Lecture 9. Input and output

Functional Programming

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

picture

» This course: typed, purely functional programming
» Today: purity and impurity

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Goals

» Learn the difference between pure and impure
» Interact with the outside world in Haskell
> Input/output
» Random generation
» Introduce do- and monadic notation through an
example

Chapter 10 from Hutton’s book

[Faculty of Science
Information and Computing

5 Z
= B = Universiteit Utrecht
E— v NI Ve Sciences]

AW
KN

\Leractive programs

» Inthe old days, all programs were batch programs

» Introduce the program and input, sit and drink
tea/coffee for hours, and get the output

» Programs were isolated from each other

» The part of Haskell your have learnt up to now

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Interactive programs

» In the old days, all programs were batch programs
» Introduce the program and input, sit and drink
tea/coffee for hours, and get the output
» Programs were isolated from each other
» The part of Haskell your have learnt up to now

» In this modern era, programs are interactive

» Respond to user input, more like a dialogue

» From the perspective of a program, it needs to
communicate with an outside world

» Examples?

» Today: how we model this in Haskell!

[Faculty of Science

E*S\‘WW}) Information and Computing
K/

= a of o
& = Universiteit Utrecht B
X Sciences]

K\

ity = referential transparency

Referential transparency = you can always substitute a term
by its definition without change in the meaning

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Purity = referential transparency

Referential transparency = you can always substitute a term
by its definition without change in the meaning

» Inlining:
let x =ein ... x ... X ...
is always equivalent to:
c 8 s @ oo
is always equivalent to:
(\x > ... x ... X ...) e
is always equivalent to:

. X ... X ... where x = e

SS\\‘W&) [Faculty of Science

2 a S Information and Computing
= B = Universiteit Utrecht < It g

4 {%’“@ Sciences]

erential transparency

A concrete example:

reverse xs ++ Xs
where xs = filter p ys

is equivalent to:

reverse (filter p ys) ++ filter p ys

[Faculty of Science
S UZ Universiteit Utrecht Information and Computing

Sciences]

Referential transparency

A concrete example:

reverse xs ++ Xs
where xs = filter p ys

is equivalent to:
reverse (filter p ys) ++ filter p ys

Note that the second version duplicates work, but we are
speaking here about the meaning of the expression, not its
efficiency

\ ﬁ' [Faculty of Science
§ O % Universiteit Utrecht Information and C()fn})ul,ing
t{% “‘ Sciences]

5

erential transparency: why care?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

erential transparency: why care?

» Copying/duplication (contraction)
let x1 = e; x2 =e in t
is always equivalent to:
let x1 = e in t[x1/x2]

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

erential transparency: why care?

» Copying/duplication (contraction)
let x1 = e; x2 =e in t
is always equivalent to:
let x1 = e in t[x1/x2]

» Discarding (weakening)
let x = e in t
if t does not mention x, is equivalent to :

Universiteit Utrecht

[Faculty of Science

Information and Computing

Sciences]

eferential transparency: why care?

» Copying/duplication (contraction)

Universiteit Utrecht

let x1 = e; x2 =e in t
is always equivalent to:
let x1 = e in t[x1/x2]

Discarding (weakening)

let x = e in t

if t does not mention x, is equivalent to :
t

Commuting/reordering (exchange)
let x1 = el; x2 = e2 in t
is always equivalent to:

let x2 = e2; x1l = el in t [Faculty of Science
Information and Computing
Sciences]

erential transparency

» Referential transparency decouples the meaning of the
program from the order of evaluation
» Inlining or duplicating does not change the program

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Referential transparency

» Referential transparency decouples the meaning of the
program from the order of evaluation

» Inlining or duplicating does not change the program

» This has practical advantages:

» The compiler can reorder your program for efficiency
> Expressions are only evaluated (once) when really
needed
» This is called lazy evaluation

» Paralellism becomes much easier

[Faculty of Science

= a S Inf ati and C ting
€ Universiteit Utrecht nformation and Computing

NI
K\

Sciences]

-effects

Interaction with the world in not referentially transparent!

