
Functional Programming? Haskell?

Functional Programming

Utrecht University

1

import Data.Char(toUpper)

mkWelcome :: (String -> String) -> Int -> Int -> String

mkWelcome stylize year n = concat [stylize "Welcome"

, " to INFOFP in " ++ show year ++ "!\n\n"

, "We have " ++ show n ++ " students.\n\n"

, "So we will have to grade " ++

show (numExams n) ++ " exams...."

]

where numExams m = 2 * m

capitalize s = map toUpper s

welcomeMsg = mkWelcome capitalize 2023 317

main = putStrLn welcomeMsg

2

import Data.Char(toUpper)

mkWelcome :: (String -> String) -> Int -> Int -> String

mkWelcome stylize year n = concat [stylize "Welcome"

, " to INFOFP in " ++ show year ++ "!\n\n"

, "We have " ++ show n ++ " students.\n\n"

, "So we will have to grade " ++

show (numExams n) ++ " exams...."

]

where numExams m = 2 * m

capitalize s = map toUpper s

welcomeMsg = mkWelcome capitalize 2023 317

main = putStrLn welcomeMsg
2

WELCOME to INFOFP in 2023!

We have 317 students.

So we will have to grade 634 exams....

3

What is Functional Programming?

• A way of thinking about problems:

Define what something is rather than how to compute it.

4

What is Functional Programming?

• A way of thinking about problems:

Define what something is rather than how to compute it.

4

Imperative (C#) vs. Functional (Haskell)

int sumUpTo(int n) {

int total = 0;

for (int i = n; n > 0; i--)

total += i;

return total;

}

sumUpTo 0 = 0

sumUpTo n = n + sumUpTo (n-1)

5

Our aim is to

Teach you functional programming techniques

• Using functions as first-class values

• Separating pure and impure computations

• Reasoning about your programs

• Using strong types

• …

You can write “functional code” in almost any language!

6

Our aim is to

Teach you functional programming techniques

• Using functions as first-class values

• Separating pure and impure computations

• Reasoning about your programs

• Using strong types

• …

You can write “functional code” in almost any language!

6

Why Functional Programming?

7

To create better software

1. Short term: fewer bugs

• Puritymeans fewer surprises when programming

• A function can no longer mutate a global state

• Puritymakes it easier to reason about programs

• Reasoning about OO =⇒ master/PhD course

• Reasoning about FP =⇒ this course

• Higher-order functions remove lots of boilerplate

• Also, less code to test and fewer edge cases

• Types prevent the “stupid” sort

• What does True + "1"mean?

2. Long term: more maintainable

• Types are always updated documentation

• Types help a lot in refactoring

• Change a definition, fix everywhere the compiler tells you there is a problem

8

To create better software

1. Short term: fewer bugs

• Puritymeans fewer surprises when programming

• A function can no longer mutate a global state

• Puritymakes it easier to reason about programs

• Reasoning about OO =⇒ master/PhD course

• Reasoning about FP =⇒ this course

• Higher-order functions remove lots of boilerplate

• Also, less code to test and fewer edge cases

• Types prevent the “stupid” sort

• What does True + "1"mean?

2. Long term: more maintainable

• Types are always updated documentation

• Types help a lot in refactoring

• Change a definition, fix everywhere the compiler tells you there is a problem

8

How?

9

«««< HEAD

WELCOME to INFOFP in 2022!

=======

How

>>>>>>> efc569a37f6dd5651b9e9d24d469b218a36a518b

Lectures:

* Tuesday, 11.00 to 12.45

* Thursday, 15.15 to 17.00

Instructions !!!!!: Once a week

* Thursday, 13.15 to 15.00

Practicals

<<<<<<< HEAD

* Tuesday, 11.00 to 12.45 (at USP)

=======

* Tuesday, 09.00 to 10.45

>>>>>>> efc569a37f6dd5651b9e9d24d469b218a36a518b

Who?

Frank Staals and Matthijs Vákár (me) in the lectures

\vspace{-0.3cm}

* Contact us through email

* We both speak Dutch

10 teaching assistants in the labs

\vspace{-0.3cm}

* Most of them are Dutch speakers

Guest lecture at the end of the course

Resources

1. **Slides** contain most of the content

* In some cases, supplemented by additional material

2. Pen-and-paper **exercises**

* There's more than programming in this course

* Ask questions during instruction sessions

* Remember: there is *no compiler* at the exam

3. Book: *Programming in Haskell* (2nd edition) by Graham Hutton

* The course follows it, except for chapters 13 and 17

* More resources can be found in the website

Midterm & Final Exam

* 'Pen-and-Paper' style exam questions

- Closed book

- No compiler

* Remindo-based

Practical assignments

1. The first one helps you getting started

2. Three small ones with DOMJudge, one per week

3. One bigger project at the end

DOMJudge assignments

* Submissions are **individual**

- Do not plagiarize!

