
0

Lazy evaluation
Functional Programming

1

From Lecture 1:

Haskell can be defined with four adjectives

▶ Functional
▶ Statically typed
▶ Pure
▶ Lazy

2

From Lecture 1:

Haskell can be defined with four adjectives

▶ Functional
▶ Statically typed
▶ Pure
▶ Lazy

3

Goals

▶ Understand the lazy evaluation strategy
▶ As opposed to strict evaluation

▶ Understand why lazyness is useful
▶ …
▶ Work with infinite structures

▶ Learn about laziness pitfalls
▶ Force evaluation using seq

4

A simple expression

square :: Integer -> Integer
square x = x * x

square (1 + 2)
= -- magic happens in the computer
9

How do we reach that final value?

5

Strict or eager or call-by-value evaluation

In most programming languages:
1. Evaluate the arguments completely
2. Evaluate the function call

square (1 + 2)
= -- evaluate arguments
square 3
= -- go into the function body
3 * 3
=
9

6

Non-strict or call-by-name evaluation

Arguments are replaced as-is in the function body

square (1 + 2)
= -- go into the function body
(1 + 2) * (1 + 2)
= -- we need the value of (1 + 2) to continue
3 * (1 + 2)
=
3 * 3
=
9

7

Does call-by-name make any sense?

In the case of square, non-strict evaluation is worse

Is this always the case?

const x y = x -- forget about y

-- Call-by-value -- Call-by-name
const 5 (1 + 2) const 5 (1 + 2)
= =
const 5 3 5
=
5

7

Does call-by-name make any sense?

In the case of square, non-strict evaluation is worse

Is this always the case?

const x y = x -- forget about y

-- Call-by-value -- Call-by-name
const 5 (1 + 2) const 5 (1 + 2)
= =
const 5 3 5
=
5

8

Sharing expressions

square (1 + 2)
=
(1 + 2) * (1 + 2)

Why redo the work for (1 + 2)?

We can share the evaluated result

square (1 + 2)
=
Δ * Δ
↑___↑___ (1 + 2)

= 3
=
9

8

Sharing expressions

square (1 + 2)
=
(1 + 2) * (1 + 2)

Why redo the work for (1 + 2)?
We can share the evaluated result

square (1 + 2)
=
Δ * Δ
↑___↑___ (1 + 2)

= 3
=
9

9

Lazy evaluation

Haskell uses a lazy evaluation strategy
▶ Expressions are not evaluated until needed
▶ Duplicate expressions are shared

Lazy evaluation never requires more steps than call-by-value

Each of those not-evaluated expressions is called a thunk

10

Does it matter?

Is it possible to get different outcomes using different
evaluation strategies?

No and Yes

10

Does it matter?

Is it possible to get different outcomes using different
evaluation strategies?

No and Yes

11

Does it matter?

▶ No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce
the same result value.

▶ Yes:

1. Holds only for terminating programs.
▶ What about infinite loops?
▶ What about exceptions?

2. Performance might be different.
▶ As square and const show

11

Does it matter?

▶ No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce
the same result value.

▶ Yes:

1. Holds only for terminating programs.
▶ What about infinite loops?
▶ What about exceptions?

2. Performance might be different.
▶ As square and const show

11

Does it matter?

▶ No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce
the same result value.

▶ Yes:

1. Holds only for terminating programs.
▶ What about infinite loops?
▶ What about exceptions?

2. Performance might be different.
▶ As square and const show

11

Does it matter?

▶ No:

Theorem [Church-Rosser Theorem]

For terminating programs all evaluation strategies produce
the same result value.

▶ Yes:

1. Holds only for terminating programs.
▶ What about infinite loops?
▶ What about exceptions?

2. Performance might be different.
▶ As square and const show

12

Termination

loop x = loop x
▶ This is a well-typed program
▶ But loop 3 never terminates

Question: What does 'const 5 (loop 3)' evaluate to?

-- Eager -- Lazy
const 5 (loop 3) const 5 (loop 3)
= =
const 5 (loop 3) 5
=
...

12

Termination

loop x = loop x
▶ This is a well-typed program
▶ But loop 3 never terminates

Question: What does 'const 5 (loop 3)' evaluate to?

-- Eager -- Lazy
const 5 (loop 3) const 5 (loop 3)
= =
const 5 (loop 3) 5
=
...

12

Termination

loop x = loop x
▶ This is a well-typed program
▶ But loop 3 never terminates

Question: What does 'const 5 (loop 3)' evaluate to?

