
Lecture 4. Higher-order functions

Functional Programming

Utrecht University

1

Why learn (typed) functional

programming?

2

Why Haskell?

3

Goal of typed purely functional programming

Keep programs easy to reason about by

• data-flow only through function arguments and return values

• no hidden data-flow through mutable variables/state

• function call and return as only control-flow primitive

• no loops, break, continue, goto

• (almost) unique types

• no inheritance hell

• high-level declarative data-structures

• no explicit reference-based data structures

4

Goal of typed purely functional programming

Keep programs easy to reason about by

• data-flow only through function arguments and return values

• no hidden data-flow through mutable variables/state

• function call and return as only control-flow primitive

• no loops, break, continue, goto

• (almost) unique types

• no inheritance hell

• high-level declarative data-structures

• no explicit reference-based data structures

4

Goal of typed purely functional programming

Keep programs easy to reason about by

• data-flow only through function arguments and return values

• no hidden data-flow through mutable variables/state

• function call and return as only control-flow primitive

• no loops, break, continue, goto

• (almost) unique types

• no inheritance hell

• high-level declarative data-structures

• no explicit reference-based data structures

4

Goal of typed purely functional programming

Keep programs easy to reason about by

• data-flow only through function arguments and return values

• no hidden data-flow through mutable variables/state

• function call and return as only control-flow primitive

• no loops, break, continue, goto

• (almost) unique types

• no inheritance hell

• high-level declarative data-structures

• no explicit reference-based data structures

4

Goal of typed purely functional programming

Keep programs easy to reason about by

• function call and return as only control-flow primitive

• no loops, break, continue, goto
• instead: higher-order functions (functions which use other functions)

• extra pay-off: huge abstraction power -> more code reuse!

The remaining two: this Thursday!

5

Goals of today

• Define and use higher-order functions

• Functions which use other functions

• In particular, map, filter, foldr and foldl
• vs general recursion

• Use anonymous functions

• Understand function composition

• Understand partial application

Chapter 7 and 4.5-4.6 from Hutton’s book

6

Higher-order functions vs curried functions

• Curried functions (of multiple arguments):

f :: a -> b -> c
read

f :: a -> (b -> c)

• Higher-order functions:

f :: (a -> b) -> c

• Exercise: come up with some examples from high school mathematics

7

What can higher-order functions do?

• How can we use argument-functions?

• Can we pattern match on them?

• Can we inspect their source code from a higher-order function?

8

What can higher-order functions do?

• How can we use argument-functions?

• By applying them! That’s it!

• Can we pattern match on them?

• No! But we can feed them inputs and pattern match on the results!

• Can we inspect their source code from a higher-order function?

• No! Only their input-output behaviour!

9

Usage of map

From the previous lectures…

• map applies a function uniformly over a list

• The function to apply is an argument to map
map :: (a -> b) -> [a] -> [b]

> map length ["a", "abc", "ab"]
[1,3,2]

• It is very similar to a list comprehension

> [length s | s <- ["a", "abc", "ab"]]
[1,3,2]

10

Cooking map

1. Define the type

map :: _

2. Enumerate the cases

• We cannot pattern match on functions

map f [] = _
map f (x:xs) = _

Try it yourself!

11

Cooking map

1. Define the type

map :: (a -> b) -> [a] -> [b]

2. Enumerate the cases

• We cannot pattern match on functions

map f [] = _
map f (x:xs) = _

3. Define the simple (base) cases

map f [] = []

12

Cooking map

4. Define the other (recursive) cases

• The current element needs to be transformed by f
• The rest are transformed uniformly by map

map f (x:xs) = f x : map f xs

It makes no difference whether the function we use is global or is an argument

13

Usage of filter

filter p xs leaves only the elements in xs which satisfy the predicate p
• A predicate is a function which returns True or False
• In other words, pmust return Bool

> even x = x `mod` 2 == 0
> filter even [1 .. 4]
[2,4]
> largerThan10 x = x > 10
> filter largerThan10 [1 .. 4]
[]

14

Cooking filter

1. Define the type

filter :: _

2. Enumerate the cases

filter p [] = _
filter p (x:xs) = _

Try it yourself!