* Graded automatically : Pass vs Fail

- correct = Pass, not fully correct = Fail

* You need to pass at least 2 out of 3 DOMJudge Assignments

Style

* Hints in DOMJudge for good style

* Ask TAs for advice during practicals

* Important part of the final project grade

Final project

Develop your own **game** in Haskell

* Work in **pairs**

* Submission in two parts

1. Preliminary design document

2. Code of the project

Optional bonus assignment

Learn and explain a Haskell library or language feature

\vspace{-0.3cm}

* Up to additional 0.5 points for the final grade

* Work in groups of at most three

Grading

Linear combination of three grades

\vspace{-0.3cm}

* *Theory* T = 0.3 × midterm + 0.7 × final

* *Practical* = Final project

* *Optional* assignment O

Final grade F = 0.5 × T + 0.5 × P + 0.05 × O

\vspace{0.2cm}

To pass the course, you essentially need

\vspace{-0.1cm}

* F >= 5.5, T >= 5, P >= 5

* Pass at least two DOMJudge assignments

See website for details.

If you did the course last year

* **Resubmit** your DOMJudge assignments

* Redo the **final project**

- Using the same code as last year is *not* allowed

* Redo **all** the **exams**

Communication channels

<<<<<<< HEAD

<!-- * Teams

- Lectures and Practicals through Teams -->

=======

>>>>>>> efc569a37f6dd5651b9e9d24d469b218a36a518b

* E-mail

- Check your UU-mail regularly

* Teams

- For questions about any of the material.

* Blackboard

- As a means to access your grades.

Course Website

`http://www.cs.uu.nl/docs/vakken/fp`

* All important information is found there

* Schedule, slides, assignments, exercises

Getting Started:

Functional Programming *Features*?

Some distinguishing **features** of FP:

1. Recursion instead of iteration

2. Pattern matching on values

3. Expressions instead of statements

4. Functions as first-class citizens

Try it!

1. Go to `https://play.haskell.org`

2. Write your definitions on the left pane

```haskell

sumUpTo 0 = 0

sumUpTo n = n + sumUpTo (n-1)

main = print (sumUpTo 3)

```

3. Click *Run*

4. The right pane should now show:

```haskell

6

```

Alternatively, use the interpreter 'ghci'

1. Write your definitions in a file 'main.hs':

```haskell

sumUpTo 0 = 0

sumUpTo n = n + sumUpTo (n-1)

```

2. Load your your code with "ghci main.hs"

3. Execute your functions:

```haskell

> sumUpTo 3

6

```

Small exercise

Update the example to compute $n! = n * (n-1) * (n-2) * .. * 1$ instead.

