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Functional Programming
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What does it mean for programs to be
equal/equivalent?
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Goals

▶ Equational reasoning: proving program equalities
▶ Reasoning principles at various types:

▶ inductive proofs at algebraic data types;
▶ extensional equality at function types.

Chapter 16 (up to 16.6) from Hutton’s book
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Laws



[Faculty of Science
Information and Computing

Sciences]
4

Mathematical laws

▶ Mathematical functions do not depend on hidden,
changeable values
▶ 2 + 3 = 5, both in 4 × (2 + 3) and in (2 + 3)2

▶ This allows us to more easily prove properties that
operators and functions might have
▶ These properties are called laws
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Examples of laws for integers

+ commutes x + y = y + x
× commutes x × y = y × x
+ is associative x + (y + z) = (x + y) + z
× distributes over + x × (y + z) = x × y + x × z
0 is the unit of + x + 0 = x = 0 + x
1 is the unit of × x × 1 = x = 1 × x
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Putting laws to good use

Why care about program equivalences?

▶ Mathematical laws can help improve performance
▶ That two expressions always have the same value does

not mean that computing their value takes the same
amount of time or memory

▶ Replace a more expensive version with one that is
cheaper to compute

▶ We can also prove properties to show that they
correctly implement what we intended

In short, performance and correctness
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Equational reasoning by example

(a + b)²
= -- definition of square
(a + b) × (a + b)
= -- distributivity
((a + b) × a) + ((a + b) × b)
= -- commutativity of ×
(a × (a + b)) + (b × (a + b))
= -- distributivity, twice
= (a × a + a × b) + (b × a + b × b)
= -- associativity of +
a × a + (a × b + b × a) + b × b
= -- commutativity of ×
a × a + (a × b + a × b) + b × b
= -- definition of square and (2 ×)
a² + 2 × a × b + b²
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Each theory has its laws

▶ We have seen laws that deal with arithmetic operators
▶ During courses in logic you have seen similar laws for

logic operators

commutativity of ∧
associativity of ∧
distributitivy of ∧ over
∨ De Morgan’s law
Howard’s law

x ∧ y = y ∧ x
x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
¬(x ∧ y) = ¬x ∨ ¬y
(x ∧ y) → z = x → (y → z)
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A small proof in logic

¬((a \/ b) \/ c) → ¬d
= -- De Morgan's law
(¬(a \/ b) /\ ¬c) → ¬d
= -- De Morgan's law
((¬a /\ ¬b) /\ ¬c) → ¬d
= -- Howard's law
(¬a /\ ¬b) → (¬c → ¬d)
= -- Howard's law
¬a → (¬b → (¬c → ¬d))
▶ Proofs feel mechanical

▶ You apply the “rules” implicit in the laws
▶ Possibly even without understanding what ∧ and ∨ do

▶ Always provide a hint why each equivalence holds!
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Back to Haskell

▶ Haskell is referentially transparent
▶ Calling a function twice with the same parameter is

guaranteed to give the same result

▶ This allows us to prove equivalences as above
▶ And use these to improve performance

▶ Any = definition can be viewed in two ways
double x = x + x
1. The definition of a function
2. A property that can be used when reasoning

▶ Replace double x by x + x and viceversa, for any x

▶ NB: by contrast, <- “assignments” in do-blocks are not
referentially transparent!
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A first example

For all compatible functions f and g, and lists xs

(map f . map g) xs = map (f . g) xs

This is not a definition, but a property/law
▶ The law can be shown to hold for the usual definitions

of map and (.)

