
[Faculty of Science
Information and Computing

Sciences]
0

Lecture 9. Input and output
Functional Programming

[Faculty of Science
Information and Computing

Sciences]
1

Big picture

▶ This course: typed, purely functional programming
▶ Today: purity and impurity

[Faculty of Science
Information and Computing

Sciences]
2

Goals

▶ Learn the difference between pure and impure
▶ Interact with the outside world in Haskell

▶ Input/output
▶ Random generation

▶ Introduce do- and monadic notation through an
example

Chapter 10 from Hutton’s book

[Faculty of Science
Information and Computing

Sciences]
3

Interactive programs

▶ In the old days, all programs were batch programs
▶ Introduce the program and input, sit and drink

tea/coffee for hours, and get the output
▶ Programs were isolated from each other
▶ The part of Haskell your have learnt up to now

▶ In this modern era, programs are interactive
▶ Respond to user input, more like a dialogue
▶ From the perspective of a program, it needs to

communicate with an outside world
▶ Examples?
▶ Today: how we model this in Haskell!

[Faculty of Science
Information and Computing

Sciences]
3

Interactive programs

▶ In the old days, all programs were batch programs
▶ Introduce the program and input, sit and drink

tea/coffee for hours, and get the output
▶ Programs were isolated from each other
▶ The part of Haskell your have learnt up to now

▶ In this modern era, programs are interactive
▶ Respond to user input, more like a dialogue
▶ From the perspective of a program, it needs to

communicate with an outside world
▶ Examples?
▶ Today: how we model this in Haskell!

[Faculty of Science
Information and Computing

Sciences]
4

Purity = referential transparency

Referential transparency = you can always substitute a term
by its definition without change in the meaning

▶ Inlining:
let x = e in ... x ... x ...
is always equivalent to:
... e ... e ...
is always equivalent to:
(\x -> ... x ... x ...) e
is always equivalent to:
... x ... x ... where x = e

[Faculty of Science
Information and Computing

Sciences]
4

Purity = referential transparency

Referential transparency = you can always substitute a term
by its definition without change in the meaning

▶ Inlining:
let x = e in ... x ... x ...
is always equivalent to:
... e ... e ...
is always equivalent to:
(\x -> ... x ... x ...) e
is always equivalent to:
... x ... x ... where x = e

[Faculty of Science
Information and Computing

Sciences]
5

Referential transparency

A concrete example:

reverse xs ++ xs
where xs = filter p ys

is equivalent to:

reverse (filter p ys) ++ filter p ys

Note that the second version duplicates work, but we are
speaking here about the meaning of the expression, not its
efficiency

[Faculty of Science
Information and Computing

Sciences]
5

Referential transparency

A concrete example:

reverse xs ++ xs
where xs = filter p ys

is equivalent to:

reverse (filter p ys) ++ filter p ys

Note that the second version duplicates work, but we are
speaking here about the meaning of the expression, not its
efficiency

[Faculty of Science
Information and Computing

Sciences]
6

Referential transparency: why care?

▶ Copying/duplication (contraction)
let x1 = e; x2 = e in t
is always equivalent to:
let x1 = e in t[x1/x2]

▶ Discarding (weakening)
let x = e in t
if t does not mention x, is equivalent to :
t

▶ Commuting/reordering (exchange)
let x1 = e1; x2 = e2 in t
is always equivalent to:
let x2 = e2; x1 = e1 in t

[Faculty of Science
Information and Computing

Sciences]
6

Referential transparency: why care?

▶ Copying/duplication (contraction)
let x1 = e; x2 = e in t
is always equivalent to:
let x1 = e in t[x1/x2]

▶ Discarding (weakening)
let x = e in t
if t does not mention x, is equivalent to :
t

▶ Commuting/reordering (exchange)
let x1 = e1; x2 = e2 in t
is always equivalent to:
let x2 = e2; x1 = e1 in t

[Faculty of Science
Information and Computing

Sciences]
6

Referential transparency: why care?

▶ Copying/duplication (contraction)
let x1 = e; x2 = e in t
is always equivalent to:
let x1 = e in t[x1/x2]

▶ Discarding (weakening)
let x = e in t
if t does not mention x, is equivalent to :
t

▶ Commuting/reordering (exchange)
let x1 = e1; x2 = e2 in t
is always equivalent to:
let x2 = e2; x1 = e1 in t

[Faculty of Science
Information and Computing

Sciences]
6

Referential transparency: why care?

