%% Utrecht University

Lecture 4. Higher-order functions

Functional Programming

Utrecht University

Why learn (typed) functional

programming?

Why Haskell?

Keep programs easy to reason about by

+ data-flow only through function arguments and return values

* no hidden data-flow through mutable variables/state

Goal of typed purely functional programming

Keep programs easy to reason about by
+ data-flow only through function arguments and return values

* no hidden data-flow through mutable variables/state

+ function call and return as only control-flow primitive

* no loops, break, continue, goto

Goal of typed purely functional programming

Keep programs easy to reason about by

+ data-flow only through function arguments and return values

* no hidden data-flow through mutable variables/state

+ function call and return as only control-flow primitive

* no loops, break, continue, goto

* (almost) unique types

* no inheritance hell

Goal of typed purely functional programming

Keep programs easy to reason about by

+ data-flow only through function arguments and return values

* no hidden data-flow through mutable variables/state

+ function call and return as only control-flow primitive

* no loops, break, continue, goto

* (almost) unique types

* no inheritance hell

* high-level declarative data-structures

+ no explicit reference-based data structures

Goal of typed purely functional programming

Keep programs easy to reason about by
+ function call and return as only control-flow primitive

* no loops, break, continue, goto
+ instead: higher-order functions (functions which use other functions)

+ extra pay-off: huge abstraction power -> more code reuse!

The remaining two: this Thursday!

+ Define and use higher-order functions
+ Functions which use other functions
+ In particular, map, filter, foldr and foldl
¢ Vs general recursion

+ Use anonymous functions

+ Understand function composition

+ Understand partial application

Chapter 7 and 4.5-4.6 from Hutton’s book

+ Curried functions (of multiple arguments):
f:ra->b->c
read
f::a-> (b ->c)
+ Higher-order functions:
f:: (a ->b) ->c

+ Exercise: come up with some examples from high school mathematics

+ How can we use argument-functions?
+ Can we pattern match on them?
+ Can we inspect their source code from a higher-order function?

+ How can we use argument-functions?

+ By applying them! That's it!
+ Can we pattern match on them?

+ No! But we can feed them inputs and pattern match on the results!
+ Can we inspect their source code from a higher-order function?

+ No! Only their input-output behaviour!

From the previous lectures...
+ map applies a function uniformly over a list
+ The function to apply is an argument to map
map :: (a -> b) -> [a] -> [b]

> map length ["a", "abc", "ab"]
[1,3,2]

+ Itis very similar to a list comprehension
> [length s | s <- ["a", "abc", "ab"]l]
[1,3,2]

1. Define the type
map :: _

2. Enumerate the cases

+ We cannot pattern match on functions

map T []

map f (x:xs)

Try it yourself!

1. Define the type
map :: (a -> b) -> [a] -> [b]
2. Enumerate the cases

+ We cannot pattern match on functions

map f [] =5 _
map f (x:xs) = _
3. Define the simple (base) cases

map f [] =[]

4. Define the other (recursive) cases

+ The current element needs to be transformed by f
+ The rest are transformed uniformly by map

map f (x:xs) = f x : map f xs

It makes no difference whether the function we use is global or is an argument

filter p xs leaves only the elements in xs which satisfy the predicate p
+ A predicate is a function which returns True or False

+ In other words, p must return Bool

> even x = x mod® 2 ==

> filter even [1 .. 4]

[2,4]

> largerThanl® x = x > 10

> filter largerThanl@ [1 .. 4]
(1

1. Define the type
filter :: _

2. Enumerate the cases

filter p []
filter p (x:xs)

Try it yourself!

1. Define the type
filter :: (a -> Bool) -> [a] -> [a]

2. Enumerate the cases

filter p []
filter p (x:xs)

3. Define the simple (base) cases

filter p [] = [1

4. Define the other (recursive) cases
+ We have to distinguish whether the predicate holds
+ Version 1, using conditionals
filter p (x:xs) = if p x
then x : filter p xs
else filter p xs

+ Version 2, using guards

filter p (x:xs) | p x x : filter p xs

| otherwise filter p xs

map and filter can be easily defined using comprehensions

map f xs [f x | x <- xs]

filter p xs [x | x <- xs, p x]

The recursive definitions are better to reason about code

Suppose we want to double the numbers in a list

* We can define a double function and apply it to the list

double n = 2 * n

doublelList xs = map double xs

Suppose we want to double the numbers in a list

* We can define a double function and apply it to the list

double n = 2 * n

doublelList xs = map double xs

* This pollutes the code, so we can putitin a where

doublelList xs = map double xs
where double n = 2 * n

(Ab)use of local definitions

Suppose we want to double the numbers in a list

+ We can define a double function and apply it to the list
double n = 2 * n

doublelList xs = map double xs

* This pollutes the code, so we can putitin a where

doublelList xs = map double xs

where double n = 2 * n

+ But we are still using too much code for such a simple and small function!

