Lecture 14. More monads and applicatives

Functional Programming

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

» See yet another example of monad

» Understand the monad laws

» Introduce the idea of applicative functor

» Understand difference functor/applicative/monad

Chapter 12.2 from Hutton's book

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

The State monad

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

erse Polish Notation (RPN)

Notation in which an operator follows its operands

34+ 2 %10
= 7 2 *x 10
= 14 10

Parentheses are not needed when using RPN

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Reverse Polish Notation (RPN)

Notation in which an operator follows its operands

34+ 2% 10 -
= 7 2 *x 10 -
= 14 10 -
= 4

Parentheses are not needed when using RPN

Historical note: RPN was invented in the 1920s by the Polish
mathematician tukasiewicz, and rediscovered by several
computer scientists in the 1960s

NV [Faculty of Science
Eg\‘iwf% Universiteit Utrecht Information and Computing

=0 Jciences
;{{{/AAL§ Sciences]

expressions

Expressions in RPN are lists of numbers and operations

data Instr = Number Float | Operation ArithOp
type RPN [Instr]

We reuse the ArithOp type from arithmetic expressions

For example, 3 4 + 2 * becomes

[Number 3, Number 4, Operation Plus
, Number 2, Operation Times]

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

RPN calculator

To compute the value of an expression in RPN, you keep a
stack of values

» Each numberis added at the top of the stack

» Operations use the top-most elements in the stack

3 4 + 2 *
| 4 | | 2 |
> | 3| >3 >171-=>171->114
+——+ +———+ +———+ +-——+ +———+ +————+

[Faculty of Science
5 2 Information and Computing
= B = Universiteit Utrecht 8
E— » NI Sciences]

AW
KN

e study: RPN calculator

type Stack = [Float]

evallnstr :: Instr -> Stack -> Stack

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

e study: RPN calculator

type Stack = [Float]

evallnstr :: Instr -> Stack -> Stack
evalInstr (Number f) stack
= f : stack

evalIlnstr (Operation op) (x:y:stack)
= evalOp op x y : stack
where evalOp ...

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

ge study: RPN calculator

Let me introduce two new operations to make clear what is
going in with the stack

pop :: Stack -> (Float, Stack)

push :: Float -> Stack -> Stack

Using those the evaluator takes an intuitive form.

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

Case study: RPN calculator

Let me introduce two new operations to make clear what is
going in with the stack

pop :: Stack -> (Float, Stack)
pop (x:xs) = (x, xs)

push :: Float -> Stack -> Stack
push x xs = x : Xs

Using those the evaluator takes this form:

evalInstr (Number f) s
= push f s
evalInstr (Operation op) s
= let (x, sl) = pop s
(y, s2) = pop sl
in push (evalOp op x y) s2

[Faculty of Science
Information and Computing
Sciences]

W
§ &) % Universiteit Utrecht
9 NS

” oding state explicitly

A function like pop
pop :: Stack -> (Float, Stack)

can be seen as a function which modifies a state:

» Takes the original state as an argument
» Returns the new state along with the result

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Encoding state explicitly

10

A function like pop
pop :: Stack -> (Float, Stack)

can be seen as a function which modifies a state:

» Takes the original state as an argument
» Returns the new state along with the result

The intuition is the same as looking at 10 as

type I0 a = World -> (a, World)

[Faculty of Science
Information and Computing

NI
%ﬂ§ Universiteit Utrecht e —

==

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

ncoding state explicitly

Functions which only operate in the state return ()

push :: Float -> Stack -> ((), Stack)
push f s = (OO, £ : s)

evallnstr :: Instr -> Stack -> ((), Stack)
evalIlnstr (Number f) s
= push f s
evallnstr (Operation op) s
= let (x, s1) = pop s
(y, s2) = pop sl
in push (evalOp op x y) s2

oking for similarities

The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack
in _ -- something which uses = and the newStack

This leads to a higher-order function

next :: (Stack -> (a, Stack))
-> (a -> Stack —> (b, Stack))
-> (Stack -> (b, Stack))

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

0 king for similarities

The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack
in _ -- something which uses = and the newStack

