%% Utrecht University

Functional Programming? Haskell?

Functional Programming

Utrecht University

import Data.Char(toUpper)

mkWelcome 11 (String
mkWelcome stylize year n = concat [

’
’

’

where numExams m = 2 * m

capitalize s = map toUpper s

-> String) -> Int -> Int -> String
stylize "Welcome"
" to INFOFP in " ++ show year ++ "!\n\n"

n

"We have " ++ show n ++ " students.\n\n
"So we will have to grade " ++

"

show (numExams n) ++ " exams....'

welcomeMsg = mkWelcome capitalize 2023 317

import Data.Char(toUpper)

mkWelcome 11 (String
mkWelcome stylize year n = concat [

’
’

’

where numExams m = 2 * m

capitalize s = map toUpper s

-> String) -> Int -> Int -> String
stylize "Welcome"
" to INFOFP in " ++ show year ++ "!\n\n"

n

"We have " ++ show n ++ " students.\n\n
"So we will have to grade " ++

"

show (numExams n) ++ " exams....'

welcomeMsg = mkWelcome capitalize 2023 317

main = putStrLn welcomeMsg

WELCOME to INFOFP in 2023!

We have 317 students.

So we will have to grade 634 exams....

+ A way of thinking about problems:

Define what something is rather than how to compute it.

int sumUpTo(int n) {
int total = 0;
for (inti=n; n>0; i--)
total += i;
return total;
}

0

sumUpTo n = n + sumUpTo (n-1)

sumUpTo 0

Teach you functional programming techniques
+ Using functions as first-class values
+ Separating pure and impure computations
* Reasoning about your programs

* Using strong types

Teach you functional programming techniques
+ Using functions as first-class values
+ Separating pure and impure computations
* Reasoning about your programs

* Using strong types

You can write “functional code” in almost any language!

Why Functional Programming?

1. Short term: fewer bugs
+ Purity means fewer surprises when programming
+ A function can no longer mutate a global state

+ Purity makes it easier to reason about programs
+ Reasoning about OO == master/PhD course
+ Reasoning about FP = this course

+ Higher-order functions remove lots of boilerplate
+ Also, less code to test and fewer edge cases

+ Types prevent the “stupid” sort
+ What does True + "1" mean?

To create better software

1. Short term: fewer bugs

+ Purity means fewer surprises when programming
+ Afunction can no longer mutate a global state

* Purity makes it easier to reason about programs
+ Reasoning about OO == master/PhD course
+ Reasoning about FP —this course

+ Higher-order functions remove lots of boilerplate
+ Also, less code to test and fewer edge cases

+ Types prevent the “stupid” sort

* What does True + "1" mean?

2. Long term: more maintainable
+ Types are always updated documentation
+ Types help a lot in refactoring

+ Change a definition, fix everywhere the compiler tells you there is a problem

«««< HEAD

WELCOME to INFOFP in 2022!

How
>>>>>>> efc569a37f6dd5651b9e9d24d469b218a36a518b

Lectures:

* Tuesday, 11.00 to 12.45

* Thursday, 15.15 to 17.00

Instructions !l11l: Once a week

* Thursday, 13.15 to 15.00

A function is defined by a series of equations

+ The value is compared with each left side until one “fits”
+ In sumUpTo, if the value is zero we return zero, otherwise we fall to the second one

0
n + sumUpTo (n-1)

sumUpTo 0

sumUpTo n

What code does versus what code is

+ Statements manipulate the state of the program
+ Statements have an inherent order

+ Variables name and store pieces of state

int sumUpTo(int n) {
int total = 0;
for (int i =n; n>0; i--)
total += i;
return total;

What code does versus what code is

+ Value of a whole expr. depends only on its subexpr.
+ Easier to compose and reason about

+ We will learn how to reason about programs

sumUpTo 3 --> 3 + sumUpTo 2
--> 3 + 2 + sumUpTo 1

-->

Update the example to compute n! = n % (n — 1) % (n — 2) x .. * 1 instead.

