
[Faculty of Science
Information and Computing

Sciences]
0

Lecture 10. Functors and monads
Functional Programming

[Faculty of Science
Information and Computing

Sciences]
1

Goals

▶ Understand the concept of higher-kinded abstraction
▶ Introduce two common patterns: functors and monads
▶ Simplify code with monads

Chapter 12 from Hutton’s book, except 12.2

[Faculty of Science
Information and Computing

Sciences]
2

Functors

[Faculty of Science
Information and Computing

Sciences]
3

Map over lists

map f xs applies f over all the elements of the list xs

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

> map (+1) [1,2,3]
[2,3,4]
> map even [1,2,3]
[False,True,False]

[Faculty of Science
Information and Computing

Sciences]
4

Map over optional values

Optional values are represented with Maybe

data Maybe a = Nothing | Just a

They admit a similar map operation:

mapMay :: (a -> b) -> Maybe a -> Maybe b

mapMay _ Nothing = Nothing
mapMay f (Just x) = Just (f x)

[Faculty of Science
Information and Computing

Sciences]
4

Map over optional values

Optional values are represented with Maybe

data Maybe a = Nothing | Just a

They admit a similar map operation:

mapMay :: (a -> b) -> Maybe a -> Maybe b

mapMay _ Nothing = Nothing
mapMay f (Just x) = Just (f x)

[Faculty of Science
Information and Computing

Sciences]
5

Map over optional values

mapMay applies a function over a value, only if it is present

> mapMay (+1) (Just 1)
Just 2
> mapMay (+1) Nothing
Nothing

It is similar to the “safe dot” operator in some languages

int Total(Order o) { // o might be null
return o?.Amount * o?.PricePerUnit;

}

[Faculty of Science
Information and Computing

Sciences]
6

Map over binary trees

Remember binary trees with data in the inner nodes:

data Tree a = Leaf
| Node (Tree a) a (Tree a)
deriving Show

What does a map operation over trees look like?

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree _ Leaf
= Leaf

mapTree f (Node l x r)
= Node (mapTree f l) (f x) (mapTree f r)

[Faculty of Science
Information and Computing

Sciences]
6

Map over binary trees

Remember binary trees with data in the inner nodes:

data Tree a = Leaf
| Node (Tree a) a (Tree a)
deriving Show

What does a map operation over trees look like?

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree _ Leaf
= Leaf

mapTree f (Node l x r)
= Node (mapTree f l) (f x) (mapTree f r)

[Faculty of Science
Information and Computing

Sciences]
6

Map over binary trees

Remember binary trees with data in the inner nodes:

data Tree a = Leaf
| Node (Tree a) a (Tree a)
deriving Show

What does a map operation over trees look like?

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree _ Leaf
= Leaf

mapTree f (Node l x r)
= Node (mapTree f l) (f x) (mapTree f r)

[Faculty of Science
Information and Computing

Sciences]
7

Map over binary trees

mapTree also applies a function over all elements, but now
contained in a binary tree

> t = Node (Node Leaf 1 Leaf) 2 Leaf

> mapTree (+1) t
Node (Node Leaf 2 Leaf) 3 Leaf

> mapTree even t
Node (Node Leaf False Leaf) True Leaf

[Faculty of Science
Information and Computing

Sciences]
8

Maps have similar types

map :: (a -> b) -> [a] -> [b]
-- (a -> b) -> List a -> List b

mapTree :: (a -> b) -> Tree a -> Tree b
mapMay :: (a -> b) -> Maybe a -> Maybe b

mapT :: (a -> b) -> T a -> T b

The difference lies in the type constructor
▶ [] (list), Tree, or Maybe
▶ Those parts need to be applied to other types

[Faculty of Science
Information and Computing

Sciences]
9

Functors

A type constructor which has a “map” is called a functor

class Functor f where
fmap :: (a -> b) -> f a -> f b

instance Functor [] where
-- fmap :: (a -> b) -> [a] -> [b]
fmap = map

instance Functor Maybe where
-- fmap :: (a -> b) -> Maybe a -> Maybe b
fmap = mapMay

[Faculty of Science
Information and Computing

Sciences]
10

Higher-kinded abstraction

class Functor f where
fmap :: (a -> b) -> f a -> f b

▶ In Functor the variable f stands for a type constructor
▶ A “type” which needs to be applied