Any examples?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

e-effects

Interaction with the world in not referentially transparent!

Any examples?

Suppose that getChar :: Char retrieves the next key
stroke from the user

Why is

let k = getChar in k ==

not referentially transparent?

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Side-effects

Interaction with the world in not referentially transparent!

Any examples?
Suppose that getChar :: Char retrieves the next key
stroke from the user
let k = getChar in k ==
is always True, whereas this is not the case with
getChar == getChar
We say that getChar is a side-effectful action
> getChar is also called an impure function

[Faculty of Science
Information and Computing

= a of o
& = Universiteit Utrecht B
X Sciences]

A
9 %{ﬂ!“

Side-effects

» Many other actions have side-effects (why?)

» Printing to the screen

» Generate a random number

» Communicate through a network
> Talk to a database

» Intuitively, these actions influence the outside world

> Key properties: we cannot dicard/duplicate/exchange
the world
» And thus we cannot substitute for free

[Faculty of Science
Information and Computing

< Z
BEa= s ol
E N] S Universiteit Utrecht S —

A
10 YN

kell typing of code with 10/side-effects

return
(>>=)

getChar
getLine
getArgs

putChar

putStr
putStrln ::

'5 B = Universiteit Utrecht

::a —> I0 a
:: I0a->(a->I0b) -=>I0Db

:: 10 Char
:: I0 String
:: I0 [String]

:: Char -> I0 ()
:: String -> I0 ()

String -> I0 ()

[Faculty of Science
Information and Computing
Sciences]

delling output

Following this idea, we model an action by a function which
changes the world

type I0Com = World -> World -- I0 ()
Using I0Com We can give a type to putChar

putChar :: Char -> I0Com
putChar c world = ... —-- detatls hidden

[Faculty of Science

Universiteit Utrecht Information and Computmg
Sciences]

delling output

Following this idea, we model an action by a function which
changes the world

type I0Com = World -> World -- I0 ()
Using I0Com We can give a type to putChar

putChar :: Char -> I0Com
putChar c world = ... —-- detatls hidden

How should we think of World and putChar?

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

bining output actions

Executing two actions in sequence is plain composition

putAB :: I0Com

putAB world = putChar 'b' (putChar 'a' world)
-— or using composition

putAB = putChar 'b' . putChar 'a'

[Faculty of Science

2 Universiteit Utrecht Information and Computmg
Sciences]

tStr, first version

putStr s prints the whole string to the screen

putStr :: String -> I0Com
putStr [] = id -- keep the world as it s
putStr (c:cs) = putStr cs . putChar c

putStrLn s does the same, with a newline at the end

putStrLn s = putChar '\n' . putStr s

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

delling input

Our I0Com type is not suitable for getChar. Why not? Fix?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

delling input

Our I0Com type is not suitable for getChar. Why not? Fix?
» Solution: pair the output value with the new world
type I0 a = World -> (a, World)

getChar :: IO Char
getChar = ... -- detatls hidden

What is now the return type of putChar?

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Maodelling input

15

Our I0Com type is not suitable for getChar. Why not? Fix?
» Solution: pair the output value with the new world
type I0 a = World -> (a, World)

getChar :: IO Char
getChar = ...

What is now the return type of putChar?
» We use the empty tuple as a dummy value
putChar :: Char -> I0 ()

[Faculty of Science
Information and Computing
Sciences]

NI
%“ % Universiteit Utrecht

bining input and output

Suppose that we want to echo a character

echo = putChar getChar
e Couldn't match expected type ‘Char’
with actual type ‘I0 Char’

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Combining input and output

Let’s try again with function composition

echo = putChar . getChar
e Couldn't match expected type ‘I0 b’
with actual type ‘Char -> I0 ()’

getChar :: IO Char
putChar :: Char -> I0 O

¢.) it (b >¢c) > (a->b) >a->c

Types do not fit, since b should be both (Char, World) —
from getChar —and Char — from putChar

\ ﬁ' [Faculty of Science
§ O % Universiteit Utrecht Information and C()fn})ul,ing
s{@ “‘ Sciences]

it

lution: bind

(>>=) —pronounced “bind” — takes care of threading the
world around

(>>=) :: I0a->(a->I0b) ->I0Db
(f >>=g) w= ...