-- Eager -- Lazy
const 5 (loop 3) const 5 (loop 3)
= =
const 5 (loop 3) 5
=
...

13

Observation:

Lazy evaluation terminates more often than eager
evaluation.

Question: Why is this useful?

14

Short-circuiting

(&&) :: Bool -> Bool -> Bool
False && _ = False
True && x = x

▶ In eager languages, x && y evaluates both conditions
▶ But if the first one fails, why bother?
▶ C/Java/C# include a built-in short-circuit conjunction

▶ In Haskell, x && y only evaluates the second argument
if the first one is True
▶ False && (loop True) terminates

15

Why? Build your own Control structures

if_ :: Bool -> a -> a -> a
if_ True t _ = t
if_ False _ e = e

▶ In eager languages, if_ evaluates both branches
▶ In lazy languages, only the one being selected

For that reason,
▶ In eager languages, if has to be built-in
▶ In lazy languages, you can build your own control

structures

15

Why? Build your own Control structures

if_ :: Bool -> a -> a -> a
if_ True t _ = t
if_ False _ e = e

▶ In eager languages, if_ evaluates both branches
▶ In lazy languages, only the one being selected

For that reason,
▶ In eager languages, if has to be built-in
▶ In lazy languages, you can build your own control

structures

16

Why? Separation of Concerns

▶ Lazyness allows for easier separation of concerns.

data Operation = Sum | Product

apply :: Operation -> [Int] -> Int
apply op xs = case op of

Sum -> sumResult
Product -> productResult

where
sumResult = sum xs
productResult = product xs

17

Why? Separation of Concerns

▶ Lazyness allows for easier separation of concerns.

minAndMax :: Ord a => a -> [a] -> (a,a)

minimum' :: Ord a => a -> [a] -> a
minimum' d = fst . minAndMax d

18

Why? Infinite structures

An infinite list of ones:

ones :: [Integer]
ones = 1 : ones

ones is infinite, but everything works fine if we only work
with a finite part

take 2 ones
= take 2 (1 : ones)
= 1 : take 1 ones
= 1 : take 1 (1 : ones)
= 1 : 1 : take 0 ones
= 1 : 1 : []

19

A list of all natural numbers

To build an infinite list of numbers, we use recursion
▶ This kind of recursion is trickier than the usual one

nats :: [Integer]
nats = 0 : map (+1) nats

take 2 nats
= take 2 (0 : map (+1) nats)
= 0 : take 1 (map (+1) nats)
= 0 : take 1 (map (+1) (0 : map (+1) nats))
= 0 : take 1 (1 : map (+1) (map (+1) nats))
= 0 : 1 : take 0 (map (+1) (map (+1) nats))
= 0 : 1 : []

20

A list of all Fibonacci numbers

Remember the usual definition of fib,

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Here is a list containing all Fibonacci numbers:

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fib :: Integer -> Integer
fib n = fibs !! n -- Take the n-th element

20

A list of all Fibonacci numbers

Remember the usual definition of fib,

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

Here is a list containing all Fibonacci numbers:

fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

fib :: Integer -> Integer
fib n = fibs !! n -- Take the n-th element

21

A list of all Fibonacci numbers

0 : 1 : ...
+ 1 : ...

1 : ...

21

A list of all Fibonacci numbers

0 : 1 : 1 : ...
+ 1 : 1 : ...

1 : 2 : ...

21

A list of all Fibonacci numbers

0 : 1 : 1 : 2 : ...
+ 1 : 1 : 2 : ...

1 : 2 : 3 : ...

22

A list of all prime numbers: Sieve of Erastosthenes

An algorithm to compute the list of all primes
▶ Already known in Ancient Greece

1. Lay all numbers in a list starting with 2
2. Take the first next number p in the list
3. Remove all the multiples of p from the list

▶ 2p, 3p, 4p…
▶ Alternatively, remove n if the remainder with p is 0

4. Go back to step 2 with the first remaining number

23

Sieve of Erastosthenes

1. Lay all numbers in a list starting with 2
primes :: [Integer]
primes = sieve [2 ..] -- an infinite list

2. Take the first number p in the list
sieve (p:ns) = p : ...

3. Remove n if the remainder with p is 0
4. Go back to step 2 with the first remaining number

sieve (p:ns)
= p : sieve [n | n <- ns, n `mod` p /= 0]

