method types, you give the implementation

> Pt 2.0 3.0 == Pt 2.0 3.0
True
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Conditional and recursive instances

Type class instances for polymorphic types may depend on
their parameters
▶ For example, equality of lists, tuples, and trees
▶ These requisites are listed in front of the declaration

instance (Eq a, Eq b) => Eq (a, b) where
(x, y) == (u, v) = x == u && y == v

instance Eq a => Eq [a] where
[] == [] = True
[] == _ = False
_ == [] = False
(x:xs) == (y:ys) = x == y && xs == ys
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Overlapping instances

Imagine that I want tuples of Ints to work slightly different

instance Eq (Int, Int) where
(x, y) == (u, v) = x * v == y * u

You cannot do this! This instance overlaps with the other
one given for generic tuples
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Recursive instances

Write the Eq instance for the Tree data type:

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
EmptyTree == EmptyTree

= True
(Node x1 l1 r1) == (Node x2 l2 r2)

= x1 == x2 && l1 == l2 && r1 == r2
_ == _
= False



[Faculty of Science
Information and Computing

Sciences]
53

Recursive instances

Write the Eq instance for the Tree data type:

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
EmptyTree == EmptyTree

= True
(Node x1 l1 r1) == (Node x2 l2 r2)

= x1 == x2 && l1 == l2 && r1 == r2
_ == _
= False



[Faculty of Science
Information and Computing

Sciences]
54

Superclasses

A class might demand that other class is implemented
▶ We say that such a class has a superclass
▶ For example, any class with an ordering – Ord – has to

implement equality – Eq

class Eq a => Ord a where
(<), (>), (<=), (>=) :: a -> a -> Bool
min, max :: a -> a -> a

instance (Ord a, Ord b) => Ord (a, b) where
(x, y) < (u, v) | x == u = y < v

| otherwise = x < u
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The meanings of =>

▶ In a type, it constrains a polymorphic function
elem :: Eq a => a -> [a] -> Bool

▶ In a class declaration, it introduces a superclass
class Eq a => Ord a where ...
▶ All instances of Ordmust be instances of Eq

▶ In an instance declaration, it defines a requisite
instance Eq a => Eq [a] where ...
▶ A list [T] supports equality only if T supports it

Before => you write an assumption or precondition
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Default definitions

We could also write the following instance Eq Point

instance Eq Pt where
Pt ... == Pt ... = _ -- as before
p /= q = not (p == q)

In fact, this definition of (/=)works for any type
▶ You can include a default definition in Eq
▶ If an instance does not have a explicit definition for that

method, the default one is used
class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
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Default definitions

▶ You could have also defined (/=) outside of the class
(/=) :: Eq a => a -> a -> Bool
x /= y = not (x == y)
▶ This definition cannot be overriden in each instance

▶ Why do we prefer (/=) to live in the class?
▶ Performance! For some data types it is cheaper to check

for disequality than for equality
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Automatic derivation

▶ Writing equality checks is boring
▶ Go around all constructors and arguments

▶ Writing order checks is even more boring
▶ Turning something into a string is also boring

Let the compiler work for you!

data Point = Pt Float Float
deriving (Eq, Ord, Show)

Historical note: many of the advances in automatic
derivation of type classes where done here at UU
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Example: scalable things

Both shapes and vector have a notion of scaling
▶ Scale the size or scale the norm

class Scalable s where
scale :: Float -> s -> s

instance Scalable Vector where
scale s (Vec x y) = Vec (s*x) (s*y)

instance Scalable Shape where
scale s (Rectangle p w h) = Rectangle p (s*w) (s*h)
scale s (Circle p r) = Circle p (s*r)
scale s (Triangle x y z) = ... -- This is hard
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scale s (Circle p r) = Circle p (s*r)
scale s (Triangle x y z) = ... -- This is hard
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Generic functions for scalable things

▶ Some functions now work over any scalable thing
double :: Scalable s => s -> s
double = scale 2.0

▶ Wemay generic instances for composed scalables
instance Scalable s => Scalable [s] where

scale s = map (scale s)
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Exercise

1. Think about a generic notion (like scaling)
2. Define a type class with the least primitive operations
3. Think of instances for that type class
4. Think of derived operations using the type class
5. Post it in the FP Team!
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Summary
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Define your own data types!

Data types in Haskell are simple and cheap to define
▶ Introduce one per concept in your program

-- the following definition
data Status = Stopped | Running
data Process = Process ... Status ...
-- is better than
data Process = Process ... Bool ...
-- what does 'True' represent here?

▶ Use type classes to share commonalities
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Important concepts

▶ Algebraic data types: tuples, variants, recursive (e.g.,
trees!)
▶ how to write functions on them using pattern matching

▶ Parameterized data types:
▶ parametric polymorphism

▶ Type classes and their instances:
▶ ad-hoc polymorphism



[Faculty of Science
Information and Computing

Sciences]
64

Important concepts

▶ Algebraic data types: tuples, variants, recursive (e.g.,
trees!)
▶ how to write functions on them using pattern matching

▶ Parameterized data types:
▶ parametric polymorphism

▶ Type classes and their instances:
▶ ad-hoc polymorphism



[Faculty of Science
Information and Computing

Sciences]
64

Important concepts

▶ Algebraic data types: tuples, variants, recursive (e.g.,
trees!)
▶ how to write functions on them using pattern matching

▶ Parameterized data types:
▶ parametric polymorphism

▶ Type classes and their instances:
▶ ad-hoc polymorphism



[Faculty of Science
Information and Computing

Sciences]
65

Overloaded syntax
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Numeric constants’ weird type

What is going on?

> :t 3
3 :: Num t => t
Numeric constants can be turned into any Num type
> 3 :: Integer
3
> 3 :: Float
3.0
> 3 :: Rational -- Type of fractions
3 % 1 -- Numerator % Denominator
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Range syntax

The range syntax [n .. m] is a shorthand for

enumFromTo n m

enumFromTo lives in the class Enum

▶ Bool and Char are instances, among others
> ['a' .. 'z']
"abcdefghijklmnopqrstuvwxyz"
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More range syntax

enumFrom :: a -> [a]
enumFromThenTo :: a -> a -> a -> [a]

▶ enumFrom does not specify a bound for the range
▶ The list is possibly infinite

> take 5 [1 ..]
[1,2,3,4,5]

▶ enumFromThenTo generates a list where each pair of
adjacent elements has the same distance
> [1.0, 1.2 .. 2.0]
[1.0,1.2,1.4,1.5999999999999999,
1.7999999999999998,1.9999999999999998]
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Deriving Enum

enumFromTo can be automatically derived for enumerations
▶ Data types without data in their constructors

data Direction = North | South | East | West
deriving (Eq, Ord, Show, Enum)

> [South .. West]
[South, East, West]
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