+ Each call to map or filter may require one of those

\ arguments -> code
Haskell allows you to define functions without a name

doublelList xs = map (\x -> 2 * X) Xs

+ They are called anonymous functions or (lambda) abstractions
+ The \ symbol resembles a Greek A

20

Anonymous functions

\ arguments -> code
Haskell allows you to define functions without a name

doublelList xs = map (\x -> 2 * X) Xs

* They are called anonymous functions or (lambda) abstractions

 The \ symbol resembles a Greek \

Historical note: the theoretical basis for functional programming is called A-calculus and was

introduced in the 1930s by the American mathematician Alonzo Church

20

+ They have a type, which is always a function type
> 1t \x -> 2 * x

\X -> 2 * x :: Num a => a -> a

21

+ They have a type, which is always a function type
> 1t \x -> 2 * x

\X -> 2 * x :: Num a => a -> a

+ You can use it everywhere you need a function
> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]

21

+ They have a type, which is always a function type
> 1t \x -> 2 * x

\X -> 2 * x :: Num a => a -> a

+ You can use it everywhere you need a function
> (\x -> 2 * x) 3
6
> filter (\x -> x > 10) [1 .. 20]
[11,12,13,14,15,16,17,18,19,20]

+ Even when you define a function

double = \x -> 2 * x

21

flip :: (a -> b ->c¢c) -> (b -> a -> ¢)
flip f = _

22

flip :: (a -> b ->c¢c) -> (b -> a -> ()
flip f = \y x -> f xy

+ This function is called a combinator
+ It creates a function from another function
+ The resulting function may get more arguments
+ They appear in reverse order from the original
> flip map [1,2,3] (\x -> 2 * x)
[2,4,6]

23

+ In Haskell, functions take one argument at a time
+ The result might be another function
map :: (a -> b) -> [a] -> [b]
map :: (a -> b) -> ([a] -> [b])
+ We say functions in Haskell are curried
+ A two-argument function is actually a one-argument function which returns yet another

function which takes the next argument and produces a result

24

Take a function with three arguments

addThree :: Int -> Int -> Int -> Int
addThree x y z = x +y + z

Parentheses in functions associate to the right

addThree :: Int -> (Int -> (Int -> Int))

25

Take a function with three arguments

addThree :: Int -> Int -> Int -> Int
addThree x y z = x +y + z

Parentheses in functions associate to the right
addThree :: Int -> (Int -> (Int -> Int))

We can define the function in these other ways

addThree x y = \z ->x +y+z
addThree x = \y ->\z ->x +y+ 2z
addThree =\x ->\y ->\z ->x +y+ 2z
addThree = \X y zZ ->x+t+ty+z

25

+ Since Haskell functions take one argument at a time, we can provide less than the ones
stated in the signature

* Theresultis yet another function
+ We say the function has been partially appplied

>t map (\x -> 2 * x)

map (\x -> 2 * x) :: 2?7

26

+ Since Haskell functions take one argument at a time, we can provide less than the ones
stated in the signature

+ The result is yet another function
+ We say the function has been partially appplied
>t map (\x -> 2 * x)
map (\x -> 2 * x) :: Num b => [b] -> [b]
> o {
| let doubleList = map (\x -> 2 * x)
| in doublelList [1,2,3]
[-}
[2,4,6]

27

Instead of writing out all the arguments
doublelList xs = map (\x -> 2 * X) Xs
Haskells make use of partial application if possible
doublelist =map (\x -> 2 * x)

Note that xs has been dropped from both sides

28

Instead of writing out all the arguments
doublelList xs = map (\x -> 2 * X) Xs
Haskells make use of partial application if possible
doublelist =map (\x -> 2 * x)

Note that xs has been dropped from both sides

Technical note: this is called 7) (eta) reduction

28

Sections are shorthand for partial application of operators

(x #)
(#y)

\y -> x #y -- Application of 1st arg.

\x -> x # y -- Application of 2nd arg.
They help us remove even more clutter

doublelist =map (2 *)
largerThanl® = filter (> 10)

29

Sections are shorthand for partial application of operators

(x #)
(#y)

\y -> x #y -- Application of 1st arg.

\x -> x # y -- Application of 2nd arg.
They help us remove even more clutter

doublelist =map (2 *)
largerThanl® = filter (> 10)

Warning! Order matters in sections
> filter (> 10) [1 .. 20]

[11,12,13,14,15,16,17,18,19,20]
> filter (10 >) [1 .. 20]
[112I31415I6I7I8’9]

29

Apply a list of functions in order to a starting argument

> applyAll [(+ 1), (* 2), (\x -> x - 3)] 3
5 --((3+1)*2) -3

+ Define the function

« What is the type of applyAll?

Try it yourself!

30

f x
applyAll fs (f x)

applyAll [f] X
applyAll (f : fs) x

Let’s think harder about the base case!

