
[Faculty of Science
Information and Computing

Sciences]
0

Lecture 14. More monads and applicatives
Functional Programming

[Faculty of Science
Information and Computing

Sciences]
1

Goals

▶ See yet another example of monad
▶ Understand the monad laws
▶ Introduce the idea of applicative functor
▶ Understand difference functor/applicative/monad

Chapter 12.2 from Hutton’s book

[Faculty of Science
Information and Computing

Sciences]
2

The State monad

[Faculty of Science
Information and Computing

Sciences]
3

Reverse Polish Notation (RPN)

Notation in which an operator follows its operands

3 4 + 2 * 10 -
= 7 2 * 10 -
= 14 10 -
= 4

Parentheses are not needed when using RPN

Historical note: RPN was invented in the 1920s by the Polish
mathematician Łukasiewicz, and rediscovered by several
computer scientists in the 1960s

[Faculty of Science
Information and Computing

Sciences]
3

Reverse Polish Notation (RPN)

Notation in which an operator follows its operands

3 4 + 2 * 10 -
= 7 2 * 10 -
= 14 10 -
= 4

Parentheses are not needed when using RPN

Historical note: RPN was invented in the 1920s by the Polish
mathematician Łukasiewicz, and rediscovered by several
computer scientists in the 1960s

[Faculty of Science
Information and Computing

Sciences]
4

RPN expressions

Expressions in RPN are lists of numbers and operations

data Instr = Number Float | Operation ArithOp
type RPN = [Instr]

We reuse the ArithOp type from arithmetic expressions

For example, 3 4 + 2 * becomes
[Number 3, Number 4, Operation Plus
, Number 2, Operation Times]

[Faculty of Science
Information and Computing

Sciences]
5

RPN calculator

To compute the value of an expression in RPN, you keep a
stack of values
▶ Each number is added at the top of the stack
▶ Operations use the top-most elements in the stack

3 4 + 2 *

| 4 | | 2 |
-> | 3 | -> | 3 | -> | 7 | -> | 7 | -> | 14 |

+--+ +---+ +---+ +---+ +---+ +----+

[Faculty of Science
Information and Computing

Sciences]
6

Case study: RPN calculator

type Stack = [Float]

evalInstr :: Instr -> Stack -> Stack

[Faculty of Science
Information and Computing

Sciences]
7

Case study: RPN calculator

type Stack = [Float]

evalInstr :: Instr -> Stack -> Stack
evalInstr (Number f) stack

= f : stack
evalInstr (Operation op) (x:y:stack)

= evalOp op x y : stack
where evalOp ...

[Faculty of Science
Information and Computing

Sciences]
8

Case study: RPN calculator

Let me introduce two new operations to make clear what is
going in with the stack

pop :: Stack -> (Float, Stack)
push :: Float -> Stack -> Stack

Using those the evaluator takes an intuitive form.

[Faculty of Science
Information and Computing

Sciences]
9

Case study: RPN calculator

Let me introduce two new operations to make clear what is
going in with the stack

pop :: Stack -> (Float, Stack)
pop (x:xs) = (x, xs)
push :: Float -> Stack -> Stack
push x xs = x : xs

Using those the evaluator takes this form:

evalInstr (Number f) s
= push f s

evalInstr (Operation op) s
= let (x, s1) = pop s

(y, s2) = pop s1
in push (evalOp op x y) s2

[Faculty of Science
Information and Computing

Sciences]
10

Encoding state explicitly

A function like pop

pop :: Stack -> (Float, Stack)

can be seen as a function which modifies a state:
▶ Takes the original state as an argument
▶ Returns the new state along with the result

The intuition is the same as looking at IO as

type IO a = World -> (a, World)

[Faculty of Science
Information and Computing

Sciences]
10

Encoding state explicitly

A function like pop

pop :: Stack -> (Float, Stack)

can be seen as a function which modifies a state:
▶ Takes the original state as an argument
▶ Returns the new state along with the result