▶ Copying/duplication (contraction)
let x1 = e; x2 = e in t
is always equivalent to:
let x1 = e in t[x1/x2]

▶ Discarding (weakening)
let x = e in t
if t does not mention x, is equivalent to :
t

▶ Commuting/reordering (exchange)
let x1 = e1; x2 = e2 in t
is always equivalent to:
let x2 = e2; x1 = e1 in t

[Faculty of Science
Information and Computing

Sciences]
7

Referential transparency

▶ Referential transparency decouples the meaning of the
program from the order of evaluation
▶ Inlining or duplicating does not change the program

▶ This has practical advantages:
▶ The compiler can reorder your program for efficiency
▶ Expressions are only evaluated (once) when really

needed
▶ This is called lazy evaluation

▶ Paralellism becomes much easier

[Faculty of Science
Information and Computing

Sciences]
7

Referential transparency

▶ Referential transparency decouples the meaning of the
program from the order of evaluation
▶ Inlining or duplicating does not change the program

▶ This has practical advantages:
▶ The compiler can reorder your program for efficiency
▶ Expressions are only evaluated (once) when really

needed
▶ This is called lazy evaluation

▶ Paralellism becomes much easier

[Faculty of Science
Information and Computing

Sciences]
8

Side-effects

Interaction with the world in not referentially transparent!

Any examples?

Suppose that getChar :: Char retrieves the next key
stroke from the user
Why is

let k = getChar in k == k
not referentially transparent?

[Faculty of Science
Information and Computing

Sciences]
8

Side-effects

Interaction with the world in not referentially transparent!

Any examples?
Suppose that getChar :: Char retrieves the next key
stroke from the user
Why is

let k = getChar in k == k
not referentially transparent?

[Faculty of Science
Information and Computing

Sciences]
9

Side-effects

Interaction with the world in not referentially transparent!

Any examples?
Suppose that getChar :: Char retrieves the next key
stroke from the user

let k = getChar in k == k
is always True, whereas this is not the case with
getChar == getChar
We say that getChar is a side-effectful action
▶ getChar is also called an impure function

[Faculty of Science
Information and Computing

Sciences]
10

Side-effects

▶ Many other actions have side-effects (why?)
▶ Printing to the screen
▶ Generate a random number
▶ Communicate through a network
▶ Talk to a database

▶ Intuitively, these actions influence the outside world
▶ Key properties: we cannot dicard/duplicate/exchange

the world
▶ And thus we cannot substitute for free

[Faculty of Science
Information and Computing

Sciences]
11

Haskell typing of code with IO/side-effects

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char
getLine :: IO String
getArgs :: IO [String]

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()
.
.
.

[Faculty of Science
Information and Computing

Sciences]
12

Modelling output

Following this idea, we model an action by a function which
changes the world

type IOCom = World -> World -- IO ()

Using IOCom we can give a type to putChar

putChar :: Char -> IOCom
putChar c world = ... -- details hidden

How should we think of World and putChar?

[Faculty of Science
Information and Computing

Sciences]
12

Modelling output

Following this idea, we model an action by a function which
changes the world

type IOCom = World -> World -- IO ()

Using IOCom we can give a type to putChar

putChar :: Char -> IOCom
putChar c world = ... -- details hidden

How should we think of World and putChar?

[Faculty of Science
Information and Computing

Sciences]
13

Combining output actions

Executing two actions in sequence is plain composition

putAB :: IOCom
putAB world = putChar 'b' (putChar 'a' world)
-- or using composition
putAB = putChar 'b' . putChar 'a'

[Faculty of Science
Information and Computing

Sciences]
14

putStr, first version

putStr s prints the whole string to the screen

putStr :: String -> IOCom
putStr [] = id -- keep the world as it is
putStr (c:cs) = putStr cs . putChar c

putStrLn s does the same, with a newline at the end

putStrLn s = putChar '\n' . putStr s

[Faculty of Science
Information and Computing

Sciences]
15

Modelling input

Our IOCom type is not suitable for getChar. Why not? Fix?

▶ Solution: pair the output value with the new world
type IO a = World -> (a, World)

getChar :: IO Char
getChar = ... -- details hidden

What is now the return type of putChar?
▶ We use the empty tuple as a dummy value

putChar :: Char -> IO ()

[Faculty of Science
Information and Computing

Sciences]
15

Modelling input

Our IOCom type is not suitable for getChar. Why not? Fix?
▶ Solution: pair the output value with the new world

type IO a = World -> (a, World)

getChar :: IO Char
getChar = ... -- details hidden

What is now the return type of putChar?