23

Sieve of Erastosthenes

1. Lay all numbers in a list starting with 2
primes :: [Integer]
primes = sieve [2 ..] -- an infinite list

2. Take the first number p in the list
sieve (p:ns) = p : ...

3. Remove n if the remainder with p is 0
4. Go back to step 2 with the first remaining number

sieve (p:ns)
= p : sieve [n | n <- ns, n `mod` p /= 0]

24

“Until needed”

How does Haskell know howmuch to evaluate?
▶ By default, everything is kept in a thunk
▶ When we have a case distinction, we evaluate enough

to distinguish which branch to follow

take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

▶ If the number is 0we do not need the list at all
▶ Otherwise, we need to distinguish [] from x:xs

25

Weak Head Normal Form

An expression is inweak head normal form (WHNF) if it is:
▶ A constructor with (possibly non-evaluated) data inside

▶ True or Just (1 + 2)
▶ An anonymous function

▶ The body might be in any form
▶ \x -> x + 1 or \x -> if_ True x x

▶ A function applied to too few arguments
▶ map minimum

Every time we need to distinguish the branch to follow the
expression is evaluated until its WHNF

26

Weak Head Normal Form

Which of these expressions are in WHNF?

1. zip [1..]
2. Node Leaf 4 (fmap (+1) Leaf)
3. map (x:) xs
4. height (Node Leaf 'a' (Node Leaf 'b' Leaf))
5. _ b -> b
6. map (\x -> x + 1) [1..5]
7. (x + 1) : foldr (:) [] [1..5]

answer: 1,2,5,7

26

Weak Head Normal Form

Which of these expressions are in WHNF?

1. zip [1..]
2. Node Leaf 4 (fmap (+1) Leaf)
3. map (x:) xs
4. height (Node Leaf 'a' (Node Leaf 'b' Leaf))
5. _ b -> b
6. map (\x -> x + 1) [1..5]
7. (x + 1) : foldr (:) [] [1..5]

answer: 1,2,5,7

27

Strict versus lazy functions

Note the difference between these two functions

loop 2 + 3
= -- definition of loop
loop 2 + 3

= -- never-ending sequence
...

const 3 (loop 2)
= -- definition of const
3
-- and that's it!

28

Strict versus lazy functions

A function is strict on one argument if the result of the
function is non-terminating given a non-terminating value
for that argument
▶ (+) is strict on its first and second arguments
▶ const is not strict on its second argument, but strict on

the first

We represent non-termination by ⊥ or undefined
▶ We also call ⊥ a diverging computation
▶ f is strict if f ⊥ = ⊥

29

Some (tricky) questions

What is the result of these expressions?

1. (\x -> x) True
2. (\x -> x) undefined
3. (\x -> 0) undefined
4. (\x -> undefined) 0
5. (\x f -> f x) undefined
6. undefined undefined
7. length (map undefined [1,2])

29

Some (tricky) questions

What is the result of these expressions?

1. (\x -> x) True = True
2. (\x -> x) undefined = undefined
3. (\x -> 0) undefined = 0
4. (\x -> undefined) 0 = undefined
5. (\x f -> f x) undefined = \f -> f undefined
6. undefined undefined = undefined
7. length (map undefined [1,2]) = 2

30

Lazy Evaluation vs Performance

31

Case study: foldl

From a long, long time ago…

foldl _ v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl (+) 0 [1,2,3]

= foldl (+) (0 + 1) [2,3]
= foldl (+) ((0 + 1) + 2) [3]
= foldl (+) (((0 + 1) + 2) + 3) []
= ((0 + 1) + 2) + 3

31

Case study: foldl

From a long, long time ago…

foldl _ v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl (+) 0 [1,2,3]

= foldl (+) (0 + 1) [2,3]
= foldl (+) ((0 + 1) + 2) [3]
= foldl (+) (((0 + 1) + 2) + 3) []
= ((0 + 1) + 2) + 3

31

Case study: foldl

From a long, long time ago…

foldl _ v [] = v
foldl f v (x:xs) = foldl f (f v x) xs

foldl (+) 0 [1,2,3]

= foldl (+) (0 + 1) [2,3]
= foldl (+) ((0 + 1) + 2) [3]
= foldl (+) (((0 + 1) + 2) + 3) []
= ((0 + 1) + 2) + 3

32

Case study: foldl

foldl (+) 0 [1,2,3]
= ((0 + 1) + 2) + 3

Question: What is the problem with this?

▶ Each of the additions is kept in a thunk
▶ Some memory need to be reserved!