Update the example to compute n! = n % (n — 1) % (n — 2) x .. * 1 instead.

fac o Int -> Int
fac 0 1
fac n =n * fac (n-1)

Update the example to compute n! = n % (n — 1) % (n — 2) x .. * 1 instead.

fac o Int -> Int
fac 0 1

fac n =n * fac (n-1)

+ Each equation goes into its own line
+ Equations are checked in order
+ If nis @, then the function equals 1

+ If nis different from 0, then it goes to the second

+ Good style: always write the type of your functions

What happens if we write?

fac :: Int -> Int
fac n =n * fac (n-1)
fac 0 1

Function = mapping of arguments to a result

greet name = "Hello, " ++ name ++ "!"

+ Functions can be parameters of another function

» Functions can be returned from functions

> map greet ["Mary", "Joe"]
["Hello, Mary!", "Hello, Joe!"]

map applies the function greet to each element of the list

Build greet with two arguments

> greet "morning" "Paul"

"Good morning, Paul!"

-- Here is the version with one argument

greet name = "Hello, " ++ name ++ "!"

Haskell can be defined with four adjectives

* Functional
+ Statically typed
* Pure

* Lazy

+ Every expression and function has a type

* The compiler prevents wrong combinations

> :t greet -- Give me the type of greet
greet :: [Char] -> [Char]

> greet "Joe"

"Hello, Joe!"

> greet True
Couldn't match expected type ‘[Char]’

with actual type ‘Bool’

Inference = if no type is given for an expression, the compiler guesses one

+ You cannot use statement-based programming

+ Variables do not change, only give names
+ Program is easy to compose, understand and paralellize

+ Functions which interact with the “outer world” are marked in their type with I0

+ This prevents unintended side-effects

readFile :: FilePath -> I0 ()

20

We shall get to this one...

21

From a pedagogical standpoint
+ Haskell forces a functional style

+ In contrast with imperative and OO languages
+ We can do equational reasoning

+ Haskell teaches the value of static types

+ Compiler finds bugs long before run time
+ We can express really detailed invariants

22

How do | “run” Haskell?

23

+ We are going to use GHC in this course
+ The (Glorious) Glasgow Haskell Compiler
+ State-of-the-art and open source

+ Installing

+ Gotohttps://www.haskell.org/ghcup
+ Follow the installation instructions for installing ‘ghcup’ and ‘ghc’ on your OS.

24

https://www.haskell.org/ghcup

+ Compiler (ghc)

+ Takes one or more files as an input

+ Generates a library or complete executable

+ There is no interaction

+ How you do things in Imperatief/Mobiel/Gameprogrammeren
* Interpreter (ghci)

+ Interactive, expressions are evaluated on-the-go
+ Useful for testing and exploration
+ You can also /oad a file

+ Almost as if you have typed in the entire file

25

1. Open a command line, terminal or console
2. Write ghci and press

GHCi, version 8.1@0.2: http://www.haskell.org/ghc/ :? for help
Prelude>

3. Type an expression and press to evaluate
Prelude> 2 + 3

5
Prelude>

4, +@ (+@ in Mac) or :q to quit
Prelude> :q

Leaving GHCi.

26

> length [1, 2, 3]

3

> sum [1 .. 10]

55

> reverse [1 .. 10]
[10,9,8,7,6,5,4,3,2,1]
> replicate 10 3
[3,3,3,3,3,3,3,3,3,3]
> sum (replicate 10 3)

30
+ Integer numbers appear as themselves

« [1 .. 10@] createsalistfrom 1to 10

* Functions are called (applied) without parentheses
* In contrast to replicate (1@, 3) inother languages 27

+ Parentheses delimit subexpressions

+ sum (replicate 1@ 3): sumtakes 1 parameter
+ sum replicate 1@ 3: sumtakes 3 parameters

> sum replicate 10 3
<interactive>: error:
* Couldn't match type ‘[t@]' with "t1 -> t’
Expected type: Int -> t0 -> tl1 -> t
Actual type: Int -> t0 -> [t0]

