Lecture 11. Laws and induction Functional Programming

Universiteit Utrecht

What does it mean for programs to be equal/equivalent?

Universiteit Utrecht

Goals

Equational reasoning: proving program equalities Reasoning principles at various types:

- inductive proofs at algebraic data types;
- extensional equality at function types.

Chapter 16 (up to 16.6) from Hutton's book

Universiteit Utrecht

Laws

Universiteit Utrecht

Mathematical laws

 Mathematical functions do not depend on hidden, changeable values

▶ 2+3 = 5, both in $4 \times (2+3)$ and in $(2+3)^2$

- This allows us to more easily prove properties that operators and functions might have
 - These properties are called laws

Universiteit Utrecht

Examples of laws for integers

+ commutes × commutes + is associative × distributes over + 0 is the unit of + 1 is the unit of × $\begin{aligned} x+y &= y+x\\ x\times y &= y\times x\\ x+(y+z) &= (x+y)+z\\ x\times (y+z) &= x\times y+x\times z\\ x+0 &= x = 0+x\\ x\times 1 &= x = 1\times x\end{aligned}$

Universiteit Utrecht

Why care about program equivalences?

Universiteit Utrecht

Why care about program equivalences?

- Mathematical laws can help improve performance
 - That two expressions always have the same value does not mean that computing their value takes the same amount of time or memory
 - Replace a more expensive version with one that is cheaper to compute

Universiteit Utrecht

Why care about program equivalences?

- Mathematical laws can help improve performance
 - That two expressions always have the same value does not mean that computing their value takes the same amount of time or memory
 - Replace a more expensive version with one that is cheaper to compute
- We can also prove properties to show that they correctly implement what we intended

Universiteit Utrecht

Why care about program equivalences?

- Mathematical laws can help improve performance
 - That two expressions always have the same value does not mean that computing their value takes the same amount of time or memory
 - Replace a more expensive version with one that is cheaper to compute
- We can also prove properties to show that they correctly implement what we intended

In short, performance and correctness

Universiteit Utrecht

Equational reasoning by example

 $(a + b)^{2}$ = -- definition of square $(a + b) \times (a + b)$ = -- distributivity $((a + b) \times a) + ((a + b) \times b)$ = -- commutativity of × $(a \times (a + b)) + (b \times (a + b))$ = -- distributivity, twice $= (a \times a + a \times b) + (b \times a + b \times b)$ = -- associativity of + $a \times a + (a \times b + b \times a) + b \times b$ = -- commutativity of × $a \times a + (a \times b + a \times b) + b \times b$ = -- definition of square and (2 ×) $a^{2} + 2 \times a \times b + b^{2}$

Universiteit Utrecht

Each theory has its laws

 We have seen laws that deal with arithmetic operators
 During courses in logic you have seen similar laws for logic operators

commutativity of ∧ associativity of ∧ distributitivy of ∧ over ∨ De Morgan's law Howard's law

$$\begin{aligned} x \wedge y &= y \wedge x \\ x \wedge (y \wedge z) &= (x \wedge y) \wedge z \\ x \wedge (y \vee z) &= (x \wedge y) \vee (x \wedge z) \\ \neg (x \wedge y) &= \neg x \vee \neg y \\ (x \wedge y) \rightarrow z &= x \rightarrow (y \rightarrow z) \end{aligned}$$

Universiteit Utrecht

A small proof in logic

$$\neg((a \setminus b) \setminus c) \rightarrow \neg d$$

$$= -- De Morgan's law$$

$$(\neg(a \setminus b) / \land \neg c) \rightarrow \neg d$$

$$= -- De Morgan's law$$

$$((\neg a / \land \neg b) / \land \neg c) \rightarrow \neg d$$

$$= -- Howard's law$$

$$(\neg a / \land \neg b) \rightarrow (\neg c \rightarrow \neg d)$$

$$= -- Howard's law$$

$$\neg a \rightarrow (\neg b \rightarrow (\neg c \rightarrow \neg d))$$

- Proofs feel mechanical
 - You apply the "rules" implicit in the laws
 - $\blacktriangleright\,$ Possibly even without understanding what $\wedge\,$ and $\vee\,$ do
- Always provide a hint why each equivalence holds!