▶ This is called higher-kinded abstraction
▶ Not generally available in a programming language
▶ Haskell, Scala and Rust have it
▶ Java, C# and Swift don’t

[Faculty of Science
Information and Computing

Sciences]
11

Functors generalize maps

Suppose you have a function operating over lists

inc :: [Int] -> [Int]
inc xs = map (+1) xs

You can easily generalize it by using fmap

inc :: Functor f => f Int -> f Int
inc xs = fmap (+1) xs

Note that in this case the type of elements is fixed to Int,
but the type of the structure may vary

[Faculty of Science
Information and Computing

Sciences]
12

(<$>) instead of fmap

Many Haskellers use an alias for fmap

(<$>) = fmap

This allows writing maps in a more natural style, in which the
function to apply appears before the arguments

inc xs = (+1) <$> xs

[Faculty of Science
Information and Computing

Sciences]
13

Surprising functors, take 1

Functions with a fixed input are also functors
▶ Remember that r -> s is also written (->) r s

Question

What type should we write in the Functor instance?

Answer

We need something which requires a parameter
▶ Thus we drop the last one from the arrow, (->) r

[Faculty of Science
Information and Computing

Sciences]
13

Surprising functors, take 1

Functions with a fixed input are also functors
▶ Remember that r -> s is also written (->) r s

Question

What type should we write in the Functor instance?

Answer

We need something which requires a parameter
▶ Thus we drop the last one from the arrow, (->) r

[Faculty of Science
Information and Computing

Sciences]
14

Surprising functors, take 1

instance Functor ((->) r) where
-- fmap :: (a -> b) -> (r -> a) -> (r -> b)
fmap ab ra = \r -> ab (ra r)

The map operation for functions is composition!

[Faculty of Science
Information and Computing

Sciences]
15

Surprising functors, take 2

IO actions form also a functor

instance Functor IO where
...

[Faculty of Science
Information and Computing

Sciences]
16

Surprising functors, take 2

IO actions form also a functor

instance Functor IO where
-- fmap :: (a -> b) -> IO a -> IO b
fmap f a = do x <- a

return (f x)

This removes the need for a lot of names

do x <- getChar ===> toUpper <$> getChar
return (toUpper x)

and it is much easier to read and follow!

[Faculty of Science
Information and Computing

Sciences]
17

Functor laws

Valid Functor instances should obey two laws

identity fmap id = id
distributivity over
composition

fmap (f.g) = fmap f . fmap g

These laws guarantee that fmap preserves the structure

[Faculty of Science
Information and Computing

Sciences]
18

A wrong Functor

Could you find an instance which respects the type of
fmap but not the laws?

instance Functor [] where
-- Applies the function over all elements,
-- but also reverses the list
fmap _ [] = []
fmap f (x:xs) = fmap f xs ++ [f x]

fmap id [1,2] = [2,1]
/= [1,2] = id [1,2]

[Faculty of Science
Information and Computing

Sciences]
18

A wrong Functor

Could you find an instance which respects the type of
fmap but not the laws?

instance Functor [] where
-- Applies the function over all elements,
-- but also reverses the list
fmap _ [] = []
fmap f (x:xs) = fmap f xs ++ [f x]

fmap id [1,2] = [2,1]
/= [1,2] = id [1,2]

[Faculty of Science
Information and Computing

Sciences]
18

A wrong Functor

Could you find an instance which respects the type of
fmap but not the laws?

instance Functor [] where
-- Applies the function over all elements,
-- but also reverses the list
fmap _ [] = []
fmap f (x:xs) = fmap f xs ++ [f x]

fmap id [1,2] = [2,1]
/= [1,2] = id [1,2]

[Faculty of Science
Information and Computing

Sciences]
19

Another wrong Functor

Things can go wrong in many different ways

instance Functor [] where
-- Always returns an empty list
fmap _ _ = []

fmap id [1,2] = []
/= [1,2] = id [1,2]

[Faculty of Science
Information and Computing

Sciences]
20

Monads

[Faculty of Science
Information and Computing

Sciences]
21

Case study: evaluation of arithmetic expressions

data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer

| Variable Char
| Op ArithOp ArithExpr ArithExpr

eval :: Map Char Integer -> ArithExpr
-> Maybe Integer

eval m (Op Plus x y)
= case eval m x of

Nothing -> Nothing
Just x' -> case eval m y of

Nothing -> Nothing
Just y' -> Just (x' + y')

...