15

Cooking filter

1. Define the type

filter :: (a -> Bool) -> [a] -> [a]

2. Enumerate the cases

filter p [] = _
filter p (x:xs) = _

3. Define the simple (base) cases

filter p [] = []

16

Cooking filter

4. Define the other (recursive) cases

• We have to distinguish whether the predicate holds

• Version 1, using conditionals

filter p (x:xs) = if p x
then x : filter p xs
else filter p xs

• Version 2, using guards

filter p (x:xs) | p x = x : filter p xs
| otherwise = filter p xs

17

Alternative definitions using comprehensions

map and filter can be easily defined using comprehensions

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

The recursive definitions are better to reason about code

18

(Ab)use of local definitions

Suppose we want to double the numbers in a list

• We can define a double function and apply it to the list

double n = 2 * n
doubleList xs = map double xs

• This pollutes the code, so we can put it in a where
doubleList xs = map double xs
where double n = 2 * n

• But we are still using too much code for such a simple and small function!

• Each call to map or filtermay require one of those

19

(Ab)use of local definitions

Suppose we want to double the numbers in a list

• We can define a double function and apply it to the list

double n = 2 * n
doubleList xs = map double xs

• This pollutes the code, so we can put it in a where
doubleList xs = map double xs
where double n = 2 * n

• But we are still using too much code for such a simple and small function!

• Each call to map or filtermay require one of those

19

(Ab)use of local definitions

Suppose we want to double the numbers in a list

• We can define a double function and apply it to the list

double n = 2 * n
doubleList xs = map double xs

• This pollutes the code, so we can put it in a where
doubleList xs = map double xs
where double n = 2 * n

• But we are still using too much code for such a simple and small function!

• Each call to map or filtermay require one of those

19

Anonymous functions

\ arguments -> code
Haskell allows you to define functions without a name

doubleList xs = map (\x -> 2 * x) xs

• They are called anonymous functions or (lambda) abstractions

• The \ symbol resembles a Greek λ

Historical note: the theoretical basis for functional programming is called λ-calculus and was

introduced in the 1930s by the American mathematician Alonzo Church

20

Anonymous functions

\ arguments -> code
Haskell allows you to define functions without a name

doubleList xs = map (\x -> 2 * x) xs

• They are called anonymous functions or (lambda) abstractions

• The \ symbol resembles a Greek λ

Historical note: the theoretical basis for functional programming is called λ-calculus and was

introduced in the 1930s by the American mathematician Alonzo Church

20

Anonymous functions are just functions

• They have a type, which is always a function type

> :t \x -> 2 * x
\x -> 2 * x :: Num a => a -> a

• You can use it everywhere you need a function

> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]

• Even when you define a function

double = \x -> 2 * x

21

Anonymous functions are just functions

• They have a type, which is always a function type

> :t \x -> 2 * x
\x -> 2 * x :: Num a => a -> a

• You can use it everywhere you need a function

> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]

• Even when you define a function

double = \x -> 2 * x

21

Anonymous functions are just functions

• They have a type, which is always a function type

> :t \x -> 2 * x
\x -> 2 * x :: Num a => a -> a

• You can use it everywhere you need a function

> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]

• Even when you define a function

double = \x -> 2 * x

21

Functions which return functions

flip :: (a -> b -> c) -> (b -> a -> c)
flip f = _

22

Functions which return functions

flip :: (a -> b -> c) -> (b -> a -> c)
flip f = \y x -> f x y

• This function is called a combinator

• It creates a function from another function

• The resulting function may get more arguments

• They appear in reverse order from the original

> flip map [1,2,3] (\x -> 2 * x)
[2,4,6]

23

Functions are curried

• In Haskell, functions take one argument at a time

• The result might be another function

map :: (a -> b) -> [a] -> [b]
map :: (a -> b) -> ([a] -> [b])

• We say functions in Haskell are curried

• A two-argument function is actually a one-argument function which returns yet another

function which takes the next argument and produces a result

24

Different ways to write

Take a function with three arguments

addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z

Parentheses in functions associate to the right

addThree :: Int -> (Int -> (Int -> Int))