▶ We use the empty tuple as a dummy value
putChar :: Char -> IO ()

[Faculty of Science
Information and Computing

Sciences]
15

Modelling input

Our IOCom type is not suitable for getChar. Why not? Fix?
▶ Solution: pair the output value with the new world

type IO a = World -> (a, World)

getChar :: IO Char
getChar = ... -- details hidden

What is now the return type of putChar?
▶ We use the empty tuple as a dummy value

putChar :: Char -> IO ()

[Faculty of Science
Information and Computing

Sciences]
16

Combining input and output

Suppose that we want to echo a character

echo = putChar getChar
• Couldn't match expected type ‘Char’

with actual type ‘IO Char’

[Faculty of Science
Information and Computing

Sciences]
17

Combining input and output

Let’s try again with function composition

echo = putChar . getChar
• Couldn't match expected type ‘IO b’

with actual type ‘Char -> IO ()’

getChar :: IO Char
-- World -> (Char, World)

putChar :: Char -> IO ()
-- Char -> World -> ((), World)

(.) :: (b -> c) -> (a -> b) -> a -> c

Types do not fit, since b should be both (Char, World) –
from getChar – and Char – from putChar

[Faculty of Science
Information and Computing

Sciences]
18

Solution: bind

(>>=) – pronounced “bind” – takes care of threading the
world around

(>>=) :: IO a -> (a -> IO b) -> IO b
(f >>= g) w = ...

Based on the output of the first action, we choose which
action to perform next

echo = getChar >>= \c -> putChar c
-- also getChar >>= putChar

[Faculty of Science
Information and Computing

Sciences]
19

Solution: bind

(>>=) – pronounced “bind” – takes care of threading the
world around

(>>=) :: IO a -> (a -> IO b) -> IO b
(f >>= g) w = g a' w' where

(a', w') = f w

Based on the output of the first action, we choose which
action to perform next

echo = getChar >>= \c -> putChar c
-- also getChar >>= putChar

[Faculty of Science
Information and Computing

Sciences]
20

Uppercase input

We want to build a getUpper function which returns the
uppercase version of the last keystroke

getChar :: IO Char
toUpper :: Char -> Char

getUpper = getChar >>= \c -> toUpper c
• Couldn't match expected type ‘IO Char’

with actual type ‘Char’

[Faculty of Science
Information and Computing

Sciences]
21

Uppercase input

We need a way to embed pure computations, like toUpper,
in the impure world

return :: a -> IO a
return a = ...

Warning! return is indeed a very confusing name
▶ Does not “break” the flow of the function
▶ A more apt synonym is available, pure

getUpper = getChar >>= \c -> return (toUpper c)
-- getChar >>= return . toUpper

[Faculty of Science
Information and Computing

Sciences]
22

Uppercase input

We need a way to embed pure computations, like toUpper,
in the impure world

return :: a -> IO a
return a = \w -> (a, w)

Warning! return is indeed a very confusing name
▶ Does not “break” the flow of the function
▶ A more apt synonym is available, pure

getUpper = getChar >>= \c -> return (toUpper c)
-- getChar >>= return . toUpper

[Faculty of Science
Information and Computing

Sciences]
23

Preserving purity

There is no bridge back from the impure to the pure world

backFromHell :: IO a -> a

Why?

In this way we ensure that the outside world never “infects”
pure expressions
▶ Referential transparency is preserved

[Faculty of Science
Information and Computing

Sciences]
23

Preserving purity

There is no bridge back from the impure to the pure world

backFromHell :: IO a -> a

Why?
In this way we ensure that the outside world never “infects”
pure expressions
▶ Referential transparency is preserved

[Faculty of Science
Information and Computing

Sciences]
24

Mixing IO and recursion

When dealing with IO, we cannot directly pattern match
▶ We often use case expressions after (>>=)

mystery :: IO String
mystery = getChar >>= (\c ->

case c of
'\n' -> return []
_ -> mystery >>= (\rest ->

return (c : rest)
)

)

What does this code do?

Working directly with (>>=) is very cumbersome!

[Faculty of Science
Information and Computing

Sciences]
24

Mixing IO and recursion

When dealing with IO, we cannot directly pattern match
▶ We often use case expressions after (>>=)

mystery :: IO String
mystery = getChar >>= (\c ->

case c of
'\n' -> return []
_ -> mystery >>= (\rest ->

return (c : rest)
)

)

What does this code do?
Working directly with (>>=) is very cumbersome!