The intuition is the same as looking at IO as

type IO a = World -> (a, World)

[Faculty of Science
Information and Computing

Sciences]
11

Encoding state explicitly

Functions which only operate in the state return ()

push :: Float -> Stack -> ((), Stack)
push f s = ((), f : s)

evalInstr :: Instr -> Stack -> ((), Stack)
evalInstr (Number f) s
= push f s

evalInstr (Operation op) s
= let (x, s1) = pop s

(y, s2) = pop s1
in push (evalOp op x y) s2

[Faculty of Science
Information and Computing

Sciences]
12

Looking for similarities

The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack
in _ -- something which uses x and the newStack

This leads to a higher-order function

next :: (Stack -> (a, Stack))
-> (a -> Stack -> (b, Stack))
-> (Stack -> (b, Stack))

[Faculty of Science
Information and Computing

Sciences]
13

Looking for similarities

The same pattern occurs twice in the previous code

let (x, newStack) = f oldStack
in _ -- something which uses x and the newStack

This leads to a higher-order function

next :: (Stack -> (a, Stack))
-> (a -> Stack -> (b, Stack))
-> (Stack -> (b, Stack))

next f g = \s -> let (x, s') = f s
in g x s'

[Faculty of Science
Information and Computing

Sciences]
14

(Almost) the State monad

type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return
▶ The type has only one hole, as required

The missing part is a return function
▶ What can we do?

return :: a -> Stack -> (a, Stack)

[Faculty of Science
Information and Computing

Sciences]
15

(Almost) the State monad

type State a = Stack -> (a, Stack)

State is almost a monad, we only need a return
▶ The type has only one hole, as required

The missing part is a return function
▶ The only thing we can do is keep the state unmodified

return :: a -> Stack -> (a, Stack)
return x = \s -> (x, s)

[Faculty of Science
Information and Computing

Sciences]
16

Nicer code for the examples

evalInstr :: Inst -> State ()
...
evalInstr (Operation op)
= do x <- pop

y <- pop
push (evalOp op x y)

...

The Stack value is threaded implicitly
▶ Similar to a single mutable variable

[Faculty of Science
Information and Computing

Sciences]
17

Notes on implementation

We can generalize this idea to any type s of State

type State s a = s -> (a, s)

Alas, if you try to write the instance GHC complains

instance Monad (State s) where -- Wrong!

This is because you are only allowed to use a type synonym
with all arguments applied
▶ But you need to leave one out to make it a monad

[Faculty of Science
Information and Computing

Sciences]
17

Notes on implementation

We can generalize this idea to any type s of State

type State s a = s -> (a, s)

Alas, if you try to write the instance GHC complains

instance Monad (State s) where -- Wrong!

This is because you are only allowed to use a type synonym
with all arguments applied
▶ But you need to leave one out to make it a monad

[Faculty of Science
Information and Computing

Sciences]
18

Notes on implementation

The “trick” is to wrap the value in a data type

newtype State s a = S (s -> (a, s))

run :: State s a -> s -> a
run = ???

[Faculty of Science
Information and Computing

Sciences]
19

Notes on implementation

The “trick” is to wrap the value in a data type

newtype State s a = S (s -> (a, s))

run :: State s a -> s -> a
run (S f) s = fst (f s)

But now every time you need to access the function, you
need to unwrap things, and then wrap them again

instance Monad (State s) where
return x = S $ \s -> (x, s)
(S f) >>= g = S $ \s -> let (x, s') = f s

S g' = g x
in g' s'

[Faculty of Science
Information and Computing

Sciences]
20

What is going on?

State passing style!

Warning: the following slides contain ASCII-art

[Faculty of Science
Information and Computing

Sciences]
21

What is going on?

A State s a value is a “box” which, once feed with an state,
gives back a value and the modified state

+--+ --> v
| |

s --> +--+ --> s'

A function c -> State s a is a “box” with an extra input

c --> +--+ --> v
| |

s --> +--+ --> s'

[Faculty of Science
Information and Computing

Sciences]
21

What is going on?