Based on the output of the first action, we choose which
action to perform next

echo = getChar >>= \c -> putChar c
-- also getChar >>= putChar

[Faculty of Science

Universiteit Utrecht Information and Computmg
Sciences]

lution: bind

(>>=) —pronounced “bind” — takes care of threading the
world around

(>>=) :: I0a->(a->I0Db) ->I0Db
(f >>=g) w =g a' w' where
(a', w') =fw

Based on the output of the Ffirst action, we choose which

action to perform next

echo = getChar >>= \c¢ -> putChar c
-- also getChar >>= putChar

[Faculty of Science

Universiteit Utrecht Information and Computmg
Sciences]

Uppercase input

We want to build a getUpper function which returns the
uppercase version of the last keystroke

getChar :: IO Char
toUpper :: Char -> Char

getUpper = getChar >>= \c -> toUpper c
e Couldn't match expected type ‘I0 Char’
with actual type ‘Char’

&\ ﬁ) [Faculty of Science
SN = rmati a) bing
= UZ Universiteit Utrecht Information and C ()fn})ul ing
t{% “‘ Sciences]

20

Uppercase input

21

We need a way to embed pure computations, like toUpper,
in the impure world

return :: a —> I0 a
return a =

Warning! return is indeed a very confusing name

> Does not “break” the flow of the function
» A more apt synonym is available, pure

getUpper = getChar >>= \c -> return (toUpper c)

[Faculty of Science
Information and Computing

NI
%ﬂ§ Universiteit Utrecht e —

Uppercase input

22

We need a way to embed pure computations, like toUpper,
in the impure world

return :: a —> I0 a
return a = \w —> (a, w)

Warning! return is indeed a very confusing name

> Does not “break” the flow of the function
» A more apt synonym is available, pure

getUpper = getChar >>= \c -> return (toUpper c)

[Faculty of Science
Information and Computing

NI
%ﬂ§ Universiteit Utrecht e —

serving purity

There is no bridge back from the impure to the pure world
backFromHell :: I0 a -> a

Why?

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

serving purity

There is no bridge back from the impure to the pure world
backFromHell :: I0 a -> a

Why?
In this way we ensure that the outside world never “infects”
pure expressions

» Referential transparency is preserved

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Nis ing I0 and recursion

When dealing with 10, we cannot directly pattern match
» We often use case expressions after (>>=)

mystery :: IO String
mystery = getChar >>= (\c ->
case c of
'"\n' -> return []
-> mystery >>= (\rest ->
return (c : rest)

.)

'=-)
E What does this code do?

Universiteit Utrecht

[Faculty of Science
Information and Computing
Sciences]

Mixing 10 and recursion

When dealing with 10, we cannot directly pattern match
» We often use case expressions after (>>=)

mystery :: IO String
mystery = getChar >>= (\c ->
case c of
‘\n' -> return []
-> mystery >>= (\rest ->
return (c : rest)

)

)

What does this code do?
Working directly with (>>=) is very cumbersome!

[Faculty of Science
Information and Computing

i\\ &‘/{ s

7 & = Universiteit Utrecht L.

‘?@ N Sciences]
24 N

Mixing 10 and recursion

When dealing with 10, we cannot directly pattern match
» We often use case expressions after (>>=)

getLine :: I0 String
getLine = getChar >>= (\c¢ —>
case c of
'\n' -> return []
-> getline >>= (\rest ->
return (c : rest)

)

Working directly with (>>=) is very cumbersome!

