

1

Lecture 4. Higher-order functions

Functional Programming

Utrecht University

Why learn (typed) functional programming?

Why Haskell?

- data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state

Goal of typed purely functional programming

- data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state
- function call and return as only control-flow primitive
 - no loops, break, continue, goto

Goal of typed purely functional programming

- data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state
- function call and return as only control-flow primitive
 - no loops, break, continue, goto
- (almost) unique types
 - no inheritance hell

Goal of typed purely functional programming

- data-flow only through function arguments and return values
 - no hidden data-flow through mutable variables/state
- function call and return as only control-flow primitive
 - no loops, break, continue, goto
- (almost) unique types
 - no inheritance hell
- high-level declarative data-structures
 - no explicit reference-based data structures

Keep programs easy to reason about by

- · function call and return as only control-flow primitive
 - no loops, break, continue, goto
 - instead: higher-order functions (functions which use other functions)
 - extra pay-off: huge abstraction power -> more code reuse!

The remaining two: this Thursday!

- Define and use higher-order functions
 - Functions which use other functions
 - In particular, map, filter, foldr and foldl
 - vs general recursion
- Use anonymous functions
- Understand function composition
- Understand partial application

Chapter 7 and 4.5-4.6 from Hutton's book

• Curried functions (of multiple arguments):

f :: a -> b -> c

read

- f :: a -> (b -> c)
- Higher-order functions:

f :: (a -> b) -> c

• Exercise: come up with some examples from high school mathematics

- How can we use argument-functions?
- Can we pattern match on them?
- Can we inspect their source code from a higher-order function?

- How can we use argument-functions?
 - By applying them! That's it!
- Can we pattern match on them?
 - No! But we can feed them inputs and pattern match on the results!
- Can we inspect their source code from a higher-order function?
 - No! Only their input-output behaviour!

From the previous lectures...

• map applies a function uniformly over a list

```
• The function to apply is an argument to map
```

```
map :: (a -> b) -> [a] -> [b]
```

```
> map length ["a", "abc", "ab"]
[1,3,2]
```

• It is very similar to a list comprehension

```
> [length s | s <- ["a", "abc", "ab"]]
[1,3,2]</pre>
```

1. Define the type

map :: _

2. Enumerate the cases

• We **cannot** pattern match on functions

map f [] = _ map f (x:xs) = _

Try it yourself!

1. Define the type

map :: (a -> b) -> [a] -> [b]

- 2. Enumerate the cases
 - We **cannot** pattern match on functions

```
map f [] = _
map f (x:xs) = _
```

3. Define the simple (base) cases

map f [] = []

- 4. Define the other (recursive) cases
 - · The current element needs to be transformed by f
 - The rest are transformed uniformly by map

```
map f (x:xs) = f x : map f xs
```

It makes no difference whether the function we use is global or is an argument

filter p xs leaves only the elements in xs which satisfy the predicate p

- A predicate is a function which returns True or False
- In other words, p must return Bool

```
> even x = x `mod` 2 == 0
> filter even [1 .. 4]
[2,4]
> largerThan10 x = x > 10
```

```
> filter largerThan10 [1 .. 4]
```

[]

1. Define the type

filter :: _

2. Enumerate the cases

filter p [] = _
filter p (x:xs) = _

Try it yourself!

1. Define the type

filter :: (a -> Bool) -> [a] -> [a]

2. Enumerate the cases

filter p [] = _
filter p (x:xs) = _

3. Define the simple (base) cases

filter p [] = []

- 4. Define the other (recursive) cases
 - · We have to distinguish whether the predicate holds
 - Version 1, using conditionals

```
filter p (x:xs) = if p x
    then x : filter p xs
    else filter p xs
```

• Version 2, using guards

map and filter can be easily defined using comprehensions

map f xs = [f x | x < -xs]

filter p xs = [x | x < -xs, p x]

The recursive definitions are better to reason about code

(Ab)use of local definitions

Suppose we want to double the numbers in a list

• We can define a double function and apply it to the list

```
double n = 2 * n
doubleList xs = map double xs
```