32

Case study: foldl

foldl (+) 0 [1,2,3]
= ((0 + 1) + 2) + 3

Question: What is the problem with this?

▶ Each of the additions is kept in a thunk
▶ Some memory need to be reserved!

33

Case study: foldl

34

Space leaks

Space leak = data structure which grows bigger, or lives
longer than expected
▶ More memory in use means more Garbage Collection
▶ As a result, performance decreases

The most common source of space leaks are thunks
▶ Thunks are essential for lazy evaluation
▶ But they also take some amount of memory

35

Garbage collection

▶ Thunks are managed by the run-time system
▶ They are created when you need a value
▶ But are not reclaimed right after evaluation

▶ Haskell uses garbage collection (GC)
▶ Every now and them Haskell takes back all the memory

used by thunks which are not needed anymore
▶ Pro: we do not need to care about memory
▶ Con: GC takes time, so lags can occur

▶ Most modern languages nowadays use GC
▶ Java, Scala, C#, Ruby, Python…
▶ Swift uses Automatic Reference Counting (ARC)

36

Case study: foldl

We want to reduce memory usage and speed up the
computation.

We force additions before going on

foldl (+) 0 [1,2,3]
= foldl (+) (0 + 1) [2,3]
= foldl (+) 1 [2,3]
= foldl (+) (1 + 2) [3]
= foldl (+) 3 [3]
= foldl (+) (3 + 3) []
= foldl (+) 6 []
= 6

37

Forcing evaluation

Haskell has a primitive operation to force

seq :: a -> b -> b

A call of the form seq x y
▶ First evaluates x up to WHNF
▶ Then it proceeds normally to compute y

Usually, y depends on x somehow

38

Case study: foldl

We can write a new version of foldlwhich forces the
accumulated value before recursion is unfolded

foldl' _ v [] = v
foldl' f v (x:xs) = let z = f v x

in z `seq` foldl' f z xs

This version solves the problem with addition

39

Case study: foldl

40

Strict application

Most of the times we use seq to force an argument to a
function, that is, strict application

($!) :: (a -> b) -> a -> b
f $! x = x `seq` f x

Because of sharing, x is evaluated only once

41

More (tricky) questions

What is the result of these expressions?

1. (\x -> 0) $! undefined
2. seq (undefined, undefined) 0
3. snd $! (undefined, undefined)
4. (\x -> 0) $! (\x -> undefined)
5. undefined $! undefined
6. length $! map undefined [1,2]
7. seq (undefined + undefined) 0
8. seq (foldr undefined undefined) 0
9. seq (1 : undefined) 0

41

More (tricky) questions

What is the result of these expressions?

1. (\x -> 0) $! undefined = undefined
2. seq (undefined, undefined) 0 = 0
3. snd $! (undefined, undefined) = undefined
4. (\x -> 0) $! (\x -> undefined) = 0
5. undefined $! undefined = undefined
6. length $! map undefined [1,2] = 2
7. seq (undefined + undefined) 0 = undefined
8. seq (foldr undefined undefined) 0 = 0
9. seq (1 : undefined) 0 = 0

seq only evaluates up to WHNF

42

Case study: Fibonacci numbers

fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

What happens when we ask for fib 5?

43

Case study: Fibonacci numbers

fib 5

fib 3

fib 1 fib 2

fib 0 fib 1

fib 4

fib 2

fib 0 fib 1

fib 3

fib 1 fib 2

fib 0 fib 1

43

Case study: Fibonacci numbers

fib 5

fib 3

fib 1 fib 2

fib 0 fib 1

fib 4

fib 2

fib 0 fib 1

fib 3

fib 1 fib 2

fib 0 fib 1

44

Local memoization (aka Dynamic Programming)

Idea: remember the result for function calls
▶ We build a list of partial results
▶ Sharing takes care of evaluating only once

memo_fib n = go i
where go i = fibs !! i

fibs = map fib [0 ..]
fib 0 = 0
fib 1 = 1
fib n = go (n-1) + go (n-2)

You can get even faster by using a better data structure
▶ For example, IntMap from containers

45

Summary

▶ Laziness = evaluate only as much as needed
▶ As opposed to the more common eager evaluation

▶ Evaluation is guided by pattern matching
▶ We need WHNF to choose a branch
▶ Some arguments may not even be evaluated

▶ Laziness is tricky when it fails
▶ Too many thunks lead to a space leak
▶ seq is used to force evaluation

	Lazy Evaluation vs Performance