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

25

do-notation

26

Luckily, Haskell has specific notation for 10

getlLine = do c <- getChar
case c of
'"\n' -> return []
-> do rest <- getLine
return (c : rest)

Blocks for 10 start with the keyword do

> <-gives aname to the result of an 10 action
» The notation was chosen to “look imperative”

[Faculty of Science
Information and Computing
Sciences]

NI
%“ % Universiteit Utrecht

king putStr

Let us write putStr with the new combinators

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

oking putStr

Let us write putStr with the new combinators

putStr :: String -> I0 O
putStr [] = return ()
putStr (c:cs) = putChar c¢ >>= (_ -> putStr cs)

[Faculty of Science

2 Universiteit Utrecht Information and Computmg
Sciences]

00 king putStr

Let us write putStr with the new combinators

putStr :: String -> I0 O
putStr [] = return ()
putStr (c:cs) = putChar c¢ >>= (_ -> putStr cs)

What is happening is much clearer with do-notation

putStr :: String -> I0 (O

putStr [] = return ()
putStr (c:cs) = do putChar c
putStr cs

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

do-notation, in general

A general do block is translated as nested (>>=)

do x1 <- ail al >>= (\x1 —>
x2 <- a2 a2 >>= (\x2 —>
===
xn <- an an >>= (\xn -—>
expr expr) ...))

In addition, if you don't care about a value, you can write
simply ai instead of _ <- ai

Rule of thumb: do not think about (>>=) at all, just use do

[Faculty of Science
Information and Computing
Sciences]

NI
§ &) % Universiteit Utrecht
28 NS

Guess a number

Pick a number between 1 and 100.

Is it 507 (g = greater, 1 = less, c = correct)
g
Is it 757 (g = greater, 1 = less, c = correct)
1
Is it 627 (g = greater, 1 = less, c = correct)
g
Is it 687 (g = greater, 1 = less, c = correct)
1
Is it 657 (g = greater, 1 = less, c = correct)
c
Guessed

29 TN ‘

uess a number

We do binary search over the list of numbers
> At each step, we pick the middle value as a guess

guess :: Int -> Int -> I0 ()
guess 1 u
=do let m = (u + 1) “div™ 2
putStr ("Is it " ++ show m ++ "7")
putStrln "(g = greater, 1 = less, c = correct)'
k <- getChar
case k of
'g! > guess (m + 1) u
'1' -> guess 1 (m - 1)
'c' -> putStrLn "Guessed"
-> do putStrLn "Press type g/l/c!"
guess 1 u

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Guess a number, main program

When an executable written in Haskell starts, the main
function is called

» main always has type 10 ()

main :: I0 O
main = do (l:u:_) <- getArgs
guess (read 1) (read u)

> getArgs :: I0 [String] obtains program arguments
» read :: Read a => String -> a

> Parses a Stringinto avalue

» In this case, we parse it into an Int

[Faculty of Science
Information and Computing
Sciences]

A
§ &) % Universiteit Utrecht
31 N

mary of basic I/O actions

return
(>>=)

getChar
getLine
getArgs

putChar

putStr
putStrln ::

Universiteit Utrecht

777
777

T
e
T

e
?eY
°?

[Faculty of Science
Information and Computing
Sciences]

mary of basic I/O actions

return
(>>=)

getChar
getLine
getArgs

putChar

putStr
putStrln ::

'5 B = Universiteit Utrecht

::a —> I0 a
:: I0a > (a->I0b) > I0Db

:: I0 Char
:: I0 String
:: I0 [String]

:: Char -> I0 Q)
:: String -> I0 ()

String -> I0 ()

[Faculty of Science
Information and Computing
Sciences]

ling with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: 777
writeFile :: 777

[Faculty of Science
Universiteit Utrecht Information and Computlng
Sciences]

aling with files

The simplest functions to work with files in Haskell

type FilePath = String

readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> I0 ()

The following functions are often convenient

lines :: String -> [String] -- break at '\n'
unlines :: [String] -> String -- join lines

-— convert back and forth
show :: Show a => a -> String
read :: Read a => String -> a