(Ab)use of local definitions

Suppose we want to double the numbers in a list

• We can define a double function and apply it to the list

```
double n = 2 * n
doubleList xs = map double xs
```

 This pollutes the code, so we can put it in a where doubleList xs = map double xs
 where double n = 2 * n

(Ab)use of local definitions

Suppose we want to double the numbers in a list

• We can define a double function and apply it to the list

```
double n = 2 * n
doubleList xs = map double xs
```

- This pollutes the code, so we can put it in a where doubleList xs = map double xs
 where double n = 2 * n
- But we are still using too much code for such a simple and small function!
 - Each call to map or filter may require one of those

\ arguments -> code

Haskell allows you to define functions without a name

doubleList $xs = map (\x -> 2 * x) xs$

- They are called anonymous functions or (lambda) abstractions
- The <code>\</code> symbol resembles a Greek λ

\ arguments -> code

Haskell allows you to define functions without a name

doubleList xs = map ($x \rightarrow 2 * x$) xs

- They are called anonymous functions or (lambda) abstractions
- The \ symbol resembles a Greek λ

Historical note: the theoretical basis for functional programming is called λ -calculus and was introduced in the 1930s by the American mathematician Alonzo Church

Anonymous functions are just functions

• They have a type, which is always a function type

> :t \x -> 2 * x \x -> 2 * x :: Num a => a -> a

Anonymous functions are just functions

• They have a type, which is always a function type

```
> :t \x -> 2 * x
```

\x -> 2 * x :: Num a => a -> a

• You can use it everywhere you need a function

```
> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
```

Anonymous functions are just functions

• They have a type, which is always a function type

```
> :t \x -> 2 * x
```

\x -> 2 * x :: Num a => a -> a

• You can use it everywhere you need a function

```
> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
```

• Even when you define a function

double = $x \rightarrow 2 * x$

```
flip :: (a -> b -> c) -> (b -> a -> c)
flip f = _
```

flip :: (a -> b -> c) -> (b -> a -> c)
flip f = \y x -> f x y

- This function is called a **combinator**
 - It creates a function from another function
- The resulting function may get more arguments
 - They appear in reverse order from the original
- > flip map [1,2,3] (\x -> 2 * x)
 [2,4,6]

- In Haskell, functions take one argument at a time
 - The result might be another function

map :: (a -> b) -> [a] -> [b]

map :: (a -> b) -> ([a] -> [b])

- We say functions in Haskell are **curried**
- A two-argument function is actually a one-argument function which returns yet another function which takes the next argument and produces a result

Different ways to write

Take a function with three arguments

```
addThree :: Int -> Int -> Int -> Int
addThree x y z = x + y + z
```

Parentheses in functions associate to the right

```
addThree :: Int -> (Int -> (Int -> Int))
```

Take a function with three arguments

addThree :: Int -> Int -> Int -> Int addThree x y z = x + y + z

Parentheses in functions associate to the right

```
addThree :: Int -> (Int -> (Int -> Int))
```

We can define the function in these other ways

addThree	Х	У	=					١z	->	Х	+	У	+	Ζ
addThree	Х		=			١y	->	١z	->	Х	+	у	+	Z
addThree			=	\x	->	١y	->	١z	->	Х	+	у	+	Z
addThree			=	١x		У		Z	->	Х	+	у	+	z

- Since Haskell functions take one argument at a time, we can provide less than the ones stated in the signature
 - The result is yet another function
 - We say the function has been **partially appplied**

> :t map (\x -> 2 * x)

map (\x -> 2 * x) :: ???