[Faculty of Science
Information and Computing

Sciences]
25

Mixing IO and recursion

When dealing with IO, we cannot directly pattern match
▶ We often use case expressions after (>>=)

getLine :: IO String
getLine = getChar >>= (\c ->

case c of
'\n' -> return []
_ -> getLine >>= (\rest ->

return (c : rest)
)

)

Working directly with (>>=) is very cumbersome!

[Faculty of Science
Information and Computing

Sciences]
26

do-notation

Luckily, Haskell has specific notation for IO

getLine = do c <- getChar
case c of

'\n' -> return []
_ -> do rest <- getLine

return (c : rest)

Blocks for IO start with the keyword do
▶ <- gives a name to the result of an IO action
▶ The notation was chosen to “look imperative”

[Faculty of Science
Information and Computing

Sciences]
27

Cooking putStr

Let us write putStr with the new combinators

putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = putChar c >>= (_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = do putChar c

putStr cs

[Faculty of Science
Information and Computing

Sciences]
27

Cooking putStr

Let us write putStr with the new combinators

putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = putChar c >>= (_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = do putChar c

putStr cs

[Faculty of Science
Information and Computing

Sciences]
27

Cooking putStr

Let us write putStr with the new combinators

putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = putChar c >>= (_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> IO ()
putStr [] = return ()
putStr (c:cs) = do putChar c

putStr cs

[Faculty of Science
Information and Computing

Sciences]
28

do-notation, in general

A general do block is translated as nested (>>=)

do x1 <- a1 a1 >>= (\x1 ->
x2 <- a2 a2 >>= (\x2 ->
... ===> ...
xn <- an an >>= (\xn ->
expr expr) ...))

In addition, if you don’t care about a value, you can write
simply ai instead of _ <- ai

Rule of thumb: do not think about (>>=) at all, just use do

[Faculty of Science
Information and Computing

Sciences]
29

Guess a number

Pick a number between 1 and 100.
Is it 50? (g = greater, l = less, c = correct)
g
Is it 75? (g = greater, l = less, c = correct)
l
Is it 62? (g = greater, l = less, c = correct)
g
Is it 68? (g = greater, l = less, c = correct)
l
Is it 65? (g = greater, l = less, c = correct)
c
Guessed

[Faculty of Science
Information and Computing

Sciences]
30

Guess a number

We do binary search over the list of numbers
▶ At each step, we pick the middle value as a guess

guess :: Int -> Int -> IO ()
guess l u

= do let m = (u + l) `div` 2
putStr ("Is it " ++ show m ++ "?")
putStrLn "(g = greater, l = less, c = correct)"
k <- getChar
case k of

'g' -> guess (m + 1) u
'l' -> guess l (m - 1)
'c' -> putStrLn "Guessed"
_ -> do putStrLn "Press type g/l/c!"

guess l u

[Faculty of Science
Information and Computing

Sciences]
31

Guess a number, main program

When an executable written in Haskell starts, the main
function is called
▶ main always has type IO ()

main :: IO ()
main = do (l:u:_) <- getArgs

guess (read l) (read u)

▶ getArgs :: IO [String] obtains program arguments
▶ read :: Read a => String -> a

▶ Parses a String into a value
▶ In this case, we parse it into an Int

[Faculty of Science
Information and Computing

Sciences]
32

Summary of basic I/O actions

return :: ???
(>>=) :: ???

getChar :: ???
getLine :: ???
getArgs :: ???

putChar :: ???
putStr :: ???
putStrLn :: ???

[Faculty of Science
Information and Computing

Sciences]
33

Summary of basic I/O actions

return :: a -> IO a
(>>=) :: IO a -> (a -> IO b) -> IO b

getChar :: IO Char
getLine :: IO String
getArgs :: IO [String]

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()

[Faculty of Science
Information and Computing

Sciences]
34

Dealing with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: ???
writeFile :: ???