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

ss a number, bounds from file

main :: I0 O
main = do —— Read the contents of the file
config <- readFile '"guess.config"
-— Get the first two lines
let 1l:u:_ = lines config
-- Parse the numbers and start guessing
guess (read 1) (read u)

[Faculty of Science
Universiteit Utrecht Information and Computlng
Sciences]

10 as first-class citizens

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

‘actions are first-class

In the same way as you do with functions

» An I0 action can be an argument or result of a function
» 10 actions can be putin a list or other container

map (\name -> putStrLn ("Hello, " ++ name))
["Mary", "John"]l :: [I0 QO]

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Building versus execution of I0 actions

map (\name -> putStrLn ("Hello, " ++ name))
["Mary", "John"] :: [I0 ()]

Running this code prints nothing to the screen

» We say that it builds the 10 actions: describes what
needs to be done but does not do it yet

To obtain the side-effects, you need to execute the actions
» At theinterpreter prompt
> In a do block which is ultimately called by main
» An executed action always has a I0 T type

Y

[Faculty of Science
=

ESN| é Universiteit Utrecht Information and Computing

39 %AL§\ Sciences]

cute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type
sequence_ :: [I0 a] -> I0 O

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

cute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type
sequence_ :: [I0 a] -> I0 O

2. Enumerate the cases
sequence_ [] =
sequence_ (a:as)

[Faculty of Science
Universiteit Utrecht Information and Computing

Sciences]

xecute a list of actions

sequence_ as performs the side-effects of a list of actions

1. Define the type
sequence_ :: [I0 a] -> I0 Q)

2. Enumerate the cases

sequence_ [] =
sequence_ (a:as)

3. Define the cases

return ()
do a

sequence_ []
sequence_ (a:as)

sequence_ as

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

cute a list of actions

We have all the ingredients to greet a list of people

greet :: [String]l -> I0 O
greet = sequence_
. map (\name -> putStrLn ("Hello, " ++ name))

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Execute a list of actions

We have all the ingredients to greet a list of people

greet :: [String] -> I0 ()
greet = sequence_
. map (\name -> putStrLn ("Hello, " ++ name))

This combination is very common, so the library defines

mapM_ :: (a -> I0 b) -> [a] -> I0 Q)

greet = mapM_ (\name -> putStrLn ("Hello, " ++ name))

&\ & [Faculty of Science
N = . - rmati E) ing
S U= Universiteit Utrecht Information and (()fn})uhn;,
t{% “\ Sciences]

41

Execute a list of actions

By just flipping the order of arguments, we can write
“imperative-looking” code

forM_ :: [a] -> (a => I0 b) -> I0 O
forM_ = flip mapM_

greet names = forM_ names $ \name ->
putStrLn ("Hello, " ++ name)

NV [Faculty of Science
gg\\\‘vyf}) Information and Computing
K/

5 Universiteit Utrecht A
NI Sciences]

P %ﬂ!“

Answer to a yes-no questions

poseQuestion q printsa question to the screen, obtainsay
or n input from the user and returns it as a Boolean

poseQuestion :: String -> IO Bool
poseQuestion q
= do putStr q
putStrLn "Answer (y) or (n)"
(k:_) <- getLine
case k of
y' —-> return True
'n' -> return False
-> do putStrLn "Answer (y) or (n)"
poseQuestion q

Z [Faculty of Science
é&‘lr% Universiteit Utrecht Information and C()fn})uting
‘(% §' Sciences]
43 N

” hering all answers

Once again, if we map over the list the actions are inside
map poseQuestion gs :: [I0 Bool]
sequence_ does not work, since it throws away the result

sequence :: [I0 a] -> I0 [al

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Gathering all answers

45

Once again, if we map over the list the actions are inside
map poseQuestion gs :: [I0 Bool]
sequence_ does not work, since it throws away the result

sequence :: [I0 a] -> I0 [al

sequence [] = return []

sequence (a:as) =dor <- a
rs <- sequence as
return (r:rs)