Partial application

- Since Haskell functions take one argument at a time, we can provide less than the ones stated in the signature
 - The result is yet another function
 - We say the function has been partially appplied

```
> :t map (\x -> 2 * x)
```

```
map (x -> 2 * x) :: Num b => [b] -> [b]
```

```
> :{
    let doubleList = map (\x -> 2 * x)
    in doubleList [1,2,3]
    :;
[2,4,6]
```

Instead of writing out all the arguments

doubleList $xs = map (\x -> 2 * x) xs$

Haskells make use of partial application if possible

doubleList = map $(x \rightarrow 2 * x)$

Note that xs has been dropped from **both** sides

Instead of writing out all the arguments

doubleList $xs = map (\x -> 2 * x) xs$

Haskells make use of partial application if possible

doubleList = map (x -> 2 * x)

Note that xs has been dropped from **both** sides

```
Technical note: this is called \eta (eta) reduction
```

Sections

Sections are shorthand for partial application of operators

(x #) = \y -> x # y -- Application of 1st arg. (# y) = \x -> x # y -- Application of 2nd arg.

They help us remove even more clutter

```
doubleList = map (2 *)
largerThan10 = filter (> 10)
```

Sections

Sections are shorthand for partial application of operators

```
(x #) = \y -> x # y -- Application of 1st arg.
(# y) = \x -> x # y -- Application of 2nd arg.
```

They help us remove even more clutter

```
doubleList = map (2 *)
largerThan10 = filter (> 10)
```

Warning! Order matters in sections
> filter (> 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]
> filter (10 >) [1 .. 20]
[1,2,3,4,5,6,7,8,9]

Apply a list of functions in order to a starting argument

```
> applyAll [(+ 1), (* 2), (\x -> x - 3)] 3
5 -- ((3 + 1) * 2) - 3
```

- Define the function
- What is the type of applyAll?

Try it yourself!

applyAll [f] x = f x applyAll (f : fs) x = applyAll fs (f x)

Let's think harder about the base case!

applyAll [f] x = f x applyAll (f : fs) x = applyAll fs (f x)

Let's think harder about the base case!

applyAll [] x = x applyAll (f : fs) x = applyAll fs (f x) applyAll [f] x = f x applyAll (f : fs) x = applyAll fs (f x)

Let's think harder about the base case!

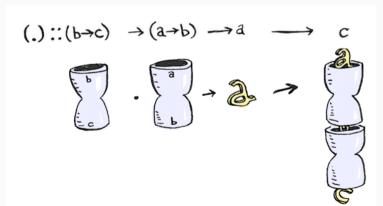
```
applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)
> :t applyAll
applyAll :: [a -> a] -> a -> a
```

Function composition

Another example of function combinator

• g composed with f, or g after f

(.) :: (b -> c) -> (a -> b) -> (a -> c) g . f = _



Function composition

Another example of function combinator

• g composed with f, or g after f

$$(.)::(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$

```
not :: Bool -> Bool
even :: Int -> Bool
```

```
odd x = not (even x)
odd = not . even -- Better
```

-- Remove all elements which satisfy the predicate filterNot :: (a -> Bool) -> [a] -> [a]

Try it yourself!

```
not :: Bool -> Bool
even :: Int -> Bool
```

```
odd x = not (even x)
odd = not . even -- Better
```

```
-- Remove all elements which satisfy the predicate
filterNot :: (a -> Bool) -> [a] -> [a]
filterNot p xs = filter (\x -> not (p x)) xs
filterNot p xs = filter (not . p) xs -- Better
filterNot p = filter (not . p) -- Even better
```

You can define many functions as a **pipeline**

- · Sequence of functions composed one after the other
- This style of coding is called *point-free*
 - Even though it actually has more point symbols!

```
maxAverage :: [[Float]] -> Float
maxAverage
= maximum . map average . filter (not . null)
where average xs
= sum xs / fromIntegral (length xs)
```

You can go even further in this point-free style by using more combinators

```
(<$>) :: (a -> b) -> (c -> a) -> (c -> b)
(<*>) :: (c -> a -> b) -> (c -> a) -> (c -> b)
```

Warning! Don't overdo it!