[Faculty of Science
Information and Computing

Sciences]
21

Case study: evaluation of arithmetic expressions

data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer

| Variable Char
| Op ArithOp ArithExpr ArithExpr

eval :: Map Char Integer -> ArithExpr
-> Maybe Integer

eval m (Op Plus x y)
= case eval m x of

Nothing -> Nothing
Just x' -> case eval m y of

Nothing -> Nothing
Just y' -> Just (x' + y')

...

[Faculty of Science
Information and Computing

Sciences]
21

Case study: evaluation of arithmetic expressions

data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer

| Variable Char
| Op ArithOp ArithExpr ArithExpr

eval :: Map Char Integer -> ArithExpr
-> Maybe Integer

eval m (Op Plus x y)
= case eval m x of

Nothing -> Nothing
Just x' -> case eval m y of

Nothing -> Nothing
Just y' -> Just (x' + y')

...

[Faculty of Science
Information and Computing

Sciences]
22

Validation of data

data Record = Record Name Int Address

-- These three validate input from the user
validateName :: String -> Maybe Name
validateAge :: String -> Maybe Int
validateAddr :: String -> Maybe Address

-- And we want to compose them together
case validateName nm of
Nothing -> Nothing
Just nm' -> case validateAge ag of
Nothing -> Nothing
Just ag' -> case validateAddr ad of

Nothing -> Nothing
Just ad' -> Just (Record nm' ag' ad')

[Faculty of Science
Information and Computing

Sciences]
23

Looking for similarities

The same pattern occurs over and over again

case maybeValue of
Nothing -> Nothing
Just x -> -- return some Maybe which uses x

Higher-order functions to the rescue!

next :: Maybe a -> (a -> Maybe b) -> Maybe b
next Nothing _ = Nothing
next (Just x) f = f x

[Faculty of Science
Information and Computing

Sciences]
23

Looking for similarities

The same pattern occurs over and over again

case maybeValue of
Nothing -> Nothing
Just x -> -- return some Maybe which uses x

Higher-order functions to the rescue!

next :: Maybe a -> (a -> Maybe b) -> Maybe b
next Nothing _ = Nothing
next (Just x) f = f x

[Faculty of Science
Information and Computing

Sciences]
24

Shorter code for the examples

For the arithmetic expression evaluator:

eval m (Op Plus x y)
= eval m x `next` (\x' ->

eval m y `next` (\y' ->
Just (x' + y')))

For data validation:

validateName nm `next` (\nm' ->
validateAge ag `next` (\ag' ->
validateAddr ag `next` (\ad' ->
Just (Record nm' ag' ad'))))

[Faculty of Science
Information and Computing

Sciences]
25

Does it sound familiar?

Remember the “bind” operation for input/output actions

(>>=) :: IO a -> (a -> IO b) -> IO b

Now, compare it to the next operation for Maybe

next :: Maybe a -> (a -> Maybe b) -> Maybe b

Another example of higher-kinded abstraction

[Faculty of Science
Information and Computing

Sciences]
26

return for optional values

The other basic operation for IOwas return
return :: a -> IO a
This function embeds a pure value into the IOworld

Optional values provide a similar function

Just :: a -> Maybe a

Maybe it is about time to introduce a new type class…

[Faculty of Science
Information and Computing

Sciences]
26

return for optional values

The other basic operation for IOwas return
return :: a -> IO a
This function embeds a pure value into the IOworld

Optional values provide a similar function

Just :: a -> Maybe a

Maybe it is about time to introduce a new type class…

[Faculty of Science
Information and Computing

Sciences]
26

return for optional values

The other basic operation for IOwas return
return :: a -> IO a
This function embeds a pure value into the IOworld

Optional values provide a similar function

Just :: a -> Maybe a

Maybe it is about time to introduce a new type class…

[Faculty of Science
Information and Computing

Sciences]
27

(>>=) + return = monad

A monad is a type constructor which provides the previous
two operations
▶ Subject to some laws that we shall introduce later
▶ In addition, every monad is also a functor

class Functor m => Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where
return = Just
(>>=) = next

instance Monad IO where
-- Hidden from us, mere mortals

[Faculty of Science
Information and Computing

Sciences]
28

do-notation for generic monads

The do-notation introduced for IOworks for any monad

do x1 <- a1 a1 >>= (\x1 ->
x2 <- a2 a2 >>= (\x2 ->
... ===> ...
xn <- an an >>= (\xn ->
expr expr) ...))