Universiteit Utrecht

- Haskell is referentially transparent
 - Calling a function twice with the same parameter is guaranteed to give the same result

Universiteit Utrecht

- Haskell is referentially transparent
 - Calling a function twice with the same parameter is guaranteed to give the same result
- This allows us to prove equivalences as above
 - And use these to improve performance

Universiteit Utrecht

- Haskell is referentially transparent
 - Calling a function twice with the same parameter is guaranteed to give the same result
- This allows us to prove equivalences as above
 - And use these to improve performance
- Any = definition can be viewed in two ways double x = x + x
 - 1. The definition of a function
 - 2. A property that can be used when reasoning
 - Replace double x by x + x and viceversa, for any x

Universiteit Utrecht

- Haskell is referentially transparent
 - Calling a function twice with the same parameter is guaranteed to give the same result
- This allows us to prove equivalences as above
 - And use these to improve performance
- Any = definition can be viewed in two ways double x = x + x
 - 1. The definition of a function
 - 2. A property that can be used when reasoning
 - Replace double x by x + x and viceversa, for any x
- NB: by contrast, <- "assignments" in do-blocks are not referentially transparent!

Universiteit Utrecht

A first example

For all compatible functions **f** and **g**, and lists **xs**

(map f . map g) xs = map (f . g) xs

This is not a definition, but a property/law

 The law can be shown to hold for the usual definitions of map and (.)

Universiteit Utrecht

A first example

For all compatible functions **f** and **g**, and lists **xs**

(map f . map g) xs = map (f . g) xs

This is not a definition, but a property/law

The law can be shown to hold for the usual definitions of map and (.)

Why care about this law?

Universiteit Utrecht

A first example

For all compatible functions **f** and **g**, and lists **xs**

(map f . map g) xs = map (f . g) xs

This is not a definition, but a property/law

The law can be shown to hold for the usual definitions of map and (.)

Why care about this law?

The right-hand side is more performant that the left-hand side, in general

Two traversals are combined into one

Universiteit Utrecht

Relation to imperative languages

The law map $(f \cdot g) = map f \cdot map g is similar to the merging of subsequent loops$

foreach (var elt in list) { stats1 }
foreach (var elt in list) { stats2 }
=

foreach (var elt in list) { stats1 ; stats2 }

Universiteit Utrecht

Relation to imperative languages

```
The law map (f \cdot g) = map f \cdot map g is similar to the merging of subsequent loops
```

foreach (var elt in list) { stats1 }
foreach (var elt in list) { stats2 }
=

foreach (var elt in list) { stats1 ; stats2 }

Due to side-effects in these languages, you have to be really careful when to apply them

What could prevent us from merging the loops?

Universiteit Utrecht

A few important laws

1. Function composition is associative

$$f . (g . h) = (f . g) . h$$

Universiteit Utrecht

A few important laws

1. Function composition is associative

f . (g . h) = (f . g) . h

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

A few important laws

1. Function composition is associative

f . (g . h) = (f . g) . h

3. map distributes over composition
 map (f . g) = map f . map g

Universiteit Utrecht

A few (more) important laws

4. If op is associative and e is the unit of op, then for finite lists xs

foldr op e xs = foldl op e xs

Universiteit Utrecht

A few (more) important laws

 If op is associative and e is the unit of op, then for finite lists xs

foldr op e xs = foldl op e xs

5. Under the same conditions, foldr on a singleton list is the identity

foldr op e [x] = x

These rules apply to very general functions

The compiler uses these laws heavily to optimize

Universiteit Utrecht

Why prove the laws?

- A proof guarantees that your optimization is justified
 - Otherwise you may accidentally change the behavior
- Proving is one additional way of increasing your confidence in the optimization that you perform
 - Others are testing, intuition, explanations...
- Of course, proofs can be wrong too
 - Proofs can be mechanically checked

Universiteit Utrecht

Proving is like programming

- 1. Proposition = functionality of specification
- 2. Proof = implementation
- 3. Lemmas = library functions, local definitions

Universiteit Utrecht

Proving is like programming

- 1. Proposition = functionality of specification
- 2. Proof = implementation
- 3. Lemmas = library functions, local definitions
- 4. Proof strategies = paradigms, design patterns
 - Equational reasoning, i.e., by a chain of equalities
 - Proof by induction
 - Proof by contraposition: prove p implies q by showing not q implies not p
 - Proof by contradiction: assuming the opposite, show that leads to contradiction
 - Breaking down equalities: x = y iff $x \le y$ and $y \le x$
 - Combinatorial proofs

Like programming, proving takes practice

Universiteit Utrecht

Equational reasoning

Universiteit Utrecht

foldr over a singleton list

If e is the unit element of op, then foldr op e [x] = x foldr op e [x] = ...

Universiteit Utrecht

foldr over a singleton list

If e is the unit element of op, then foldr op e [x] = x

foldr op e [x]
= -- rewrite list notation
foldr op e (x : [])
= -- definition of foldr, case cons
op x (foldr op e [])
= -- definition of foldr, case empty
op x e
= -- e is neutral for op
x

Universiteit Utrecht

fold1 over a singleton list

If e is the unit element of op, then fold1 op e [x] = x

foldl op e [x]

= . . .