[Faculty of Science
Information and Computing

NI
A2 a)
’:” U q Universiteit Utrecht S(:ien(:es]

Gathering all answers

Now we can gather answers to all questions at once

poseQuestions :: [String] -> I0 [Booll
poseQuestions = sequence . map poseQuestion

We have non-forgetful versions of the previous functions

mapM :: (a -> I0 b) -> [a] -> I0 [b]
forM :: [a] -> (a -> I0 b) -> I0 [b]

Naming convention: a function which ends in _ throws away
information

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

46

1iftM2 :: (a -> b -> ¢)
-> I0 a -> I0 b => 10 c

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

1liftM2 :: (a -> b -> ¢)
->I0a->1I0b ->1I0c
1liftM2 f ia ib = do
a <- ia
b <- ib
return (f a b)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Randomness

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Random generation

Random generation is provided by the System.Random
module of the random package

class Random a where
randomR :: RandomGen g => (a, a) -> g -> (a, g)
> g —> (a, g)

random :: RandomGen g

> ais the type of value you want to generate

» gisthe type of random generators

» Usually, random generators keep some additional
information called the seed

[Faculty of Science
Information and Computing
Sciences]

W
§ &) % Universiteit Utrecht
50 NS

erating several random numbers

If you want to generate several values, you need to keep
track of the seed yourself

generateTwoNumbers :: RandomGen g
=> g -> ((Int, Int), g)
generateTwoNumbers g

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

erating several random numbers

If you want to generate several values, you need to keep
track of the seed yourself

generateTwoNumbers :: RandomGen g
=> g -> ((Int, Int), g)
generateTwoNumbers g
= let (vl, gl) = random g
(v2, g2) = random gl -—- Use new seed
in ((v1, v2), g2) -— Return last seed

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Obtaining the seed

53)

An initial value for the generator needs external input
» We have RandomGen instance StdGen
» The following function takes care of obtaining a new

seed, performing random generation and updating the
seed at the end

getStdRandom :: (StdGen -> (a, StdGen)) -> I0 a

> Note the use of a higher-order function to encapsulate
the part of the program which needs randomness

Because of their ubiquity, the following functions are
provided

randomRI0O = getStdRandom . randomR

randomI0 = getStdRandom random
NV [Faculty of Science
é\\\‘l‘”})ﬁ Universiteit Utrecht Information and Computing
N Sciences]
K

mary

» Introduced purity/referential transparency and
constrasted with impurity/side-effects

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Summary

» Introduced purity/referential transparency and
constrasted with impurity/side-effects

» Actions with side-effects which return a value of type a
are represented by 10 a

» Pure and impure parts are perfectly delineated
> a -> I0 bare"impure functions fromato b
» Themain in a Haskell program has type I0 ()

[Faculty of Science
Information and Computing

5 Z
= B = Universiteit Utrecht
E— v NI Ve Sciences]

NN
54 N

Summary

» Introduced purity/referential transparency and
constrasted with impurity/side-effects

» Actions with side-effects which return a value of type a
are represented by 10 a
» Pure and impure parts are perfectly delineated
> a -> I0 bare"impure functions fromato b
» Themain in a Haskell program has type I0 ()

> To sequence I0 actions, use do-notation
» Under the hood it translates to nested (>>=) (bind)

[Faculty of Science
5 2 Information and Computing
= B = Universiteit Utrecht 8
E— » NI Sciences]

NN
54 N

Summary

» Introduced purity/referential transparency and
constrasted with impurity/side-effects

» Actions with side-effects which return a value of type a
are represented by 10 a

» Pure and impure parts are perfectly delineated
> a -> I0 bare"impure functions fromato b
» Themain in a Haskell program has type I0 ()

> To sequence I0 actions, use do-notation
» Under the hood it translates to nested (>>=) (bind)

P> I0 actions are first-class citizens

[Faculty of Science
Information and Computing
Sciences]

o
; &) é Universiteit Utrecht

o
54 N

	IO as first-class citizens
	Randomness