Rule of thumb for writing monadic code: do not think about
nested (>>=) at all, just use do

[Faculty of Science
Information and Computing

Sciences]
29

Shorter (and nicer) code for the examples

For the arithmetic expression evaluator:

eval m (Op Plus x y) = do x' <- eval m x
y' <- eval m y
return (x' + y')

For data validation:

do nm' <- validateName nm
ag' <- validateAge ag
ad' <- validateAddr ad
return (Record nm' ag' ad')

[Faculty of Science
Information and Computing

Sciences]
30

Tricky monadic questions

What does the following code do?

f :: Maybe Int -> Maybe Int
f m = do x <- m

return 3
return (x + 1)

Solution

Adds 1 to the value in m, if present
▶ return does not break evaluation
▶ So it does not always return 3

[Faculty of Science
Information and Computing

Sciences]
30

Tricky monadic questions

What does the following code do?

f :: Maybe Int -> Maybe Int
f m = do x <- m

return 3
return (x + 1)

Solution

Adds 1 to the value in m, if present
▶ return does not break evaluation
▶ So it does not always return 3

[Faculty of Science
Information and Computing

Sciences]
31

Tricky monadic questions

f :: Maybe Int -> Maybe Int
f m = do x <- m

return 3
return (x + 1)

The behavior is clear by looking at the translation
▶ <- are turned into nested (>>=)
▶ return for Maybe is Just

f m = m >>= \x ->
Just 3 >>= _ -> -- "gets" the 3

Just (x + 1)

[Faculty of Science
Information and Computing

Sciences]
32

Tricky monadic questions

Is the following code type correct at all?

g :: Maybe Int -> Maybe Int
g m = do x <- return 3

y <- m
return (x + y)

And what about the following variation?

g' :: Maybe Int -> Maybe Int
g' m = do x <- Just 3

y <- m
return (x + y)

[Faculty of Science
Information and Computing

Sciences]
32

Tricky monadic questions

Is the following code type correct at all?

g :: Maybe Int -> Maybe Int
g m = do x <- return 3

y <- m
return (x + y)

And what about the following variation?

g' :: Maybe Int -> Maybe Int
g' m = do x <- Just 3

y <- m
return (x + y)

[Faculty of Science
Information and Computing

Sciences]
33

Tricky monadic questions

Does this code compile?

h :: Maybe Int -> IO Int -> Maybe Int
h x y = do x' <- x

y' <- y
return (x' + y')

Solution

No, a do block works only with one monad
▶ The first <- and return require Maybe
▶ The second <- requires IO

[Faculty of Science
Information and Computing

Sciences]
33

Tricky monadic questions

Does this code compile?

h :: Maybe Int -> IO Int -> Maybe Int
h x y = do x' <- x

y' <- y
return (x' + y')

Solution

No, a do block works only with one monad
▶ The first <- and return require Maybe
▶ The second <- requires IO

[Faculty of Science
Information and Computing

Sciences]
34

The List monad

[Faculty of Science
Information and Computing

Sciences]
35

Building the Monad [] instance

Let us try to write the methods from their types

return :: a -> [a]
return x = _

[Faculty of Science
Information and Computing

Sciences]
36

Building the Monad [] instance

Let us try to write the methods from their types

return :: a -> [a]
return x = _

We only have two options:
▶ Return the empty list, []
▶ Return the given element repeated some amount of

times, [x, ...]

In this case, we settle for [x], a singleton list
▶ It is the only possibility to satisfy the laws

▶ But I will not show you why

[Faculty of Science
Information and Computing

Sciences]
37

Building the Monad [] instance

(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = ...

[Faculty of Science
Information and Computing

Sciences]
38

Building the Monad [] instance

(>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = ...

1. We have a list of as and a function which operate in one
▶ The natural instinct is to map one over the other

2. But map f xs :: [[b]], a list of lists
3. Luckily, we have concat :: [[a]] -> [a]

xs >>= f = concat (map f xs)

[Faculty of Science
Information and Computing

Sciences]
39

What does the List monad model?