[Faculty of Science
Information and Computing

Sciences]
35

Dealing with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()

The following functions are often convenient

lines :: String -> [String] -- break at '\n'
unlines :: [String] -> String -- join lines

-- convert back and forth
show :: Show a => a -> String
read :: Read a => String -> a

[Faculty of Science
Information and Computing

Sciences]
36

Guess a number, bounds from file

main :: IO ()
main = do -- Read the contents of the file

config <- readFile "guess.config"
-- Get the first two lines
let l:u:_ = lines config
-- Parse the numbers and start guessing
guess (read l) (read u)

[Faculty of Science
Information and Computing

Sciences]
37

IO as first-class citizens

[Faculty of Science
Information and Computing

Sciences]
38

IO actions are first-class

In the same way as you do with functions
▶ An IO action can be an argument or result of a function
▶ IO actions can be put in a list or other container

map (\name -> putStrLn ("Hello, " ++ name))
["Mary", "John"] :: [IO ()]

[Faculty of Science
Information and Computing

Sciences]
39

Building versus execution of IO actions

map (\name -> putStrLn ("Hello, " ++ name))
["Mary", "John"] :: [IO ()]

Running this code prints nothing to the screen
▶ We say that it builds the IO actions: describes what

needs to be done but does not do it yet

To obtain the side-effects, you need to execute the actions
▶ At the interpreter prompt
▶ In a do block which is ultimately called by main
▶ An executed action always has a IO T type

[Faculty of Science
Information and Computing

Sciences]
40

Execute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type
sequence_ :: [IO a] -> IO ()

2. Enumerate the cases
sequence_ [] = _
sequence_ (a:as) = _

3. Define the cases
sequence_ [] = return ()
sequence_ (a:as) = do a

sequence_ as

[Faculty of Science
Information and Computing

Sciences]
40

Execute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type
sequence_ :: [IO a] -> IO ()

2. Enumerate the cases
sequence_ [] = _
sequence_ (a:as) = _

3. Define the cases
sequence_ [] = return ()
sequence_ (a:as) = do a

sequence_ as

[Faculty of Science
Information and Computing

Sciences]
40

Execute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type
sequence_ :: [IO a] -> IO ()

2. Enumerate the cases
sequence_ [] = _
sequence_ (a:as) = _

3. Define the cases
sequence_ [] = return ()
sequence_ (a:as) = do a

sequence_ as

[Faculty of Science
Information and Computing

Sciences]
41

Execute a list of actions

We have all the ingredients to greet a list of people

greet :: [String] -> IO ()
greet = sequence_

. map (\name -> putStrLn ("Hello, " ++ name))

This combination is very common, so the library defines

mapM_ :: (a -> IO b) -> [a] -> IO ()

greet = mapM_ (\name -> putStrLn ("Hello, " ++ name))

[Faculty of Science
Information and Computing

Sciences]
41

Execute a list of actions

We have all the ingredients to greet a list of people

greet :: [String] -> IO ()
greet = sequence_

. map (\name -> putStrLn ("Hello, " ++ name))

This combination is very common, so the library defines

mapM_ :: (a -> IO b) -> [a] -> IO ()

greet = mapM_ (\name -> putStrLn ("Hello, " ++ name))

[Faculty of Science
Information and Computing

Sciences]
42

Execute a list of actions

By just flipping the order of arguments, we can write
“imperative-looking” code

forM_ :: [a] -> (a -> IO b) -> IO ()
forM_ = flip mapM_

greet names = forM_ names $ \name ->
putStrLn ("Hello, " ++ name)

[Faculty of Science
Information and Computing

Sciences]
43

Answer to a yes-no questions

poseQuestion q prints a question to the screen, obtains a y
or n input from the user and returns it as a Boolean

poseQuestion :: String -> IO Bool
poseQuestion q

= do putStr q
putStrLn "Answer (y) or (n)"
(k:_) <- getLine
case k of

'y' -> return True
'n' -> return False
_ -> do putStrLn "Answer (y) or (n)"

poseQuestion q

[Faculty of Science
Information and Computing

Sciences]
44

Gathering all answers

Once again, if we map over the list the actions are inside

map poseQuestion qs :: [IO Bool]

sequence_ does not work, since it throws away the result

sequence :: [IO a] -> IO [a]
...