Try it yourself!

Universiteit Utrecht

fold1 over a singleton list

If e is the unit element of op, then fold1 op e [x] = x

```
foldl op e [x]
= -- rewrite list syntactic sugar
foldl op e (x:[])
= -- definition foldl
foldl op (op e x) []
= -- definition foldl
op e x
= -- e is neutral for op
x
```


Universiteit Utrecht

Function composition is associative

For all functions f, g and h, f . $(g \cdot h) = (f \cdot g) \cdot h$

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

22
Function composition is associative

For all functions f, g and h, f . (g . h) = (f . g) . h Proof: consider any x

(f . (g . h)) x = -- definition of (.) f ((g . h) x) = -- definition of (.) f (g (h x)) = -- definition of (.) (f . g) (h x) = -- definition of (.) ((f . g) . h) x

Universiteit Utrecht

Proving functions equal

- We prove functions f and g equal by proving that for all input x, f x = g x
 - They give the same results for the same inputs
 - Provided that they don't have side effects!
- They need not be the same function, as long as they behave in the same way
 - We call this extensional equality
- It is essential to make no assumptions about x
 - Otherwise, the proof does not work for all x

Universiteit Utrecht

Two column style proofs

Reasoning from two ends is typically easier

- Rewrite the expression until you reach the same point
- Equalities can be read "backwards"

For all functions f, g and h, f . (g . h) = (f . g) . h Proof: consider any x

[Faculty of Science Information and Computing Sciences]

Universiteit Utrecht

map after (:)

For all type compatible values x and functions f, map f . (x :) = (f x :) . map f

Universiteit Utrecht

map after (:)

For all type compatible values x and functions f, map f . (x :) = (f x :) . map f

Proof: consider any list xs

(map f . (x :)) xs $= \{- defn of (.) -\}$ map f ((x :) xs)map f (x : xs) $= \{- defn. of map -\}$ f x : map f xs

((f x :) . map f) xs $= \{- defn of (.) -\}$ (f x :) (map f xs)= $\{- \text{ section notation } -\} = \{- \text{ section notation } -\}$ f x : map f xs

Universiteit Utrecht

not is an involution

The functions not . not and id are equal Let's try!

Universiteit Utrecht

not is an involution

The functions not . not and id are equal

Proof: consider any Boolean value x

Case x = False (not . not) False id False not (not False) False = $\{- defn of not -\}$ not True = $\{- defn of not -\}$ False

 $= \{- defn of (.) -\} = \{- defn. of id -\}$

Universiteit Utrecht

not is an involution

The functions not . not and id are equal

Proof: consider any Boolean value x

Case x = False (not . not) False id False not (not False) = $\{- defn of not -\}$ not True = $\{- defn of not -\}$ False

 $= \{- defn of (.) -\} = \{- defn. of id -\}$ False

Case x = True (not . not) True = $\{-as above -\}$

True Universiteit Utrecht id True = $\{- defn. of id -\}$

True

Case distinction

- To prove a property for all x, sometimes we need to distinguish the possible shapes that x may take
 - We need to be exhaustive to cover all cases

Universiteit Utrecht

Case distinction

To prove a property for all x, sometimes we need to distinguish the possible shapes that x may take

We need to be exhaustive to cover all cases

For example,

- A Boolean may be either True or False
- A Maybe a value could be Nothing or Just x for some x
- Given a data type of the form

Universiteit Utrecht

Case distinction

To prove a property for all x, sometimes we need to distinguish the possible shapes that x may take

We need to be exhaustive to cover all cases

For example,

- A Boolean may be either True or False
- A Maybe a value could be Nothing or Just x for some x
- Given a data type of the form

Let's try an example!

Universiteit Utrecht

Homework: Booleans and (&&) form a monoid

- 1. True is a neutral element: for any Boolean x, True && x = xx && True = x
- 2. (&&) is associative: for any Booleans x, y, and z, x && (y && z) = (x && y) && z

Faculty of Science Information and Computing Sciences

Universiteit Utrecht

Homework: Maybe a forms a monoid

Consider the following operation:

Just x <|> _ = Just x Nothing <|> y = y

- 1. Nothing is a neutral element: for any x :: Maybe a, Nothing <|> x = x x <|> Nothing = x
- 2. (<|>) is associative

Universiteit Utrecht

Induction on data types

Universiteit Utrecht

The case for lists

Every (finite) list is built by finitely many (:)'es appplied to a final []

x : (y : (z : ... (w : [])))

Don't bother about (finite) for now

What if ...?