We can define the function in these other ways

addThree x y = \z -> x + y + z
addThree x = \y -> \z -> x + y + z
addThree = \x -> \y -> \z -> x + y + z
addThree = \x y z -> x + y + z

25

Different ways to write

Take a function with three arguments

addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z

Parentheses in functions associate to the right

addThree :: Int -> (Int -> (Int -> Int))

We can define the function in these other ways

addThree x y = \z -> x + y + z
addThree x = \y -> \z -> x + y + z
addThree = \x -> \y -> \z -> x + y + z
addThree = \x y z -> x + y + z

25

Partial application

• Since Haskell functions take one argument at a time, we can provide less than the ones

stated in the signature

• The result is yet another function

• We say the function has been partially appplied

> :t map (\x -> 2 * x)
map (\x -> 2 * x) :: ???

26

Partial application

• Since Haskell functions take one argument at a time, we can provide less than the ones

stated in the signature

• The result is yet another function

• We say the function has been partially appplied

> :t map (\x -> 2 * x)
map (\x -> 2 * x) :: Num b => [b] -> [b]

> :{
| let doubleList = map (\x -> 2 * x)
| in doubleList [1,2,3]
| :}
[2,4,6]

27

Definition by partial application

Instead of writing out all the arguments

doubleList xs = map (\x -> 2 * x) xs

Haskells make use of partial application if possible

doubleList = map (\x -> 2 * x)

Note that xs has been dropped from both sides

Technical note: this is called η (eta) reduction

28

Definition by partial application

Instead of writing out all the arguments

doubleList xs = map (\x -> 2 * x) xs

Haskells make use of partial application if possible

doubleList = map (\x -> 2 * x)

Note that xs has been dropped from both sides

Technical note: this is called η (eta) reduction

28

Sections

Sections are shorthand for partial application of operators

(x #) = \y -> x # y -- Application of 1st arg.
(# y) = \x -> x # y -- Application of 2nd arg.

They help us remove even more clutter

doubleList = map (2 *)
largerThan10 = filter (> 10)

Warning! Order matters in sections
> filter (> 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
> filter (10 >) [1 .. 20]
[1,2,3,4,5,6,7,8,9]

29

Sections

Sections are shorthand for partial application of operators

(x #) = \y -> x # y -- Application of 1st arg.
(# y) = \x -> x # y -- Application of 2nd arg.

They help us remove even more clutter

doubleList = map (2 *)
largerThan10 = filter (> 10)

Warning! Order matters in sections
> filter (> 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
> filter (10 >) [1 .. 20]
[1,2,3,4,5,6,7,8,9]

29

Example: working with a list of functions

Apply a list of functions in order to a starting argument

> applyAll [(+ 1), (* 2), (\x -> x - 3)] 3
5 -- ((3 + 1) * 2) - 3

• Define the function

• What is the type of applyAll?

Try it yourself!

30

Example: working with a list of functions

applyAll [f] x = f x
applyAll (f : fs) x = applyAll fs (f x)

Let’s think harder about the base case!

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

> :t applyAll
applyAll :: [a -> a] -> a -> a

31

Example: working with a list of functions

applyAll [f] x = f x
applyAll (f : fs) x = applyAll fs (f x)

Let’s think harder about the base case!

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

> :t applyAll
applyAll :: [a -> a] -> a -> a

31

Example: working with a list of functions

applyAll [f] x = f x
applyAll (f : fs) x = applyAll fs (f x)

Let’s think harder about the base case!

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

> :t applyAll
applyAll :: [a -> a] -> a -> a

31

Function composition

Another example of function combinator
• g composed with f, or g after f

(.) :: (b -> c) -> (a -> b) -> (a -> c)
g . f = _

32

Function composition

Another example of function combinator
• g composed with f, or g after f

(.) :: (b -> c) -> (a -> b) -> (a -> c)
g . f = \x -> g (f x)

33

Examples of function composition

not :: Bool -> Bool
even :: Int -> Bool

odd x = not (even x)
odd = not . even -- Better

-- Remove all elements which satisfy the predicate
filterNot :: (a -> Bool) -> [a] -> [a]

Try it yourself!