Why care about this law?
The right-hand side is more performant that the left-hand
side, in general
▶ Two traversals are combined into one
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Relation to imperative languages

The law map (f . g) = map f . map g is similar to the
merging of subsequent loops

foreach (var elt in list) { stats1 }
foreach (var elt in list) { stats2 }
=
foreach (var elt in list) { stats1 ; stats2 }

Due to side-effects in these languages, you have to be really
careful when to apply them

▶ What could prevent us frommerging the loops?
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A few important laws

1. Function composition is associative
f . (g . h) = (f . g) . h

2. map f distributes over (++)
map f (xs ++ ys) = map f xs ++ map f ys
▶ Validates executing a large map on different cores
▶ There is a generalization to lists of lists

map f . concat = concat . map (map f)

3. map distributes over composition
map (f . g) = map f . map g
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A few (more) important laws

4. If op is associative and e is the unit of op, then for finite
lists xs
foldr op e xs = foldl op e xs

5. Under the same conditions, foldr on a singleton list is
the identity
foldr op e [x] = x

These rules apply to very general functions
▶ The compiler uses these laws heavily to optimize



[Faculty of Science
Information and Computing

Sciences]
14

A few (more) important laws

4. If op is associative and e is the unit of op, then for finite
lists xs
foldr op e xs = foldl op e xs

5. Under the same conditions, foldr on a singleton list is
the identity
foldr op e [x] = x

These rules apply to very general functions
▶ The compiler uses these laws heavily to optimize



[Faculty of Science
Information and Computing

Sciences]
15

Why prove the laws?

▶ A proof guarantees that your optimization is justified
▶ Otherwise you may accidentally change the behavior

▶ Proving is one additional way of increasing your
confidence in the optimization that you perform
▶ Others are testing, intuition, explanations…

▶ Of course, proofs can be wrong too
▶ Proofs can be mechanically checked
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Proving is like programming

1. Proposition = functionality of specification
2. Proof = implementation
3. Lemmas = library functions, local definitions

4. Proof strategies = paradigms, design patterns
▶ Equational reasoning, i.e., by a chain of equalities
▶ Proof by induction
▶ Proof by contraposition: prove p implies q by showing

not q implies not p
▶ Proof by contradiction: assuming the opposite, show

that leads to contradiction
▶ Breaking down equalities: x = y iff x ≤ y and y ≤ x
▶ Combinatorial proofs

Like programming, proving takes practice
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Equational reasoning
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foldr over a singleton list

If e is the unit element of op, then foldr op e [x] = x

foldr op e [x]
= ...
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foldr over a singleton list

If e is the unit element of op, then foldr op e [x] = x

foldr op e [x]
= -- rewrite list notation
foldr op e (x : [])
= -- definition of foldr, case cons
op x (foldr op e [])
= -- definition of foldr, case empty
op x e
= -- e is neutral for op
x
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foldl over a singleton list

If e is the unit element of op, then foldl op e [x] = x

foldl op e [x]
= ...

Try it yourself!
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foldl over a singleton list

If e is the unit element of op, then foldl op e [x] = x

foldl op e [x]
= -- rewrite list syntactic sugar
foldl op e (x:[])
= -- definition foldl
foldl op (op e x) []
= -- definition foldl
op e x
= -- e is neutral for op
x
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Function composition is associative

For all functions f, g and h, f . (g . h) = (f . g) . h
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Function composition is associative

For all functions f, g and h, f . (g . h) = (f . g) . h

Proof: consider any x

(f . (g . h)) x
= -- definition of (.)
f ((g . h) x)
= -- definition of (.)
f (g (h x))
= -- definition of (.)
(f . g) (h x)
= -- definition of (.)
((f . g) . h) x
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Proving functions equal

▶ We prove functions f and g equal by proving that for all
input x, f x = g x
▶ They give the same results for the same inputs
▶ Provided that they don’t have side effects!