Recursion instead of iteration

Iteration = repeating a process a number of times

```csharp

int sumUpTo(int n) {

int total = 0;

for (int i = n; n > 0; i--)

total += i;

return total;

}

Recursion = defining something in terms of itself

sumUpTo 0 = 0

sumUpTo n = n + sumUpTo (n-1)

10



Pattern matching on values

A function is defined by a series of equations

• The value is compared with each left side until one “fits”

• In sumUpTo, if the value is zero we return zero, otherwise we fall to the second one

sumUpTo 0 = 0

sumUpTo n = n + sumUpTo (n-1)

11



Expressions instead of statements

What code does versus what code is

• Statements manipulate the state of the program

• Statements have an inherent order

• Variables name and store pieces of state

int sumUpTo(int n) {

int total = 0;

for (int i = n; n > 0; i--)

total += i;

return total;

}

12



Expressions instead of statements

What code does versus what code is

• Value of a whole expr. depends only on its subexpr.

• Easier to compose and reason about

• We will learn how to reason about programs

sumUpTo 3 --> 3 + sumUpTo 2

--> 3 + 2 + sumUpTo 1

--> ...

13



The factorial example:

Update the example to compute n! = n ∗ (n − 1) ∗ (n − 2) ∗ .. ∗ 1 instead.

fac :: Int -> Int

fac 0 = 1

fac n = n * fac (n-1)

• Each equation goes into its own line

• Equations are checked in order

• If n is 0, then the function equals 1

• If n is different from 0, then it goes to the second

• Good style: always write the type of your functions

14



The factorial example:

Update the example to compute n! = n ∗ (n − 1) ∗ (n − 2) ∗ .. ∗ 1 instead.

fac :: Int -> Int

fac 0 = 1

fac n = n * fac (n-1)

• Each equation goes into its own line

• Equations are checked in order

• If n is 0, then the function equals 1

• If n is different from 0, then it goes to the second

• Good style: always write the type of your functions

14



The factorial example:

Update the example to compute n! = n ∗ (n − 1) ∗ (n − 2) ∗ .. ∗ 1 instead.

fac :: Int -> Int

fac 0 = 1

fac n = n * fac (n-1)

• Each equation goes into its own line

• Equations are checked in order

• If n is 0, then the function equals 1

• If n is different from 0, then it goes to the second

• Good style: always write the type of your functions

14



Question

What happens if we write?

fac :: Int -> Int

fac n = n * fac (n-1)

fac 0 = 1

15



Functions as first-class citizens

Function = mapping of arguments to a result

greet name = "Hello, " ++ name ++ "!"

• Functions can be parameters of another function

• Functions can be returned from functions

> map greet ["Mary", "Joe"]

["Hello, Mary!", "Hello, Joe!"]

map applies the function greet to each element of the list

16



Try it yourself!

Build greet with two arguments

> greet "morning" "Paul"

"Good morning, Paul!"

-- Here is the version with one argument

greet name = "Hello, " ++ name ++ "!"

17



Why Haskell?

Haskell can be defined with four adjectives

• Functional

• Statically typed

• Pure

• Lazy

18



Haskell is statically typed

• Every expression and function has a type

• The compiler prevents wrong combinations

> :t greet -- Give me the type of greet

greet :: [Char] -> [Char]

> greet "Joe"

"Hello, Joe!"

> greet True

Couldn't match expected type ‘[Char]’

with actual type ‘Bool’

Inference = if no type is given for an expression, the compiler guesses one

19



Haskell is pure

• You cannot use statement-based programming

• Variables do not change, only give names

• Program is easy to compose, understand and paralellize

• Functions which interact with the “outer world” are marked in their type with IO

• This prevents unintended side-effects

readFile :: FilePath -> IO ()

20



Haskell is lazy

We shall get to this one…

21



Why Haskell?

From a pedagogical standpoint

• Haskell forces a functional style

• In contrast with imperative and OO languages

• We can do equational reasoning

• Haskell teaches the value of static types

• Compiler finds bugs long before run time

• We can express really detailed invariants

22



How do I “run” Haskell?

23



GHC

• We are going to use GHC in this course

• The (Glorious) Glasgow Haskell Compiler

• State-of-the-art and open source

• Installing

• Go to https://www.haskell.org/ghcup

• Follow the installation instructions for installing ‘ghcup’ and ‘ghc’ on your OS.

24

https://www.haskell.org/ghcup


Compiler versus interpreter

• Compiler (ghc)

• Takes one or more files as an input

• Generates a library or complete executable

• There is no interaction

• How you do things in Imperatief/Mobiel/Gameprogrammeren

• Interpreter (ghci)

• Interactive, expressions are evaluated on-the-go

• Useful for testing and exploration

• You can also load a file

• Almost as if you have typed in the entire file

25



GHC interpreter, ghci

1. Open a command line, terminal or console

2. Write ghci and press

GHCi, version 8.10.2: http://www.haskell.org/ghc/ :? for help