34

Examples of function composition

not :: Bool -> Bool
even :: Int -> Bool

odd x = not (even x)
odd = not . even -- Better

-- Remove all elements which satisfy the predicate
filterNot :: (a -> Bool) -> [a] -> [a]
filterNot p xs = filter (\x -> not (p x)) xs
filterNot p xs = filter (not . p) xs -- Better
filterNot p = filter (not . p) -- Even better

35

Function pipelines

You can define many functions as a pipeline

• Sequence of functions composed one after the other

• This style of coding is called point-free

• Even though it actually has more point symbols!

maxAverage :: [[Float]] -> Float
maxAverage
= maximum . map average . filter (not . null)
where average xs

= sum xs / fromIntegral (length xs)

36

Point-free craziness

You can go even further in this point-free style by using more combinators

where average = (/) <$> sum
<*> (fromIntegral . length)

(<$>) :: (a -> b) -> (c -> a) -> (c -> b)
(<*>) :: (c -> a -> b) -> (c -> a) -> (c -> b)

Warning! Don’t overdo it!

• This definition of average is less readable

37

Question

Write applyAll in point-free style

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

Hint: for the first case remember that id x = x

applyAll [] = id
applyAll (f : fs) = applyAll fs . f

38

Question

Write applyAll in point-free style

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

Hint: for the first case remember that id x = x

applyAll [] = id
applyAll (f : fs) = applyAll fs . f

38

Folds

39

Similar functions

sum [] = 0
sum (x:xs) = x + sum xs

product [] = 1
product (x:xs) = x * product xs

and [] = True
and (x:xs) = x && and xs

• The three return a value in the [] case

• For the x:xs case, they combine the head with the result for the rest of the list

• (+) for sum, (*) for product, (&&) for and

40

Similar functions

sum [] = 0
sum (x:xs) = x + sum xs

product [] = 1
product (x:xs) = x * product xs

and [] = True
and (x:xs) = x && and xs

• The three return a value in the [] case

• For the x:xs case, they combine the head with the result for the rest of the list

• (+) for sum, (*) for product, (&&) for and

40

Avoid duplication, abstract!

sum [] = 0
sum (x:xs) = x + sum xs

Let’s replace the moving parts with arguments f and v
• First-class functions are key for abstraction

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

= x `f` foldr f v xs -- Infix

41

Avoid duplication, abstract!

• The previous definitions become much shorter

• The use of foldr conveys an intention

• They all compute a result by iteratively applying a function over all the elements in the list

sum = foldr (+) 0
product = foldr (*) 1
and = foldr (&&) True

42

foldr is for “fold right”

foldr (+) 0 (x : y : z : [])
=
x + foldr (+) 0 (y : z : [])
=
x + (y + foldr (+) 0 (z : []))
=
x + (y + (z + foldr 0 []))
=
x + (y + (z + 0))

• foldr introduces parentheses “to the right”

• Initial value is in innermost parentheses

43

Another view of foldr

foldr (+) 0 [x, y, z]
=
foldr (+) 0 (x : (y : (z : [])))

| | | |
| | | |
↓ ↓ ↓ ↓

(x + (y + (z + 0)))

• (:) is replaced by the combination function

• [] is replaced by the initial value

44

length as a right fold

length [] = 0
length (_:xs) = 1 + length xs

foldr _ v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

We want to find f and v such that

length = foldr f v

Try it yourself!

45

length as a right fold

• Case of empty list, []
length [] = 0

= v = foldr f v []

• Case of cons, x:xs
length (x:xs) = 1 + length xs

= f x (foldr f v xs)
= -- Assuming we know it for xs
f x (length xs)

• We need to have a function such that

f x (length xs) = 1 + length xs
===> f x y = 1 + y
===> f = \x y -> 1 + y

46

length as a right fold

• Case of empty list, []
length [] = 0

= v = foldr f v []

• Case of cons, x:xs
length (x:xs) = 1 + length xs

= f x (foldr f v xs)
= -- Assuming we know it for xs
f x (length xs)