▶ They need not be the same function, as long as they
behave in the same way
▶ We call this extensional equality

▶ It is essential to make no assumptions about x
▶ Otherwise, the proof does not work for all x
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Two column style proofs

Reasoning from two ends is typically easier
▶ Rewrite the expression until you reach the same point
▶ Equalities can be read “backwards”

For all functions f, g and h, f . (g . h) = (f . g) . h

Proof: consider any x

(f . (g . h)) x ((f . g) . h) x
= {- defn. of (.) -} = {- defn. of (.) -}
f ((g . h) x) (f . g) (h x)
= {- defn. of (.) -} = {- defn. of (.) -}
f (g (h x)) f (g (h x))
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map after (:)

For all type compatible values x and functions f,
map f . (x :) = (f x :) . map f

Proof: consider any list xs

(map f . (x :)) xs ((f x :) . map f) xs
= {- defn of (.) -} = {- defn of (.) -}
map f ((x :) xs) (f x :) (map f xs)
= {- section notation -} = {- section notation -}
map f (x : xs) f x : map f xs
= {- defn. of map -}
f x : map f xs



[Faculty of Science
Information and Computing

Sciences]
26

map after (:)

For all type compatible values x and functions f,
map f . (x :) = (f x :) . map f

Proof: consider any list xs

(map f . (x :)) xs ((f x :) . map f) xs
= {- defn of (.) -} = {- defn of (.) -}
map f ((x :) xs) (f x :) (map f xs)
= {- section notation -} = {- section notation -}
map f (x : xs) f x : map f xs
= {- defn. of map -}
f x : map f xs



[Faculty of Science
Information and Computing

Sciences]
27

not is an involution

The functions not . not and id are equal

Let’s try!
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not is an involution

The functions not . not and id are equal

Proof: consider any Boolean value x
▶ Case x = False

(not . not) False id False
= {- defn of (.) -} = {- defn. of id -}
not (not False) False
= {- defn of not -}
not True
= {- defn of not -}
False

▶ Case x = True
(not . not) True id True
= {- as above -} = {- defn. of id -}
True True
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Case distinction

▶ To prove a property for all x, sometimes we need to
distinguish the possible shapes that x may take
▶ We need to be exhaustive to cover all cases

▶ For example,
▶ A Boolean may be either True or False
▶ A Maybe a value could be Nothing or Just x for some x
▶ Given a data type of the form

data Shape = Circle Point Float
| Rectangle Point Float Float
| Triangle Point Point Point

you need to consider three different cases

▶ Let’s try an example!
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Homework: Booleans and (&&) form a monoid

1. True is a neutral element: for any Boolean x,
True && x = x
x && True = x

2. (&&) is associative: for any Booleans x, y, and z,
x && (y && z) = (x && y) && z
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Homework: Maybe a forms a monoid

Consider the following operation:

Just x <|> _ = Just x
Nothing <|> y = y

1. Nothing is a neutral element: for any x :: Maybe a,
Nothing <|> x = x
x <|> Nothing = x

2. (<|>) is associative
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Induction on data types
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The case for lists

▶ Every (finite) list is built by finitely many (:)’es appplied
to a final []
x : (y : (z : ... (w : [])))
▶ Don’t bother about (finite) for now

▶ What if …?
▶ we prove a property P for []
▶ given any list xs satisfying P , we can prove P holds for

x:xs
▶ The (structural) induction principle for (finite) lists says

that the result then holds for all finite lists
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The case for numbers and trees

▶ Every finite natural number can be seen as applying the
successor function finitely many times to 0
4 = Succ (Succ (Succ (Succ Zero)))
▶ What if…?

▶ we prove a property P for 0
▶ given a number n satisfying P , we can prove P for succ

n = n + 1

▶ Every (finite) binary tree is built by finitely many Nodes
ultimately applied to Leaf
▶ What if…?

▶ we prove a property P for Leaf
▶ given any two trees l and r satisfying P and a value x, we

can prove P for Node l x r



[Faculty of Science
Information and Computing

Sciences]
34

The case for numbers and trees

▶ Every finite natural number can be seen as applying the
successor function finitely many times to 0
4 = Succ (Succ (Succ (Succ Zero)))
▶ What if…?

▶ we prove a property P for 0
▶ given a number n satisfying P , we can prove P for succ

n = n + 1

▶ Every (finite) binary tree is built by finitely many Nodes
ultimately applied to Leaf
▶ What if…?