- we prove a property P for []
- given any list xs satisfying P, we can prove P holds for x:xs
- The (structural) induction principle for (finite) lists says that the result then holds for all finite lists

Universiteit Utrecht

The case for numbers and trees

- Every finite natural number can be seen as applying the successor function finitely many times to 0
 - 4 = Succ (Succ (Succ (Succ Zero)))
 - What if...?
 - we prove a property P for 0
 - given a number n satisfying P, we can prove P for succ n = n + 1

Universiteit Utrecht

The case for numbers and trees

- Every finite natural number can be seen as applying the successor function finitely many times to 0
 - 4 = Succ (Succ (Succ (Succ Zero)))
 - What if...?
 - we prove a property P for 0
 - given a number n satisfying P, we can prove P for succ n = n + 1
- Every (finite) binary tree is built by finitely many Nodes ultimately applied to Leaf
 - What if...?
 - we prove a property P for Leaf
 - given any two trees 1 and r satisfying P and a value x, we can prove P for Node 1 x r

Universiteit Utrecht

Structural induction

A strategy for proving properties of strucured data

- 1. State the law
 - a. If we speak about functions, introduce input variables
- 2. Enumerate the cases for one of the variables
 - Usually, one per constructor in the data type
- 3. Prove the base cases by equational reasoning
- 4. Prove the recursive cases
 - a. State the induction hypotheses (IH)
 - b. Use equational reasoning, applying IH when needed

Universiteit Utrecht

Structural induction for lists

1. State the law

- a. If we speak about functions, introduce input variables
- b. If needed, choose a variable to perform induction on
- 2. Prove the case [] by equational reasoning
- 3. State the induction hypothesis for xs
- 4. Prove the case x:xs, assuming that the IH holds

Universiteit Utrecht

map f distributes over (++)

For all lists xs and ys map f (xs ++ ys) = map f xs ++ map f ys

Universiteit Utrecht

map f distributes over (++)

For all lists xs and ys map f (xs ++ ys) = map f xs ++ map f ysProof: by induction on xs Case xs = [] map f ([] ++ ys) map f [] ++ map f ys $= \{- defn. of (++) -\} = \{- defn. of map -\}$ map f ys [] ++ map f ys $= \{- defn of (++) -\}$ map f ys

map f distributes over (++)

Case xs = z:zs
 IH:map f (zs ++ ys) = map f zs ++ map f ys

map f ((z:zs) ++ ys)
= {- defn. of (++) -}
map f (z : (zs ++ ys))
= {- defn of map -}
f z : map f (zs ++ ys)

map f (z:zs) ++ map f ys = $\{- defn. of map -\}$ (f z : map f zs) ++ map f ys = $\{- defn of (++) -\}$ f z : (map f zs ++ map f ys) = $\{- IH -\}$ f z : map f (zs ++ ys)

> [Faculty of Science Information and Computing Sciences]

39

map distributes over composition

For all compatible functions f and g, map (f . g) = map f . map g

Proof: by extensionality, we need to prove that for all xs
map (f . g) xs = (map f . map g) xs

Universiteit Utrecht

map distributes over composition

For all compatible functions f and g, map (f . g) = map f . map g

Proof: by extensionality, we need to prove that for all xs
map (f . g) xs = (map f . map g) xs
We proceed by induction on xs

map distributes over composition

Case xs = z:zs

IH:map (f . g) zs = (map f . map g) zs

map (f.g) (z:zs)
= {- defn. of map -}
(f.g) z : map (f.g) zs
= {- defn of (.) -}
f (g z) : map (f.g) zs

(map f . map g) (z:zs) = {- defn. of (.) -} map f (map g (z:zs)) = {- defn. of map -} map f (g z : map g zs) = {- defn. of map -} f (g z) : map f (map g zs) = {- IH -} f (g z) : map (f.g) zs

The functions reverse . reverse and id are equal Proof: by extensionality we need to prove that for all xs (reverse . reverse) xs = reverse (reverse xs) = id xs

Universiteit Utrecht

The functions reverse . reverse and id are equal Proof: by extensionality we need to prove that for all xs (reverse . reverse) xs = reverse (reverse xs) = id xs We proceed by induction on xs

Case xs = []
reverse (reverse []) id []
= {- defn. of reverse -} = {- defn. of id -}
reverse [] []
= {- defn. of reverse -}
[]

Universiteit Utrecht

Case xs = z:zs
 IH: reverse (reverse zs) = id zs = zs
reverse (reverse (z:zs)) id (z:zs)
 = {- defn. of reverse -} = {- defn of id -}
reverse (reverse zs ++ [z]) z:zs
We are stuck!