• We need to have a function such that

f x (length xs) = 1 + length xs
===> f x y = 1 + y
===> f = \x y -> 1 + y

46

length as a right fold

In conclusion,

length = foldr (_ y -> 1 + y) 0

length [1,2,3]
= -- definition of length
foldr (_ y -> 1 + y) [1,2,3]
= -- application of foldr
1 + (1 + (1 + 0))
= -- perform addition
3

47

Left folds

foldr (+) 0 [x,y,z]
= (x + (y + (z + 0)))

Is it possible to have a “mirror” function foldl?

foldl (+) 0 [x,y,z]
= (((0 + x) + y) + z)

• Parenthesis associate to the left

• Initial value still in the innermost position

48

Calculating foldl

• The case for empty lists is the same as foldr
foldl f v [] = v

• For the general case, notice this fact:

foldl (+) 0 [x,y,z]
= foldl (+) (0 + x) [y,z]
= foldl (+) ((0 + x) + y) [z]
= foldl (+) (((0 + x) + y) + z) []

• The second argument works as an accumulator

foldl f v (x:xs) = foldl f (f v x) xs

49

Calculating foldl

• The case for empty lists is the same as foldr
foldl f v [] = v

• For the general case, notice this fact:

foldl (+) 0 [x,y,z]
= foldl (+) (0 + x) [y,z]
= foldl (+) ((0 + x) + y) [z]
= foldl (+) (((0 + x) + y) + z) []

• The second argument works as an accumulator

foldl f v (x:xs) = foldl f (f v x) xs

49

foldr versus foldl

foldr (+) 0 [1, 2, ..., n]
= 1 + foldr (+) 0 [2, ..., n]
= ... = 1 + (2 + (... + (n + 0)))

= 1 + (2 + (... + n)) = ...

foldl (+) 0 [1, 2, ..., n]
= foldl (+) (0 + 1) [2, ..., n]
= ... = foldl (+) (((0 + 1) + ...) + n) []
= (((0 + 1) + ...) + n)
= ((1 + ...) + n) = ...

• With foldr and foldl you wait until the end to start combining

50

foldr versus foldl

foldl' (+) 0 [1, 2, ..., n]
= foldl' (+) (0 + 1) [2, ..., n]
= foldl' (+) 1 [2, ..., n] -- (!)
= foldl' (+) (1 + 2) [..., n]
= foldl' (+) 3 [..., n] -- (!)

• With foldr and foldl you wait until the end to start combining

• With foldl' you compute the value “on the go”

• foldl' is usually more efficient

51

foldr versus foldl

In the case of (+), the result is the same

> foldr (+) 0 [1,2,3]
6
> foldl (+) 0 [1,2,3]
6

This is not the case for every function

> foldr (-) 0 [1,2,3]
2
> foldl (-) 0 [1,2,3]
-6

52

Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

f v x = x = f v x 0 + x = x = x + 0

• We say that v is an identity for f

2. The way we parenthesize does not affect the outcome

f (f x y) z = f x (f y z)
(x + y) + z = x + (y + z)

• We say that the operation f is associative

A data type with such an operation is called amonoid

53

Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

f v x = x = f v x 0 + x = x = x + 0

• We say that v is an identity for f

2. The way we parenthesize does not affect the outcome

f (f x y) z = f x (f y z)
(x + y) + z = x + (y + z)

• We say that the operation f is associative

A data type with such an operation is called amonoid

53

Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

f v x = x = f v x 0 + x = x = x + 0

• We say that v is an identity for f

2. The way we parenthesize does not affect the outcome

f (f x y) z = f x (f y z)
(x + y) + z = x + (y + z)

• We say that the operation f is associative

A data type with such an operation is called amonoid

53

Avoid explicit recursion

• map, filter, foldr and foldl abstract common recursion patterns over lists

• Most functions can be written as a combination of those

• Good style: prefer using those functions over recursion

Why?

54

Avoid explicit recursion

• map, filter, foldr and foldl abstract common recursion patterns over lists

• Most functions can be written as a combination of those

• Good style: prefer using those functions over recursion

• The intention of the code is clearer

• Less code written means less code to debug

• Complex recursion suggest that you might be doing too much in one function

• Primitive rather than general recursion: always terminates!