A State s a value is a “box” which, once feed with an state,
gives back a value and the modified state

+--+ --> v
| |

s --> +--+ --> s'

A function c -> State s a is a “box” with an extra input

c --> +--+ --> v
| |

s --> +--+ --> s'

[Faculty of Science
Information and Computing

Sciences]
22

What is going on with return?

return has type a -> State s a

[Faculty of Science
Information and Computing

Sciences]
23

What is going on with return?

return has type a -> State s a

▶ It is thus a box of the second kind
▶ It just passes the information through, unmodified

x --> +--------+ --> x
| return |

s --> +--------+ --> s

[Faculty of Science
Information and Computing

Sciences]
24

What is going on with (>>=)?

(>>=) : State s a -> (a -> State s b) -> State s b
▶ We take one box of each kind
▶ And have to produce a box of the first kind

+----+ --> a a --> +---+ --> b
| st | | g |

s --> +----+ --> s' s' --> +---+ --> s''

Connect the wires and wrap into a larger box!
+----------------------------------+
| +----+ ----------------> +---+ --> b
| | st | | g | |

s --> +----+ ----------------> +---+ --> s''
+----------------------------------+

[Faculty of Science
Information and Computing

Sciences]
24

What is going on with (>>=)?

(>>=) : State s a -> (a -> State s b) -> State s b
▶ We take one box of each kind
▶ And have to produce a box of the first kind

+----+ --> a a --> +---+ --> b
| st | | g |

s --> +----+ --> s' s' --> +---+ --> s''

Connect the wires and wrap into a larger box!
+----------------------------------+
| +----+ ----------------> +---+ --> b
| | st | | g | |

s --> +----+ ----------------> +---+ --> s''
+----------------------------------+

[Faculty of Science
Information and Computing

Sciences]
25

Another use for state: counters

Given a binary tree, return a new one labelled with numbers
in depth-first order

> let t = Node (Node Leaf 'a' Leaf)
'b'
(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)

(1, 'b')
(Node Leaf (2, 'c') Leaf)

What is the type for such a function?

label :: Tree a -> Tree (Int, a)
Idea: use an implicit counter to keep track of the label

[Faculty of Science
Information and Computing

Sciences]
25

Another use for state: counters

Given a binary tree, return a new one labelled with numbers
in depth-first order

> let t = Node (Node Leaf 'a' Leaf)
'b'
(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)

(1, 'b')
(Node Leaf (2, 'c') Leaf)

What is the type for such a function?

label :: Tree a -> Tree (Int, a)
Idea: use an implicit counter to keep track of the label

[Faculty of Science
Information and Computing

Sciences]
25

Another use for state: counters

Given a binary tree, return a new one labelled with numbers
in depth-first order

> let t = Node (Node Leaf 'a' Leaf)
'b'
(Node Leaf 'c' Leaf)

> label t
Node (Node Leaf (0, 'a') Leaf)

(1, 'b')
(Node Leaf (2, 'c') Leaf)

What is the type for such a function?

label :: Tree a -> Tree (Int, a)
Idea: use an implicit counter to keep track of the label

[Faculty of Science
Information and Computing

Sciences]
26

Cooking label

The main work happens in a local function which is stateful

label' :: Tree a -> State Int (Tree (Int, a))

The purpose of label is to initialize the state to 0

label t = run (label' t) 0
where label' = ...