• This definition of average is less readable

Write applyAll in point-free style

applyAll [] x = x applyAll (f : fs) x = applyAll fs (f x)

Hint: for the first case remember that id x = x

Write applyAll in point-free style

applyAll [] x = x applyAll (f : fs) x = applyAll fs (f x)

Hint: for the first case remember that id x = x

applyAll [] = id applyAll (f : fs) = applyAll fs . f Folds

Similar functions

sum [] = 0
sum (x:xs) = x + sum xs
product [] = 1
product (x:xs) = x * product xs

and [] = True and (x:xs) = x && and xs

```
sum [] = 0
sum (x:xs) = x + sum xs
product [] = 1
product (x:xs) = x * product xs
and [] = True
and (x:xs) = x && and xs
```

- The three return a value in the [] case
- For the x:xs case, they combine the head with the result for the rest of the list
 - (+) for sum, (*) for product, (&&) for and

sum [] = 0 sum (x:xs) = x + sum xs

Let's replace the moving parts with arguments f and \boldsymbol{v}

· First-class functions are key for abstraction

- The previous definitions become much shorter
- The use of foldr conveys an intention
 - They all compute a result by iteratively applying a function over all the elements in the list

sum = foldr (+) 0
product = foldr (*) 1
and = foldr (&&) True

foldr is for "fold right"

```
foldr (+) 0 (x : y : z : [])
=
x + foldr (+) 0 (y : z : [])
=
x + (y + foldr (+) 0 (z : []))
=
x + (y + (z + foldr 0 []))
=
x + (y + (z + 0))
```

- foldr introduces parentheses "to the right"
- Initial value is in innermost parentheses

- (:) is replaced by the combination function
- [] is replaced by the initial value

length [] = 0
length (_:xs) = 1 + length xs

foldr _ v [] = v
foldr f v (x:xs) = f x (foldr f v xs)

We want to find f and v such that

length = foldr f v

Try it yourself!

length as a right fold

- Case of empty list, []
 length [] = 0
 = v = foldr f v []
- Case of cons, x:xs

length (x:xs) = 1 + length xs

- = f x (foldr f v xs)
- = -- Assuming we know it for xs
 - f x (length xs)
- We need to have a function such that

f x (length xs) = 1 + length xs
===> f x y = 1 + y
===> f = \x y -> 1 + y

In conclusion,

```
length = foldr (  y \rightarrow 1 + y) 0
```

length [1,2,3]
= -- definition of length
foldr (_ y -> 1 + y) [1,2,3]
= -- application of foldr
1 + (1 + (1 + 0))

```
= -- perform addition
```

3

foldr (+) 0 [x,y,z]

= (x + (y + (z + 0)))

Is it possible to have a "mirror" function foldl?

fold1 (+) 0 [x,y,z]
= (((0 + x) + y) + z)

- Parenthesis associate to the left
- Initial value still in the innermost position

Calculating foldl

• The case for empty lists is the same as foldr

fold1 f v [] = v

Calculating foldl

• The case for empty lists is the same as foldr

foldl f v [] = v

- For the general case, notice this fact:
 - fold1 (+) 0 [x,y,z]
 - = foldl (+) (0 + x) [y,z]
 - = fold1 (+) ((0 + x) + y) [z]
 - = fold1 (+) (((0 + x) + y) + z) []

• The second argument works as an *accumulator*

foldl f v (x:xs) = foldl f (f v x) xs

foldr versus foldl

```
= fold1 (+) (0 + 1) [2, ..., n]
```

$$= \ldots = fold1 (+) (((0 + 1) + \ldots) + n) []$$

= (((0 + 1) + ...) + n)

= ((1 + ...) + n) = ...