▶ we prove a property P for Leaf
▶ given any two trees l and r satisfying P and a value x, we

can prove P for Node l x r



[Faculty of Science
Information and Computing

Sciences]
35

Structural induction

A strategy for proving properties of strucured data

1. State the law
a. If we speak about functions, introduce input variables

2. Enumerate the cases for one of the variables
▶ Usually, one per constructor in the data type

3. Prove the base cases by equational reasoning
4. Prove the recursive cases

a. State the induction hypotheses (IH)
b. Use equational reasoning, applying IH when needed
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Structural induction for lists

1. State the law
a. If we speak about functions, introduce input variables
b. If needed, choose a variable to perform induction on

2. Prove the case [] by equational reasoning
3. State the induction hypothesis for xs
4. Prove the case x:xs, assuming that the IH holds
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map f distributes over (++)

For all lists xs and ys
map f (xs ++ ys) = map f xs ++ map f ys



[Faculty of Science
Information and Computing

Sciences]
38

map f distributes over (++)

For all lists xs and ys
map f (xs ++ ys) = map f xs ++ map f ys

Proof: by induction on xs

▶ Case xs = []
map f ([] ++ ys) map f [] ++ map f ys
= {- defn. of (++) -} = {- defn. of map -}
map f ys [] ++ map f ys

= {- defn of (++) -}
map f ys
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map f distributes over (++)

▶ Case xs = z:zs
▶ IH: map f (zs ++ ys) = map f zs ++ map f ys

map f ((z:zs) ++ ys) map f (z:zs) ++ map f ys
= {- defn. of (++) -} = {- defn. of map -}
map f (z : (zs ++ ys)) (f z : map f zs) ++ map f ys
= {- defn of map -} = {- defn of (++) -}
f z : map f (zs ++ ys) f z : (map f zs ++ map f ys)

= {- IH -}
f z : map f (zs ++ ys)
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map distributes over composition

For all compatible functions f and g,
map (f . g) = map f . map g

Proof: by extensionality, we need to prove that for all xs
map (f . g) xs = (map f . map g) xs

We proceed by induction on xs

▶ Case xs = []
map (f . g) [] (map f . map g) []
= {- defn. of map -} = {- defn of (.) -}
[] map f (map g [])

= {- defn. of map, twice -}
[]
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map distributes over composition

▶ Case xs = z:zs
▶ IH: map (f . g) zs = (map f . map g) zs

map (f.g) (z:zs) (map f . map g) (z:zs)
= {- defn. of map -} = {- defn. of (.) -}
(f.g) z : map (f.g) zs map f (map g (z:zs))
= {- defn of (.) -} = {- defn. of map -}
f (g z) : map (f.g) zs map f (g z : map g zs)

= {- defn. of map -}
f (g z) : map f (map g zs)
= {- IH -}
f (g z) : map (f.g) zs
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reverse is an involution

The functions reverse . reverse and id are equal

Proof: by extensionality we need to prove that for all xs
(reverse . reverse) xs
= reverse (reverse xs) = id xs

We proceed by induction on xs

▶ Case xs = []
reverse (reverse []) id []
= {- defn. of reverse -} = {- defn. of id -}
reverse [] []
= {- defn. of reverse -}
[]
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reverse is an involution

▶ Case xs = z:zs
▶ IH: reverse (reverse zs) = id zs = zs

reverse (reverse (z:zs)) id (z:zs)
= {- defn. of reverse -} = {- defn of id -}
reverse (reverse zs ++ [z]) z:zs
We are stuck!
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Lemmas

To keep going we defer some parts as lemmas
▶ Similar to local definitions in code
▶ Lemmas have to be proven separately

In our case, we need the following lemmas

-- Distributivity of (++) over reverse
reverse (xs ++ ys) = reverse ys ++ reverse xs
-- Reverse on singleton lists
reverse [x] = [x]