[Faculty of Science
Information and Computing

Sciences]
27

Cooking label'

We use an auxiliary function to get the current label and
update it to the next value

nextLabel :: State Int Int
nextLabel = S $ \i -> (i, i + 1)

Armed with it, writing the stateful label' is easy

label' Leaf = return Leaf
label' (Node l x r) = do l' <- label' l

i <- nextLabel
r' <- label' r
return (Node l' (i, x) r')

[Faculty of Science
Information and Computing

Sciences]
28

Monad laws

As with functors, valid monads should obbey some laws

-- return is a left identity
do y <- return x == f x

f y

-- return is a right identity
do x <- m == m

return x

-- bind is associative
do y <- do x <- m do x <- m do x <- m

f x == do y <- f x == y <- f x
g y g y g y

In fact, monads are a higher-order version of monoids

[Faculty of Science
Information and Computing

Sciences]
28

Monad laws

As with functors, valid monads should obbey some laws

-- return is a left identity
do y <- return x == f x

f y

-- return is a right identity
do x <- m == m

return x

-- bind is associative
do y <- do x <- m do x <- m do x <- m

f x == do y <- f x == y <- f x
g y g y g y

In fact, monads are a higher-order version of monoids

[Faculty of Science
Information and Computing

Sciences]
28

Monad laws

As with functors, valid monads should obbey some laws

-- return is a left identity
do y <- return x == f x

f y

-- return is a right identity
do x <- m == m

return x

-- bind is associative
do y <- do x <- m do x <- m do x <- m

f x == do y <- f x == y <- f x
g y g y g y

In fact, monads are a higher-order version of monoids

[Faculty of Science
Information and Computing

Sciences]
29

Summary of monads

Different monads provide different capabilities
▶ Maybemonad models optional values and failure
▶ Statemonad threads an implicit value
▶ []monad models search and non-determinism
▶ IOmonad provides impure input/output

There are even more monads!
▶ Eithermodels failure, but remembers the problem
▶ Reader provides a read-only environment
▶ Writer computes an on-going value

▶ For example, a log of the execution
▶ STM provides atomic transactions
▶ Cont provides non-local control flow

[Faculty of Science
Information and Computing

Sciences]
29

Summary of monads

Different monads provide different capabilities
▶ Maybemonad models optional values and failure
▶ Statemonad threads an implicit value
▶ []monad models search and non-determinism
▶ IOmonad provides impure input/output

There are even more monads!
▶ Eithermodels failure, but remembers the problem
▶ Reader provides a read-only environment
▶ Writer computes an on-going value

▶ For example, a log of the execution
▶ STM provides atomic transactions
▶ Cont provides non-local control flow

[Faculty of Science
Information and Computing

Sciences]
30

Summary of monads

Monads provide a common interface
▶ do-notation is applicable to all of them
▶ Many utility functions (to be described)

[Faculty of Science
Information and Computing

Sciences]
31

Applicatives

[Faculty of Science
Information and Computing

Sciences]
32

Lifting functions

When explaining Maybe and IOwe introduced liftM2

liftM2 :: (a -> b -> c)
-> Maybe a -> Maybe b -> Maybe c

liftM2 :: (a -> b -> c)
-> IO a -> IO b -> IO c

In general, we can write liftM2 for any monad

liftM2 :: Monad m => (a -> b -> c)
-> m a -> m b -> m c

liftM2 f x y = ???

[Faculty of Science
Information and Computing

Sciences]
33

Lifting functions

When explaining Maybe and IOwe introduced liftM2

liftM2 :: (a -> b -> c)
-> Maybe a -> Maybe b -> Maybe c

liftM2 :: (a -> b -> c)
-> IO a -> IO b -> IO c

In general, we can write liftM2 for any monad

liftM2 :: Monad m => (a -> b -> c)
-> m a -> m b -> m c

liftM2 f x y = do x' <- x
y' <- y
return (f x' y')

[Faculty of Science
Information and Computing

Sciences]
34

Lifting functions

This makes the code shorter and easier to read

-- Using do notation
do fn' <- validateFirstName fn

ln' <- validateLastName fn
return (Person fn' ln')

-- Using lift
liftM2 Person (validateFirstName fn)

(validateLastName ln)

[Faculty of Science
Information and Computing

Sciences]
35

Lifting with different number of arguments

liftM1 :: (a -> b) -> m a -> m b
liftM3 :: (a -> b -> c -> d)

-> m a -> m b -> m c -> m d
liftM4 :: ...