[Faculty of Science
Information and Computing

Sciences]
45

Gathering all answers

Once again, if we map over the list the actions are inside

map poseQuestion qs :: [IO Bool]

sequence_ does not work, since it throws away the result

sequence :: [IO a] -> IO [a]
sequence [] = return []
sequence (a:as) = do r <- a

rs <- sequence as
return (r:rs)

[Faculty of Science
Information and Computing

Sciences]
46

Gathering all answers

Now we can gather answers to all questions at once

poseQuestions :: [String] -> IO [Bool]
poseQuestions = sequence . map poseQuestion

We have non-forgetful versions of the previous functions

mapM :: (a -> IO b) -> [a] -> IO [b]
forM :: [a] -> (a -> IO b) -> IO [b]

Naming convention: a function which ends in _ throws away
information

[Faculty of Science
Information and Computing

Sciences]
47

Lifting

liftM2 :: (a -> b -> c)
-> IO a -> IO b -> IO c

[Faculty of Science
Information and Computing

Sciences]
48

Lifting

liftM2 :: (a -> b -> c)
-> IO a -> IO b -> IO c

liftM2 f ia ib = do
a <- ia
b <- ib
return (f a b)

[Faculty of Science
Information and Computing

Sciences]
49

Randomness

[Faculty of Science
Information and Computing

Sciences]
50

Random generation

Random generation is provided by the System.Random
module of the random package

class Random a where
randomR :: RandomGen g => (a, a) -> g -> (a, g)
random :: RandomGen g => g -> (a, g)

▶ a is the type of value you want to generate
▶ g is the type of random generators

▶ Usually, random generators keep some additional
information called the seed

[Faculty of Science
Information and Computing

Sciences]
51

Generating several random numbers

If you want to generate several values, you need to keep
track of the seed yourself

generateTwoNumbers :: RandomGen g
=> g -> ((Int, Int), g)

generateTwoNumbers g
= ...

[Faculty of Science
Information and Computing

Sciences]
52

Generating several random numbers

If you want to generate several values, you need to keep
track of the seed yourself

generateTwoNumbers :: RandomGen g
=> g -> ((Int, Int), g)

generateTwoNumbers g
= let (v1, g1) = random g

(v2, g2) = random g1 -- Use new seed
in ((v1, v2), g2) -- Return last seed

[Faculty of Science
Information and Computing

Sciences]
53

Obtaining the seed

An initial value for the generator needs external input
▶ We have RandomGen instance StdGen
▶ The following function takes care of obtaining a new

seed, performing random generation and updating the
seed at the end
getStdRandom :: (StdGen -> (a, StdGen)) -> IO a

▶ Note the use of a higher-order function to encapsulate
the part of the program which needs randomness

Because of their ubiquity, the following functions are
provided

randomRIO = getStdRandom . randomR
randomIO = getStdRandom random

[Faculty of Science
Information and Computing

Sciences]
54

Summary

▶ Introduced purity/referential transparency and
constrasted with impurity/side-effects

▶ Actions with side-effects which return a value of type a
are represented by IO a
▶ Pure and impure parts are perfectly delineated
▶ a -> IO b are ”impure functions from a to b
▶ The main in a Haskell program has type IO ()

▶ To sequence IO actions, use do-notation
▶ Under the hood it translates to nested (>>=) (bind)

▶ IO actions are first-class citizens

[Faculty of Science
Information and Computing

Sciences]
54

Summary

▶ Introduced purity/referential transparency and
constrasted with impurity/side-effects

▶ Actions with side-effects which return a value of type a
are represented by IO a
▶ Pure and impure parts are perfectly delineated
▶ a -> IO b are ”impure functions from a to b
▶ The main in a Haskell program has type IO ()

▶ To sequence IO actions, use do-notation
▶ Under the hood it translates to nested (>>=) (bind)

▶ IO actions are first-class citizens

[Faculty of Science
Information and Computing

Sciences]
54

Summary

▶ Introduced purity/referential transparency and
constrasted with impurity/side-effects

▶ Actions with side-effects which return a value of type a
are represented by IO a
▶ Pure and impure parts are perfectly delineated
▶ a -> IO b are ”impure functions from a to b
▶ The main in a Haskell program has type IO ()

▶ To sequence IO actions, use do-notation
▶ Under the hood it translates to nested (>>=) (bind)

▶ IO actions are first-class citizens

[Faculty of Science
Information and Computing

Sciences]
54

Summary

▶ Introduced purity/referential transparency and
constrasted with impurity/side-effects

▶ Actions with side-effects which return a value of type a
are represented by IO a
▶ Pure and impure parts are perfectly delineated
▶ a -> IO b are ”impure functions from a to b
▶ The main in a Haskell program has type IO ()

▶ To sequence IO actions, use do-notation
▶ Under the hood it translates to nested (>>=) (bind)

▶ IO actions are first-class citizens

	IO as first-class citizens
	Randomness