This leads to a higher-order function

next :: (Stack -> (a, Stack))
-> (a -> Stack -> (b, Stack))
-> (Stack -> (b, Stack))
next £ g =\s > let (x, s') = f s
in g x s'

[Faculty of Science
Universiteit Utrecht Information and Coslnnputlng
ciences]

ost) the State monad

type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return
» The type has only one hole, as required

The missing part is a return function
» What can we do?

return :: a —> Stack —-> (a, Stack)

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

(Almost) the State monad

15

type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return
» The type has only one hole, as required

The missing part is a return function
» The only thing we can do is keep the state unmodified

return :: a -> Stack -> (a, Stack)
return x = \s > (x, s)

[Faculty of Science
Information and Computing

NI
A2 a)
’:” U q Universiteit Utrecht S(:ien(:es]

“er code for the examples

evallnstr :: Inst -> State ()

evalInstr (Operation op)
= do x <- pop
y <= pop
push (evalOp op x y)

The Stack value is threaded implicitly
» Similar to a single mutable variable

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

es on implementation

We can generalize this idea to any type s of State

type State s a = s -> (a, s)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Notes on implementation

We can generalize this idea to any type s of State
type State s a = s -> (a, s)

Alas, if you try to write the instance GHC complains
instance Monad (State s) where

This is because you are only allowed to use a type synonym
with all arguments applied

» Butyou need to leave one out to make it a monad

[Faculty of Science
Information and Computing
Sciences]

NI
§ &) % Universiteit Utrecht
17 NS

es on implementation

The “trick” is to wrap the value in a data type

newtype State s a = S (s -> (a, s))

run :: State s a > s -> a
run = 777

[Faculty of Science
Universiteit Utrecht Information and Computlng
Sciences]

Notes on implementation

The “trick” is to wrap the value in a data type

newtype State s a = S (s > (a, s))

run :: State s a -> s -> a
run (S f) s = fst (f s)

But now every time you need to access the function, you
need to unwrap things, and then wrap them again

instance Monad (State s) where
return x = S $ \s > (x, s)
(Sf) >=g=8$%\s -> let (x, 8') = £f s
Sg'=gx
in g' s'
[Faculty of Science

‘;\\ 2/ Information and Computing
= Universiteit Utrecht) : i1
= U ﬂ: Sciences]

19

atis going on?

State passing style!

Warning: the following slides contain ASCllI-art

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

atis going on?

AState s avalueisa “box” which, once feed with an state,
gives back a value and the modified state

+-—+ —-=> v

§ —-=> +——+ --> g

[Faculty of Science
Information and Computing

b = Universiteit Utrecht Sciences]

at is going on?

AState s avalueisa “box” which, once feed with an state,
gives back a value and the modified state

+-—+ —-=> v

s —=> +——+ —--> g'
A function c -> State s aisa "box” with an extra input

C——> +——+ -> v
I

s ——> +——+ --> g'

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

atis going on with return?

return hastypea -> State s a

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Jat is going on with return?

return hastypea -> State s a

» Itis thus a box of the second kind
> |t just passes the information through, unmodified

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

Jat is going on with (>>=)?

(>>=) : State s a -> (a -> State s b) -> State s b

» We take one box of each kind
» And have to produce a box of the first kind
+-———+ —-=> a a ——> +—+ -—> b

| st | | g |
S -=> +-———+ --> g S' —=> +———+ —=> g''

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

WHhat is going on with (>>=)?

(>>=) : State s a -> (a -> State s b) -> State s b

» We take one box of each kind
» And have to produce a box of the first kind
+-———+ -=> a a ——> +—+ -—> b

| st | | g |
§ —=> +-————+ -—> g ' —=> +———+ -——> g"!

Connect the wires and wrap into a larger box!

| +———+ > +——+ -—> b

I | st | lg | |
e I e A > +-——+ —=> g'!