The implementation of liftM follows the same pattern

liftM3 f x y z = do x' <- x
y' <- y
z' <- z
return (f x' y' z')

Can you find a nicer implementation for liftM1?
liftM1 = fmap

[Faculty of Science
Information and Computing

Sciences]
35

Lifting with different number of arguments

liftM1 :: (a -> b) -> m a -> m b
liftM3 :: (a -> b -> c -> d)

-> m a -> m b -> m c -> m d
liftM4 :: ...

The implementation of liftM follows the same pattern

liftM3 f x y z = do x' <- x
y' <- y
z' <- z
return (f x' y' z')

Can you find a nicer implementation for liftM1?
liftM1 = fmap

[Faculty of Science
Information and Computing

Sciences]
35

Lifting with different number of arguments

liftM1 :: (a -> b) -> m a -> m b
liftM3 :: (a -> b -> c -> d)

-> m a -> m b -> m c -> m d
liftM4 :: ...

The implementation of liftM follows the same pattern

liftM3 f x y z = do x' <- x
y' <- y
z' <- z
return (f x' y' z')

Can you find a nicer implementation for liftM1?

liftM1 = fmap

[Faculty of Science
Information and Computing

Sciences]
35

Lifting with different number of arguments

liftM1 :: (a -> b) -> m a -> m b
liftM3 :: (a -> b -> c -> d)

-> m a -> m b -> m c -> m d
liftM4 :: ...

The implementation of liftM follows the same pattern

liftM3 f x y z = do x' <- x
y' <- y
z' <- z
return (f x' y' z')

Can you find a nicer implementation for liftM1?
liftM1 = fmap

[Faculty of Science
Information and Computing

Sciences]
36

Lifting with different number of arguments

This is clearly suboptimal:
▶ We need to provide different liftMwith almost the

same implementation
▶ If we refactor the code by adding or removing

parameters to a function, we have to change the liftM
function we use at the call site

Can we do better?

[Faculty of Science
Information and Computing

Sciences]
37

Introducing (<*>)

Suppose we want to lift a function with two arguments:

f :: a -> b -> c x :: f a y :: f b

What type does fmap f x have?

fmap f :: f a -> f (b -> c)

We are able to apply the first argument

fmap f x :: f (b -> c)

The result is not in the form we want
▶ The function is now inside the functor/monad

[Faculty of Science
Information and Computing

Sciences]
37

Introducing (<*>)

Suppose we want to lift a function with two arguments:

f :: a -> b -> c x :: f a y :: f b

What type does fmap f x have?

fmap f :: f a -> f (b -> c)

We are able to apply the first argument

fmap f x :: f (b -> c)

The result is not in the form we want
▶ The function is now inside the functor/monad

[Faculty of Science
Information and Computing

Sciences]
38

Introducing (<*>)

To apply the next argument we need some magical function

(<*>) :: f (b -> c) -> f b -> f c

If we had that function, then we can write

fmap f x <*> y
= -- using the synonym (<$>) = fmap
f <$> x <*> y

[Faculty of Science
Information and Computing

Sciences]
39

Introducing (<*>)

(<*>) :: f (b -> c) -> f b -> f c

Note that in the type of (<*>)we can choose c to be yet
another function type
▶ As a result, by means of fmap and (<*>)we can lift a

function with any number of arguments

f :: a -> b -> ... -> y -> z
ma :: m a
mb :: m b
...
f <$> ma <*> mb <*> ... <*> my :: m z

[Faculty of Science
Information and Computing

Sciences]
40

Using (<*>)

Take the label' functions for trees we wrote previously

label' Leaf = return Leaf
label' (Node l x r) = do l' <- label' l

i <- nextLabel
r' <- label' r
return (Node l' (i, x) r')

Now we would write instead:

label' Leaf = return Leaf
label' (Node l x r)

= Node <$> label' l
<*> ((,x) <$> nextLabel)
<*> label' r

[Faculty of Science
Information and Computing

Sciences]
41

Applicatives

It turns out that (<*>) by itself is an useful abstraction
▶ Functor allows you to lift one-argument function
▶ With (<*>) you can lift functions with more than one

argument

For completeness, we also want a way to lift 0-ary functions.
What is the type of an fmap for 0-ary functions?