Finding the right lemmas involves lots of practice
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reverse is an involution

reverse (reverse (z:zs))
= {- defn. of reverse -}
reverse (reverse zs ++ [z])
= {- distributivity -}
reverse [z] ++ reverse (reverse zs)
= {- reverse on singleton -}
[z] ++ reverse (reverse zs)
= {- IH -}
[z] ++ zs id (z : zs)
= {- defn of (++) -} = {- defn of id -}
z : zs z : zs

We still need to prove the lemmas separately
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reverse is an involution

Lemma: reverse (xs++ys) = reverse ys ++ reverse xs

Proof: by induction on xs …

Lemma: reverse [x] = [x]

Proof:
reverse [x]
= {- list notation -}
reverse (x : [])
= {- defn. of reverse -}
reverse [] ++ [x]
= {- defn. of reverse -}
[] ++ [x]
= {- defn. of (++) -}
[x]
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Mathematical induction

▶ To prove that a statement P holds for all n ∈ N
▶ Prove that it holds for 0
▶ Prove that it holds for n + 1 assuming that it holds for n

▶ This strategy is equivalent to structural induction on
data Nat = Zero | Succ Nat
This encoding is called Peano numbers

Note: there are stronger forms of induction for natural
numbers, but we restrict ourselves to the simpler one
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Arithmetic using Peano numbers

Addition and multiplication are defined by recursion

add :: Nat -> Nat -> Nat
add Zero m = m
-- 0 + m = m
add (Succ n) m = Succ (n + m)
-- (n + 1) + m = (n + m) + 1

mult :: Nat -> Nat -> Nat
mult Zero m = Zero
-- 0 × m = 0
mult (Succ n) m = add (mult n m) m
-- (n + 1) × m = (n × m) + m
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0 is right identity for addition

For all natural n, add n Zero = n

Proof: by induction on n
▶ Case n = Zero

add Zero Zero
= {- defn. of add -}
Zero

▶ Case n = Succ p
▶ IH: add p Zero = p

add (Succ p) Zero
= {- defn. of add -}
Succ (add p Zero)
= {- IH -}
Succ p
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Some functions over binary trees

data Tree a = Leaf | Node (Tree a) a (Tree a)

size t counts the number of nodes

size Leaf = 0
size (Node l _ r) = 1 + size l + size r

mirror t obtains the “rotated” image of a tree

mirror Leaf = Leaf
mirror (Node l x r) = Node (mirror r) x (mirror l)
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mirror preserves the size

For all trees t, size (mirror t) = size t

Proof: by induction on t

▶ Case t = Leaf
size (mirror Leaf)
= {- defn. of mirror -}
size Leaf
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For all trees t, size (mirror t) = size t

Proof: by induction on t

▶ Case t = Leaf
size (mirror Leaf)
= {- defn. of mirror -}
size Leaf
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mirror preserves the size

▶ Case t = Node l x r
▶ We get one induction hypothesis per recursive position
▶ IH1: size (mirror l) = size l
▶ IH2: size (mirror r) = size r

size (mirror (Node l x r))
= {- defn. of mirror -}
size (Node (mirror r) x (mirror l))
= {- defn. of size -}
1 + size (mirror r) + size (mirror l)
= {- IH1 and IH2 -}
1 + size r + size l
= {- commutativity of addition -}
1 + size l + size r
= {- defn. of size -}
size (Node l x r)
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0 is an absorbing element for product

For all natural n, mult n Zero = Zero
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Summary

▶ Proving program equivalences is useful for
▶ establishing correctness;
▶ finding opportunities for improving performance;

▶ We prove equivalences using
▶ definitions and laws;
▶ extensional equality at function types;
▶ case distinction and induction on algebraic data types;
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Some advice

▶ Proving takes practice, just like programming
▶ So practice
▶ Both the book and the lecture notes contain many more

examples of inductive proofs
▶ Inductive proofs are definitely part of the final exam

▶ Could be about lists, natural numbers, trees, or some
other recursively defined data type
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