[1,2,3] >>= \x -> do x <- [1,2,3]
[4,5,6] >>= \y -> y <- [4,5,6]
return (x + y) return (x + y)

= -- definition of (>>=) and return
[5,6,7,6,7,8,7,8,9]
=
[1+4,1+5,1+6,2+4,2+5,2+6,3+4,3+5,3+6]

[Faculty of Science
Information and Computing

Sciences]
40

Lists model search and non-determinism

[1,2,3] >>= \x -> do x <- [1,2,3]
[4,5,6] >>= \y -> y <- [4,5,6]
return (x + y) return (x + y)

= -- definition of (>>=) and return
[5,6,7,6,7,8,7,8,9]
=
[1+4,1+5,1+6,2+4,2+5,2+6,3+4,3+5,3+6]

The list monad applies the function over all choices of
elements from each list
▶ For that reason we call [] the search monad
▶ Each variable can be thought as having more than one

value assigned to it
▶ This is called non-determinism

[Faculty of Science
Information and Computing

Sciences]
41

Case study: sum and Pythagorean triples

Given three numbers x, y, z, we say that they form
▶ A sum triple if x + y = z
▶ A Pythagorean triple if x2 + y2 = z2

triples xs computes, given a list of numbers xs, those
subsets of elements which form a triple

> triples [1,2,3]
[(1,2,3),(2,1,3)]

We are going to build it using the monadic interface to lists

[Faculty of Science
Information and Computing

Sciences]
42

Cooking sumTriple

A first approximation to sum triples is:

sumTriples xs = do x <- xs
y <- xs
z <- xs
if x + y == z

then return (x,y,z)
else []

The value [] denotes failure while searching
▶ No value is produced from ranging over an empty list

[] >>= f = [] = xs >>= _ -> []

[Faculty of Science
Information and Computing

Sciences]
43

Introducing guard

This pattern is very common to perform search

guard :: Bool -> [()]
guard True = [()]
guard False = []

We do not really care of the value returned by guard
▶ The important bit is that when the condition is false, we

produce no more results

sumTriples xs = do x <- xs
y <- xs
z <- xs
guard (x + y == z)
return (x,y,z)

[Faculty of Science
Information and Computing

Sciences]
44

Cooking triples

Assuming we have sumTriples and pytTriples

triples :: [Int] -> [(Int, Int, Int)]
triples xs = sumTriples xs ++ pytTriples xs

Concatenation combines solutions frommultiple sources
▶ In a search, it works as a disjunction

[Faculty of Science
Information and Computing

Sciences]
45

Monads with failure

Other monads exhibit the same pattern of failure and
combination of results

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

The simplest case is Maybe: try to implement mzero and
mplus!

[Faculty of Science
Information and Computing

Sciences]
45

Monads with failure

Other monads exhibit the same pattern of failure and
combination of results

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

The simplest case is Maybe: try to implement mzero and
mplus!

[Faculty of Science
Information and Computing

Sciences]
46

Monads with failure

Other monads exhibit the same pattern of failure and
combination of results

class Monad m => MonadPlus m where
mzero :: m a
mplus :: m a -> m a -> m a

The simplest case is Maybe, with Nothing representing failure

instance MonadPlus Maybe where
mzero = Nothing
mplus (Just x) _ = Just x
mplus _ (Just y) = Just y
mplus Nothing Nothing = Nothing

[Faculty of Science
Information and Computing

Sciences]
47

do versus comprehensions

If I had told you to write sumTripleswithout imposing
monadic notation, the result would have been

[(x,y,z)
do x <- xs | x <- xs

y <- xs , y <- xs
z <- xs , z <- xs
guard (x + y == z) , x + y == z]
return (x,y,z)

do-notation and comprehensions are exactly the same!
▶ GHC provides monad comprehensions under a flag
▶ Other languages, such as Scala, only provide

comprehensions for working with monads

[Faculty of Science
Information and Computing

Sciences]
48

Summary

▶ With higher-order functions and higher-kinded
abstraction many patterns become mere functions
▶ Higher-kinded abstraction refers to making a type

constructor vary, in contrast to “full” types
▶ Functor generalizes the idea of “map”
▶ Monads encode the notion of “sequential computation”

Later in the course
▶ More examples of monads
▶ Utility functions for monads
▶ Another abstraction: applicatives

	Functors
	Monads
	The List monad