A type constructor with these operations is called an
applicative (functor)

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

[Faculty of Science
Information and Computing

Sciences]
41

Applicatives

It turns out that (<*>) by itself is an useful abstraction
▶ Functor allows you to lift one-argument function
▶ With (<*>) you can lift functions with more than one

argument

For completeness, we also want a way to lift 0-ary functions.
What is the type of an fmap for 0-ary functions?

A type constructor with these operations is called an
applicative (functor)

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

[Faculty of Science
Information and Computing

Sciences]
41

Applicatives

It turns out that (<*>) by itself is an useful abstraction
▶ Functor allows you to lift one-argument function
▶ With (<*>) you can lift functions with more than one

argument

For completeness, we also want a way to lift 0-ary functions.
What is the type of an fmap for 0-ary functions?

A type constructor with these operations is called an
applicative (functor)

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

[Faculty of Science
Information and Computing

Sciences]
42

Monads are applicatives

Every monad is also an applicative

pure = ???
mf <*> mx = ???

[Faculty of Science
Information and Computing

Sciences]
43

Monads are applicatives

Every monad is also an applicative

pure = return
mf <*> mx = do f <- mf

x <- mx
return (f x)

As a result, you can use applicative style with IO, [], State…

do x <- xs == [x + y
y <- ys | x <- xs
return (x + y) , y <- ys]

== (+) <$> xs <*> ys

But there are applicatives which are not monads!

[Faculty of Science
Information and Computing

Sciences]
43

Monads are applicatives

Every monad is also an applicative

pure = return
mf <*> mx = do f <- mf

x <- mx
return (f x)

As a result, you can use applicative style with IO, [], State…

do x <- xs == [x + y
y <- ys | x <- xs
return (x + y) , y <- ys]

== (+) <$> xs <*> ys

But there are applicatives which are not monads!

[Faculty of Science
Information and Computing

Sciences]
43

Monads are applicatives

Every monad is also an applicative

pure = return
mf <*> mx = do f <- mf

x <- mx
return (f x)

As a result, you can use applicative style with IO, [], State…

do x <- xs == [x + y
y <- ys | x <- xs
return (x + y) , y <- ys]

== (+) <$> xs <*> ys

But there are applicatives which are not monads!

[Faculty of Science
Information and Computing

Sciences]
44

The functor - applicative - monad hierarchy

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

class Applicative f => Monad f where
-- return is the same as Applicative's pure
(>>=) :: f a -> (a -> f b) -> f b

[Faculty of Science
Information and Computing

Sciences]
45

The functor - applicative - monad hierarchy

fmap :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b
flip (>>=) :: (a -> f b) -> f a -> f b

▶ Have seen: can express <*> in terms of >>= and return
▶ Exercise: express fmap in terms of <*> and pure

▶ Finally: monads are more expressive than applicatives!

[Faculty of Science
Information and Computing

Sciences]
45

The functor - applicative - monad hierarchy

fmap :: (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b
flip (>>=) :: (a -> f b) -> f a -> f b

▶ Have seen: can express <*> in terms of >>= and return
▶ Exercise: express fmap in terms of <*> and pure

▶ Finally: monads are more expressive than applicatives!

[Faculty of Science
Information and Computing

Sciences]
46

Summary

▶ State monad models computation which can read/write
some bit of state

▶ Applicatives are functors + more structure (to lift
multiple argument functions)

▶ Monads are applicatives + more structure (to decide
based on argument whether or not to perform
side-effects)

	The State monad
	Applicatives