[Faculty of Science
Information and Computing
Sciences]

NI

= a ..
= b é Universiteit Utrecht

24 K\

ther use for state: counters

Given a binary tree, return a new one labelled with numbers
in depth-first order

> let t = Node (Node Leaf 'a' Leaf)
lbl
(Node Leaf 'c' Leaf)
> label t
Node (Node Leaf (0, 'a') Leaf)
(1, 'b")
(Node Leaf (2, 'c') Leaf)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ther use for state: counters

Given a binary tree, return a new one labelled with numbers
in depth-first order

> let t = Node (Node Leaf 'a' Leaf)
lbl
(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)
(1, 'p")

(Node Leaf (2, 'c') Leaf)

What is the type for such a function?

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Another use for state: counters

Given a binary tree, return a new one labelled with numbers
in depth-first order

> let t = Node (Node Leaf 'a' Leaf)
lb’
(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)
(1, 'p")

(Node Leaf (2, 'c') Leaf)

What is the type for such a function?
label :: Tree a —> Tree (Int, a)

Idea: use an implicit counter to keep track of the label

&\ & [Faculty of Science
A2 a Ge-q rmati a) bing
= UZ Universiteit Utrecht Information and (()fn})uhn;,
V,@ “\' Sciences]

25

's king 1abel

The main work happens in a local function which is stateful
label' :: Tree a -> State Int (Tree (Int, a))
The purpose of 1abel is to initialize the state to 0

label t = run (label' t) O
where label' = ...

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

Cooking 1abel

We use an auxiliary function to get the current label and
update it to the next value

nextlLabel :: State Int Int
nextLabel = S $ \i -> (i, i + 1)

Armed with it, writing the stateful 1abel' is easy

label' Leaf
label' (Node 1 x r)

return Leaf
do 1' <- label' 1
i <- nextLabel
r' <- label' r
return (Node 1' (i, %) r')

S [Faculty of Science
§ O % Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

27

nad laws

As with functors, valid monads should obbey some laws

-— return is a left identity
do y <- return x == f x
fy

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

nad laws

As with functors, valid monads should obbey some laws

-— return is a left identity
do y <- return x == f x
fy

-- return ts a right tdentity
do x <- m = m
return x

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

nad laws

As with functors, valid monads should obbey some laws

-— return is a left identity
do y <- return x == f x
fy

-- return ts a right tdentity
do x <- m = m
return x

-— bind s associative

doy <- do x <-m do x <- m do x <- m
f x == do y <- f x == y <- f x
gy gy gy

In fact, monads are a higher-order version of mo[goids

aculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Summary of monads

Different monads provide different capabilities
> Maybe monad models optional values and failure
» State monad threads an implicit value
» [1 monad models search and non-determinism
» 10 monad provides impure input/output

[Faculty of Science
Information and Computing

5 Z
= B = Universiteit Utrecht
E— » NI v Sciences]

A
29 KN

Summary of monads

Different monads provide different capabilities
> Maybe monad models optional values and failure
» State monad threads an implicit value
» [1 monad models search and non-determinism
» 10 monad provides impure input/output

There are even more monads!

> Either models failure, but remembers the problem
» Reader provides a read-only environment
> Writer computesan on-going value

» For example, a log of the execution

> STM provides atomic transactions
» Cont provides non-local control flow

[Faculty of Science
Information and Computing

5 Z
= B = Universiteit Utrecht
E— v NI Ve Sciences]

NN
29 KN

mary of monads

Monads provide a common interface

» do-notation is applicable to all of them
» Many utility functions (to be described)

[Faculty of Science
Information and Computing

& Universiteit Utrecht I
Sciences]

Applicatives

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ing functions

When explaining Maybe and 10 we introduced 1iftM2

1iftM2 :: (a -> b -> ¢)

-> Maybe a -> Maybe b -> Maybe c
1iftM2 :: (a -> b -> ¢)

-> 10 a -> 10 b -> I0 C

In general, we can write 1iftM2 for any monad

1iftM2 :: Monad m => (a ->b -> ¢)
-> ma->mb ->mc
liftM2 f x y = 777

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

ing functions

When explaining Maybe and 10 we introduced 1iftM2

1iftM2 :: (a -> b -> ¢)

-> Maybe a -> Maybe b -> Maybe c
1iftM2 :: (a -> b -> ¢)

-> 10 a —> 10 b -> I0 C

In general, we can write 1iftM2 for any monad

1iftM2 :: Monad m => (a > b -> c)
-=> ma->mb ->mc
liftM2 f x y = do x' <- x
y' <oy
return (f x' y')