> sum (replicate 10 3)
30

28

> :t reverse

reverse :: [a] -> [a]

> :t replicate

replicate :: Int -> a -> [a]

+ ->separates each argument and the result

« Intisthe type of (machine) integers

+ [Something] declares a list of Somethings
« For example, [Int] is a list of integers

+ [a] means list of anything

» Note that a starts with a lowercase letter
+ ais called a type variable

29

> [1, 2] ++ [3, 4]

[1, 2, 3, 4]
> (++) [1, 2] [3, 4]
> ot (++)

(++) :: [a] -> [a] -> [a&]

+ Some names are completely made out of symbols
+ Think of +, *, &&, | |, ...
+ They are called operators

+ Operators are used between the arguments

+ Anywhere else, you use parentheses

30

What happens if we do?

> [1, 2] ++ [True, False]

31

What happens if we do?
> [1, 2] ++ [True, False]

Type error!

31

Define a function in the interpreter

> let average ns = sum ns “div’ length ns

> average [1,2,3]

> :t average

average :: Foldable t => t Int -> Int

Functions are defined by one or more equations
You turn a function into an operator with backticks
Naming requirements

+ Function names must start with a lowercase

* Arguments names too

GHC has inferred a type for your function

32

You can write this definition in a file

average :: [Int] -> Int

average ns = sum ns ‘div’ length ns

and then load it in the interpreter

> :load average.hs

[1 of 1] Compiling Main (average.hs, interpreted)
> average [1,2,3]

2

or even work on it an then reload
> r

[1 of 1] Compiling Main (average.hs, interpreted)

83

* Bool: True or False (note the uppercase!)

+ Usual operations like && (and), | | (or) and not
+ Result of comparisons with ==, /=, <, ...
+ Warning! = defines, == compares

>1==2]| 3 ==

False

>1 <28 3<4

True

> npand X y = not (x &% y)

> nand True False

True

34

+ Char: one single symbol
+ Written in single quotes: 'a’', 'b", ...
+ String: a sequence of characters
+ Written in double quotes: "hello"
+ They are simply [Char]
+ All list functions work for String
> ['a', 'b', 'c'] ++ ['d', 'e', 'f']
"abcdef"
> replicate 5 'a’

"aaaaa"

35

> map fac [1 .. 5]
[1,2,6,24,120]

> map not [True, False, False]
[False,True,True]

> it map
map :: (a -> b) -> [a] -> [b]
+ map takes two arguments
+ Thefirstargumentis a functiona -> b
* The second argumentis a list [a]
+ map works for every pair of types a and b you choose

+ We say that map is polymorphic

36

1. Install GHC in your machine
2. Try out the examples
3. Define some simple functions
+ Sum frommton
+ Build greeter with two arguments
> greeter "morning" ["P", "Z"]
["Good morning, P!", "Good morning, Z!"]
4. Think about the types of those functions
5. Do Practical Assignment 0.

37

Three pieces of advice

1. Get yourself a good editor
+ At the very least, with syntax highlighting
* Visual Studio Code and Atom are quite nice

» Available at code.visualstudio.comand atom.io

+ Install Haskell syntax highlighting afterwards

+ vi or Emacs for the adventurous

2. Get comfortable with the command line

* https://tutorial.djangogirls.org/en/intro_to_command_line/

38

code.visualstudio.com
atom.io
https://tutorial.djangogirls.org/en/intro_to_command_line/

Three pieces of advice

1. Get yourself a good editor
+ At the very least, with syntax highlighting
* Visual Studio Code and Atom are quite nice

» Available at code.visualstudio.comand atom.io

+ Install Haskell syntax highlighting afterwards

+ vi or Emacs for the adventurous

2. Get comfortable with the command line

* https://tutorial.djangogirls.org/en/intro_to_command_line/

3. Go to the Instruction sessions !l!

+ And do the pen-and-paper exercises !!!

38

code.visualstudio.com
atom.io
https://tutorial.djangogirls.org/en/intro_to_command_line/

	Why Functional Programming?
	How do I ``run'' Haskell?