Universiteit Utrecht

Lemmas

To keep going we defer some parts as lemmas

- Similar to local definitions in code
- Lemmas have to be proven separately

In our case, we need the following lemmas

-- Distributivity of (++) over reverse
reverse (xs ++ ys) = reverse ys ++ reverse xs
-- Reverse on singleton lists
reverse [x] = [x]

Finding the right lemmas involves lots of practice

Universiteit Utrecht

reverse (reverse (z:zs)) = {- defn. of reverse -} reverse (reverse zs ++ [z]) = {- distributivity -} reverse [z] ++ reverse (reverse zs) = {- reverse on singleton -} [z] ++ reverse (reverse zs) $= \{- IH -\}$ [z] ++ zs id(z:zs) $= \{- defn of (++) -\}$ = $\{- defn of id -\}$ 7 : 75 7 : 75

We still need to prove the lemmas separately

Universiteit Utrecht

Lemma: reverse (xs++ys) = reverse ys ++ reverse xs Proof: by induction on xs ...

Lemma: reverse [x] = [x] Proof: reverse [x] = $\{- \text{ list notation } -\}$ reverse (x : []) = {- defn. of reverse -} reverse [] ++ [x] = $\{- defn. of reverse -\}$ [] ++ [x] = {- defn. of (++) -} [x] Universiteit Utrecht

Mathematical induction

 $\blacktriangleright \text{ To prove that a statement } P \text{ holds for all } n \in \mathbb{N}$

- Prove that it holds for 0
- Prove that it holds for n + 1 assuming that it holds for n
- This strategy is equivalent to structural induction on data Nat = Zero | Succ Nat This encoding is called Peano numbers

Note: there are stronger forms of induction for natural numbers, but we restrict ourselves to the simpler one

Universiteit Utrecht

Arithmetic using Peano numbers

Addition and multiplication are defined by recursion

add	:: Nat -> Nat -> Nat
add	Zero m = m
	O + m = m
add	(Succ n $)$ m = Succ $(n + m)$
((n + 1) + m = (n + m) + 1
mult	:: Nat -> Nat -> Nat
mult	Zero m = Zero
	$0 \times m = 0$
mult	(Succ n) m = add (mult n m) m
($(n + 1) \times m = (n \times m) + m$

Un

Universiteit Utrecht

0 is right identity for addition

For all natural n, add n Zero = n Proof: by induction on n Case n = Zero add Zero Zero = $\{- defn. of add -\}$ Zero Casen = Succ p IH: add p Zero = p add (Succ p) Zero = $\{- defn. of add -\}$ Succ (add p Zero) $= \{- IH -\}$ Succ p

Universiteit Utrecht

Some functions over binary trees

data Tree a = Leaf | Node (Tree a) a (Tree a)
size t counts the number of nodes
size Leaf = 0
size (Node l _ r) = 1 + size l + size r
mirror t obtains the "rotated" image of a tree
mirror Leaf = Leaf
mirror (Node l x r) = Node (mirror r) x (mirror l)

U

Universiteit Utrecht

mirror preserves the size

For all trees t, size (mirror t) = size t

Universiteit Utrecht
mirror preserves the size

For all trees t, size (mirror t) = size t Proof: by induction on t

Case t = Leaf
size (mirror Leaf)
= {- defn. of mirror -}
size Leaf

Univers

Universiteit Utrecht

mirror preserves the size

Caset = Node 1 x r We get one induction hypothesis per recursive position IH1: size (mirror 1) = size 1 H2: size (mirror r) = size r size (mirror (Node l x r)) = $\{- defn. of mirror -\}$ size (Node (mirror r) x (mirror 1)) = $\{- defn. of size -\}$ 1 + size (mirror r) + size (mirror l)= $\{- IH1 and IH2 -\}$ 1 + size r + size 1= {- commutativity of addition -} 1 + size + size r= $\{- defn. of size -\}$ size (Node l x r)

Universiteit Utrecht

0 is an absorbing element for product

For all natural n, mult n Zero = Zero

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

53

Summary

Proving program equivalences is useful for

- establishing correctness;
- finding opportunities for improving performance;
- We prove equivalences using
 - definitions and laws;
 - extensional equality at function types;
 - case distinction and induction on algebraic data types;

Universiteit Utrecht

Some advice

Proving takes practice, just like programming

- So practice
- Both the book and the lecture notes contain many more examples of inductive proofs

Inductive proofs are definitely part of the final exam

 Could be about lists, natural numbers, trees, or some other recursively defined data type

Universiteit Utrecht