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

ing functions

This makes the code shorter and easier to read

-- Using do notation

do fn' <- validateFirstName fn
In' <- validateLastName fn
return (Person fn' 1n')

-— Using lift
1iftM2 Person (validateFirstName fn)
(validatelLastName 1n)

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

ing with different number of arguments

liftMl :: (a > b) ->ma ->mb
1iftM3 :: (a -> b -> ¢ -> d)

->ma->mb ->mc->mnd
liftM4 ::

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ting with different number of arguments

liftMl :: (a > b) ->ma ->mb
1iftM3 :: (a -> b -> ¢ -> d)

->ma->mb ->mc->mnd
liftM4 ::

The implementation of 1iftM follows the same pattern
liftM3 £ x y z = do x' <- x

vyt <oy

z' <- z

return (f x' y' z')

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ting with different number of arguments

liftMl :: (a > b) ->ma ->mb
1iftM3 :: (a -> b -> ¢ -> d)

->ma->mb ->mc->mnd
liftM4 ::

The implementation of 1iftM follows the same pattern
liftM3 £ x y z = do x' <- x

vyt <oy

z' <- z

return (f x' y' z')

Can you find a nicer implementation for 1iftM1?

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

ting with different number of arguments

1iftM1 :: (a ->b) >ma ->mb
1iftM3 :: (a -> b -> ¢ -> d)

->ma->mb ->mc->mnd
liftM4 ::

The implementation of 1iftM follows the same pattern
liftM3 £ x y z = do x' <- x

vyt <oy

z' <- z

return (f x' y' z')

E Can you find a nicer implementation for 1iftM1?

1iftM1 = fmap
[Faculty of Science
Universiteit Utrecht Information and Computing
Sciences]

Lifting with different number of arguments

This is clearly suboptimal:
» We need to provide different 1iftM with almost the
same implementation
» If we refactor the code by adding or removing
parameters to a function, we have to change the 1iftM
function we use at the call site

Can we do better?

N/ [Faculty of Science
ESN| é Universiteit Utrecht Information and Computing

36 %AL“\ Sciences]

oducing (<x>)

Suppose we want to lift a function with two arguments:
f::ra->b-—>c x :: fa y :: £Db

What type does fmap f x have?

[Faculty of Science
Information and Computing

= U F Universiteit Utrecht Sciences]

InEroducing (<*>)

Suppose we want to lift a function with two arguments:
f::a->b->c x :: fa y :: £Db
What type does fmap f x have?

fmap f :: fa ->f (b -> ¢)

We are able to apply the first argument

fmap f x :: £ (b -> ©)

The result is not in the form we want
» The function is now inside the functor/monad

[Faculty of Science
Information and Computing

= a of o
& = Universiteit Utrecht B
X Sciences]

A
37 %AN

To apply the next argument we need some magical function
(<¥>) :: f (b ->¢c) >fb->fc
If we had that function, then we can write

fmap £ x <*> y

= -- using the synonym (<$>) = fmap
f<$> x <>y

[Faculty of Science
2 Universiteit Utrecht Information and Computmg
Sciences]

InEroducing (<*>)

(<%>) :: £ (b ->c) >fb->1Ffc

Note that in the type of (<*>) we can choose c to be yet
another function type
> Asaresult, by means of fmap and (<*>) we can lift a
function with any number of arguments

f :ta->b-> ... >y >z

ma :: m a

mb :: mb

f <$>ma <k>mb <> ... <> my ::mz

}\\ ﬁ) [Faculty of Science
SN = rmati a) bing
S U2 Universiteit Utrecht Information and C ()fn})ul ing
t{% “‘ Sciences]

=59

Using (<*>)

Take the 1abel' functions for trees we wrote previously

label' Leaf = return Leaf
label' (Node 1 x r) do 1' <- label' 1
i <- nextLabel
r' <- label' r
return (Node 1' (i, x) r')

Now we would write instead:

label' Leaf = return Leaf
label' (Node 1 x 1)
= Node <$> label' 1
<x> ((,x) <$> nextlLabel)
<x> label' r

[Faculty of Science
Information and Computing
Sciences]

A
§ &) % Universiteit Utrecht
40 KNy

plicatives

It turns out that (<*>) by itself is an useful abstraction
» Functor allows you to lift one-argument function
» With (<*>) you can lift functions with more than one
argument

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

Applicatives

It turns out that (<*>) by itself is an useful abstraction

» Functor allows you to lift one-argument function
» With (<*>) you can lift functions with more than one
argument

For completeness, we also want a way to lift 0-ary functions.
What is the type of an fmap for 0-ary functions?