Prelude>

3. Type an expression and press to evaluate

Prelude> 2 + 3

5

Prelude>

4. Ctrl + D ( + D in Mac) or :q to quit

Prelude> :q

Leaving GHCi.

26



First examples

> length [1, 2, 3]

3

> sum [1 .. 10]

55

> reverse [1 .. 10]

[10,9,8,7,6,5,4,3,2,1]

> replicate 10 3

[3,3,3,3,3,3,3,3,3,3]

> sum (replicate 10 3)

30

• Integer numbers appear as themselves

• [1 .. 10] creates a list from 1 to 10

• Functions are called (applied) without parentheses

• In contrast to replicate(10, 3) in other languages 27



More about parentheses

• Parentheses delimit subexpressions

• sum (replicate 10 3): sum takes 1 parameter

• sum replicate 10 3: sum takes 3 parameters

> sum replicate 10 3

<interactive>: error:

• Couldn't match type ‘[t0]’ with ‘t1 -> t’

Expected type: Int -> t0 -> t1 -> t

Actual type: Int -> t0 -> [t0]

> sum (replicate 10 3)

30

28



First examples of types

> :t reverse

reverse :: [a] -> [a]

> :t replicate

replicate :: Int -> a -> [a]

• -> separates each argument and the result

• Int is the type of (machine) integers

• [Something] declares a list of Somethings

• For example, [Int] is a list of integers

• [a]means list of anything

• Note that a starts with a lowercase letter

• a is called a type variable

29



Operators

> [1, 2] ++ [3, 4]

[1, 2, 3, 4]

> (++) [1, 2] [3, 4]

> :t (++)

(++) :: [a] -> [a] -> [a]

• Some names are completely made out of symbols

• Think of +, *, &&, ||, …

• They are called operators

• Operators are used between the arguments

• Anywhere else, you use parentheses

30



Question

What happens if we do?

> [1, 2] ++ [True, False]

Type error!

31



Question

What happens if we do?

> [1, 2] ++ [True, False]

Type error!

31



Define a function in the interpreter

> let average ns = sum ns `div` length ns

> average [1,2,3]

2

> :t average

average :: Foldable t => t Int -> Int

• Functions are defined by one or more equations

• You turn a function into an operator with backticks

• Naming requirements

• Function names must start with a lowercase

• Arguments names too

• GHC has inferred a type for your function

32



Define a function in a file

You can write this definition in a file

average :: [Int] -> Int

average ns = sum ns `div` length ns

and then load it in the interpreter

> :load average.hs

[1 of 1] Compiling Main ( average.hs, interpreted )

> average [1,2,3]

2

or even work on it an then reload

> :r

[1 of 1] Compiling Main ( average.hs, interpreted )

33



More basic types

• Bool: True or False (note the uppercase!)

• Usual operations like && (and), || (or) and not

• Result of comparisons with ==, /=, <, …

• Warning! = defines, == compares

> 1 == 2 || 3 == 4

False

> 1 < 2 && 3 < 4

True

> nand x y = not (x && y)

> nand True False

True

34



More basic types

• Char: one single symbol

• Written in single quotes: 'a', 'b', …

• String: a sequence of characters

• Written in double quotes: "hello"

• They are simply [Char]

• All list functions work for String

> ['a', 'b', 'c'] ++ ['d', 'e', 'f']

"abcdef"

> replicate 5 'a'

"aaaaa"

35



First example of higher-order function

> map fac [1 .. 5]

[1,2,6,24,120]

> map not [True, False, False]

[False,True,True]

> :t map

map :: (a -> b) -> [a] -> [b]

• map takes two arguments

• The first argument is a function a -> b

• The second argument is a list [a]

• map works for every pair of types a and b you choose

• We say that map is polymorphic

36



Homework

1. Install GHC in your machine

2. Try out the examples

3. Define some simple functions

• Sum from m to n

• Build greeter with two arguments

> greeter "morning" ["P", "Z"]

["Good morning, P!", "Good morning, Z!"]

4. Think about the types of those functions

5. Do Practical Assignment 0.

37



Three pieces of advice

1. Get yourself a good editor

• At the very least, with syntax highlighting

• Visual Studio Code and Atom are quite nice

• Available at code.visualstudio.com and atom.io

• Install Haskell syntax highlighting afterwards

• vi or Emacs for the adventurous

2. Get comfortable with the command line

• https://tutorial.djangogirls.org/en/intro_to_command_line/

3. Go to the Instruction sessions !!!

• And do the pen-and-paper exercises !!!

38

code.visualstudio.com
atom.io
https://tutorial.djangogirls.org/en/intro_to_command_line/


Three pieces of advice

1. Get yourself a good editor

• At the very least, with syntax highlighting

• Visual Studio Code and Atom are quite nice

• Available at code.visualstudio.com and atom.io

• Install Haskell syntax highlighting afterwards

• vi or Emacs for the adventurous

2. Get comfortable with the command line

• https://tutorial.djangogirls.org/en/intro_to_command_line/

3. Go to the Instruction sessions !!!

• And do the pen-and-paper exercises !!!

38

code.visualstudio.com
atom.io
https://tutorial.djangogirls.org/en/intro_to_command_line/

	Why Functional Programming?
	How do I ``run'' Haskell?