55

Avoid explicit recursion, example

count p xs counts how many elements in xs satisfy p

count :: (a -> Bool) -> [a] -> Int
count _ [] = 0
count p (x:xs) | p x = 1 + count p xs

| otherwise = count p xs

Try it yourself!

56

Avoid explicit recursion, example

count p xs counts how many elements in xs satisfy p

count :: (a -> Bool) -> [a] -> Int
count _ [] = 0
count p (x:xs) | p x = 1 + count p xs

| otherwise = count p xs

count p xs = length (filter p xs)

count p = length . filter p

57

applyAll as a fold

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

Is applyAll as a right or a left fold?

> applyAll [f1,f2,f3] x
f3 (f2 (f1 x)) -- start from the left value

-- Solution 1
applyAll fs x = foldl (\y f -> f y) x fs

58

applyAll as a fold

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

Is applyAll as a right or a left fold?

> applyAll [f1,f2,f3] x
f3 (f2 (f1 x)) -- start from the left value

-- Solution 1
applyAll fs x = foldl (\y f -> f y) x fs

58

applyAll as a fold

applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)

Is applyAll as a right or a left fold?

> applyAll [f1,f2,f3] x
f3 (f2 (f1 x)) -- start from the left value

-- Solution 1
applyAll fs x = foldl (\y f -> f y) x fs

58

applyAll as a fold

applyAll [] = id
applyAll (f : fs) = applyAll fs . f

We can also see it as a series of compositions

> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))

-- Solution 2
applyAll fs = foldr (\r f -> f . r) id fs

Can we make it look better?

59

applyAll as a fold

applyAll [] = id
applyAll (f : fs) = applyAll fs . f

We can also see it as a series of compositions

> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))

-- Solution 2
applyAll fs = foldr (\r f -> f . r) id fs

Can we make it look better?

59

applyAll as a fold

applyAll fs = foldr (\r f -> f . r) id fs
-- Drop the argument in both sides
applyAll = foldr (\r f -> f . r) id
-- Use "normal" application order for (.)
applyAll = foldr (\r f -> (.) f r) id
-- Use the flip combinator
applyAll = foldr (flip (.)) id
-- "flip (.)" has a name for itself
applyAll = foldr (>>>) id

60

Important concepts

• Higher-order functions use functions

• Curried functions return functions

• Anonymous functions are introduced by \x -> ...
• All multi-argument functions in Haskell are curried

• They take one parameter at a time

f :: A -> (B -> (C -> D))
• Functions can be partially applied

• map, filter, foldr and foldl describe common recursion patterns over lists

61

Important concepts

• Higher-order functions use functions

• Curried functions return functions

• Anonymous functions are introduced by \x -> ...
• All multi-argument functions in Haskell are curried

• They take one parameter at a time

f :: A -> (B -> (C -> D))
• Functions can be partially applied

• map, filter, foldr and foldl describe common recursion patterns over lists

61

Important concepts

• Higher-order functions use functions

• Curried functions return functions

• Anonymous functions are introduced by \x -> ...
• All multi-argument functions in Haskell are curried

• They take one parameter at a time

f :: A -> (B -> (C -> D))
• Functions can be partially applied

• map, filter, foldr and foldl describe common recursion patterns over lists

61

Acknowledgements

Function composition image taken from

adit.io/posts/2013-07-22-lenses-in-pictures.html

62

adit.io/posts/2013-07-22-lenses-in-pictures.html

A type inference question

Given a list of numbers, let’s create a list of “adders”, each of them adding this number to another

given one

adders = map (\n -> \x -> n + x)
= -- eta reducation
map (\n -> (n +))

= -- eta reduction
map (+)

> [a 5 | a <- adders [1,2,3]]
[6,7,8]

63

A type inference question

Let us look at the types of the functions involved

(+) :: Int -> (Int -> Int)

-- Generalized type
map :: (a -> b) -> [a] -> [b]

-- In our case a = Int
-- a -> b = Int -> (Int -> Int)
-- Thus, b = Int -> Int
map :: (Int -> Int -> Int)

-> [Int] -> [Int -> Int]

64

	Why learn (typed) functional programming?
	Why Haskell?
	Folds