[Faculty of Science
Information and Computing

5 Z
= B = Universiteit Utrecht
E— v NI Ve Sciences]

AW
41 NS

Applicatives

It turns out that (<*>) by itself is an useful abstraction

» Functor allows you to lift one-argument function
» With (<*>) you can lift functions with more than one
argument

For completeness, we also want a way to lift 0-ary functions.
What is the type of an fmap for 0-ary functions?

A type constructor with these operations is called an
applicative (Ffunctor)

class Functor f => Applicative f where
pure :: a -> f a
(<x>) :: f (a->b) >fa->Ffhb

[Faculty of Science

é\\\‘w’;}é i itei Information and Computing
7‘;‘{{{{‘1§ Universiteit Utrecht o
41 X

nads are applicatives

Every monad is also an applicative

pure = 777
mf <x> mx = 777

Universiteit Utrecht

[Faculty of Science
Information and Computing
Sciences]

nads are applicatives

Every monad is also an applicative

pure = return

mf <> mx = do f <- mf

X <- mx
return (f x)

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

ynads are applicatives

Every monad is also an applicative

pure = return

mf <> mx = do f <- mf
X <- mx
return (f x)

As a result, you can use applicative style with 10, [1, State...

do x <- xs = [x+y
y <- ys | x <- xs
return (x + y) ,» ¥y <-ys]

== (+) <$> xs <*> ys

[Faculty of Science
Information and Computing

Universiteit Utrecht :
Sciences]

Monads are applicatives

Every monad is also an applicative

pure = return

mf <*> mx = do f <- mf
X <- mx
return (f x)

As a result, you can use applicative style with 10, [1, State...

do x <- Xs = [x+y
y <- ys | x <- xs
return (x + y) » Yy <—ys]

== (+) <$> xs <*> ys

But there are applicatives which are not monadsk, .. of science

é\\‘w’é Universiteit Utrecht Information and C()fn})uting
‘5{% § Sciences]
43 N

functor - applicative - monad hierarchy

class Functor f where
fmap :: (a ->b) ->f a ->fb

class Functor f => Applicative f where
pure :: a —> f a
(<¥>) :: £ (a>Db) >fa->=fhb

class Applicative f => Monad f where
-- return is the same as Applicative's pure
(>>=) :: fa->(a->fb) >fhb

[Faculty of Science
Universiteit Utrecht Information and Computmg
Sciences]

functor - applicative - monad hierarchy

fmap :: (@a->b) >fa->fb
(<*>) :: £ (a->b) >fa->fhb
flip (>>=) :: (a > fb) >fa->fb

> Have seen: can express <> in terms of >>= and return
> Exercise: express fmap in terms of <*> and pure

[Faculty of Science
Information and Computing

Universiteit Utrecht B
Sciences]

The functor - applicative - monad hierarchy

fmap :: (@a->b) ->fa->fb
(<*>) :: f(a->b) >fa->fb
flip (>>=) :: (a > f b) >fa->fb

» Have seen: can express <> in terms of >>=and return
> Exercise: express fmap in terms of <x>and pure

» Finally: monads are more expressive than applicatives!

\ & [Faculty of Science
§U é Universiteit Utrecht Information and C()fn})uting
t{% “\ Sciences]

45

Summary

» State monad models computation which can read/write
some bit of state

» Applicatives are functors + more structure (to lift
multiple argument functions)

» Monads are applicatives + more structure (to decide
based on argument whether or not to perform
side-effects)

NV [Faculty of Science
§L’% Universiteit Utrecht Information and C()Sl‘nbl])ul,?ng
7 Sciences]

46 N

	The State monad
	Applicatives