• With foldr and foldl you wait until the end to start combining

foldl' (+) 0 [1, 2, ..., n]

- = foldl' (+) (0 + 1) [2, ..., n]
- = foldl' (+) 1 [2, ..., n] -- (!)
- = foldl' (+) (1 + 2) [..., n]
- = foldl' (+) 3 [..., n] -- (!)
 - With foldr and foldl you wait until the end to start combining
 - With foldl' you compute the value "on the go"
 - fold1' is usually more efficient

foldr versus foldl

```
In the case of (+), the result is the same
> foldr (+) 0 [1,2,3]
6
> foldl (+) 0 [1,2,3]
6
```

This is not the case for every function

```
> foldr (-) 0 [1,2,3]
2
> foldl (-) 0 [1,2,3]
-6
```

Monoids

One possible set of properties which ensure that the direction of folding does not matter

Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

f v x = x = f v x 0 + x = x = x + 0

• We say that v is an *identity* for f

Monoids

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome

f v x = x = f v x 0 + x = x = x + 0

- We say that v is an *identity* for f
- 2. The way we parenthesize does not affect the outcome

 $f(f \times y) z = f \times (f y z)$

- (x + y) + z = x + (y + z)
 - We say that the operation f is *associative*

A data type with such an operation is called a **monoid**

- map, filter, foldr and foldl abstract common recursion patterns over lists
 - Most functions can be written as a combination of those
- *Good style*: prefer using those functions over recursion

Why?

- map, filter, foldr and foldl abstract common recursion patterns over lists
 - Most functions can be written as a combination of those
- Good style: prefer using those functions over recursion
 - The intention of the code is clearer
 - Less code written means less code to debug
 - · Complex recursion suggest that you might be doing too much in one function
 - Primitive rather than general recursion: always terminates!

count p xs counts how many elements in xs satisfy p

Try it yourself!

count p xs counts how many elements in xs satisfy p

```
count p xs = length (filter p xs)
```

```
count p = length . filter p
```

```
applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)
```

Is applyAll as a right or a left fold?

```
applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)
```

Is applyAll as a right or a left fold?

```
> applyAll [f1,f2,f3] x
f3 (f2 (f1 x)) -- start from the left value
```

```
applyAll [] x = x
applyAll (f : fs) x = applyAll fs (f x)
```

```
Is applyAll as a right or a left fold?
```

```
> applyAll [f1,f2,f3] x
f3 (f2 (f1 x)) -- start from the left value
```

-- Solution 1 applyAll fs x = foldl (\y f -> f y) x fs

```
applyAll [] = id
applyAll (f : fs) = applyAll fs . f
```

We can also see it as a series of compositions

```
> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))
```

```
applyAll [] = id
applyAll (f : fs) = applyAll fs . f
```

We can also see it as a series of compositions

```
> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))
-- Solution 2
applyAll fs = foldr (\r f -> f . r) id fs
```

Can we make it look better?

```
applyAll fs = foldr (\r f -> f . r) id fs
-- Drop the argument in both sides
applvAll = foldr (r f -> f. r) id
-- Use "normal" application order for (.)
applyAll = foldr (r f \rightarrow (.) f r) id
-- Use the flip combinator
applyAll = foldr (flip (.))
                                    id
-- "flip (.)" has a name for itself
applyAll = foldr (>>>)
                                    id
```

- Higher-order functions *use* functions
- Curried functions *return* functions

- Higher-order functions *use* functions
- Curried functions return functions
- Anonymous functions are introduced by $x \rightarrow \ldots$
- All multi-argument functions in Haskell are curried
 - They take one parameter at a time

f :: A -> (B -> (C -> D))

• Functions can be partially applied

- Higher-order functions *use* functions
- Curried functions return functions
- Anonymous functions are introduced by $x \rightarrow \ldots$
- All multi-argument functions in Haskell are curried
 - They take one parameter at a time

f :: A -> (B -> (C -> D))

- Functions can be partially applied
- map, filter, foldr and foldl describe common recursion patterns over lists

Function composition image taken from

adit.io/posts/2013-07-22-lenses-in-pictures.html

Given a list of numbers, let's create a list of "adders", each of them adding this number to another given one

A type inference question

Let us look at the types of the functions involved

```
(+) :: Int -> (Int -> Int)
```

```
-- Generalized type
map :: (a -> b) -> [a] -> [b]
```

```
-- In our case a = Int

-- a -> b = Int -> (Int -> Int)

-- Thus, b = Int -> Int

map :: (Int -> Int -> Int)

-> [Int] -> [Int -> Int]
```