31

f x
applyAll fs (f x)

applyAll [f] X
applyAll (f : fs) x

Let’s think harder about the base case!

applyAll [] X
applyAll (f : fs) x

X
applyAll fs (f x)

31

f x
applyAll fs (f x)

applyAll [f] X
applyAll (f : fs) x

Let’s think harder about the base case!

applyAll [] X
applyAll (f : fs) x

X
applyAll fs (f x)

> :t applyAll
applyAll :: [a -> a] -> a -> a

31

Function composition

Another example of function combinator

(

+ g composed with f, or g after T

) i (b ->c) -> (a ->b) -> (a ->)

f o=

()b>) =@ —3a —>

,--?

32

Function composition

Another example of function combinator
+ g composed with f, or g after T

(.) :: (b ->c) -> (a ->b) -> (a ->c)
g. f=\x->g (f x)

() »@) —a — ¢

,--?

33

not :: Bool -> Bool
even :: Int -> Bool
odd x = not (even x)

odd not . even -- Better

-- Remove all elements which satisfy the predicate
filterNot :: (a -> Bool) -> [a] -> [a]

Try it yourself!

34

not :: Bool -> Bool
even :: Int -> Bool
odd x = not (even x)

odd not . even -- Better

-- Remove all elements which satisfy the predicate
filterNot :: (a -> Bool) -> [a] -> [a]
filter (\x -> not (p X)) Xs

filterNot p xs

filterNot p xs
filterNot p

filter (not . p) xs -- Better

filter (not . p) -- Even better

35

You can define many functions as a pipeline
+ Sequence of functions composed one after the other
+ This style of coding is called point-free

+ Even though it actually has more point symbols!

maxAverage :: [[Float]] -> Float
maxAverage
= maximum . map average . filter (not . null)
where average xs
= sum xs / fromIntegral (length xs)

36

You can go even further in this point-free style by using more combinators
where average = (/) <%$> sum
<*> (fromIntegral . length)
(<$>) :: (a ->b) -> (c ->a) -> (c ->b)
(<*>) :: (c ->a ->b) -> (c ->a) -> (c ->bh)

Warning! Don't overdo it!

+ This definition of average is less readable

37

Write applyAll in point-free style

applyAll [] X = X
applyAll (f : fs) x = applyAll fs (f x)

Hint: for the first case remember that id x = Xx

38

Write applyAll in point-free style

applyAll [] X = X
applyAll (f : fs) x = applyAll fs (f x)

Hint: for the first case remember that id x = Xx

applyAll []
applyAll (f : fs)

id
applyAll fs . f

38

Folds

39

sum [] =0
sum (X:XS) = X + sum Xs
product [] =1

product (x:xs) = x * product Xxs

and []
and (Xx:xs)

True

X && and xs

40

sum [] =0
sum (X:XS) = X + sum Xs
product [] =1

product (x:xs) = x * product Xxs

and []
and (Xx:xs)

True

X && and xs

* The three return a value in the [] case
+ For the x: xs case, they combine the head with the result for the rest of the list

+ (+) for sum, (*) for product, (&&) for and

40

0

X + sum Xs

sum []

sum (X:XS)

Let's replace the moving parts with arguments f and v
+ First-class functions are key for abstraction

foldr :: (a -> b ->b) ->b ->[a] -> b

foldr _ v [] = v

foldr f v (x:xs) f x (foldr f v xs)

x 'f° foldr f v xs -- Infix

41

+ The previous definitions become much shorter

+ The use of foldr conveys an intention
They all compute a result by iteratively applying a function over all the elements in the list

sum = foldr (+) 0
product = foldr (*) 1
and = foldr (&&) True

42

foldr (+) @ (x 1y : z : [])

;+ foldr (+) @ (y : z : [1)
x + (y + foldr (+) @ (z : [1))
X + (y + (z + foldr @ []))

x + (y + (z +0))

+ foldr introduces parentheses “to the right”

+ Initial value is in innermost parentheses

43

foldr (+) @ [x, y, z]

foldr (+) @ (x : (y : (z : [1)))
I I I
I I I
! ! Lo
(x +(y+(z+ 0)))
* (:) isreplaced by the combination function

* [1isreplaced by the initial value

a4

0
1 + length xs

length T[]
length (_:xs)

foldr _ v []
foldr f v (x:xs)

v
f x (foldr f v xs)

We want to find f and v such that
length = foldr f v

Try it yourself!

45

+ Case of empty list, [1]
length [] = 0
v = foldr f v []

46

+ Case of empty list, [1]
length [] = 0
v = foldr f v []

» Case of cons, x:xs

length (x:xs) 1 + length xs
f x (foldr f v xs)
-- Assuming we know it for xs

f x (length xs)

* We need to have a function such that
f x (length xs) = 1 + length xs
===> f x y = 1 + y

==> f =\xy ->1+y

46

In conclusion,

length = foldr (_y -> 1 +y) 0

length [1,2,3]

= -- definition of length
foldr (_y ->1 +vy) [1,2,3]
-- application of foldr

+ (1 + (1 +0))

-- perform addition

=

47

foldr (+) 0 [x,y,z]
= (x+(y+ (z+0)))

Is it possible to have a “mirror” function foldl?

foldl (+) @ [x,y,z]
= (((0 + x) +y) + 2z)

+ Parenthesis associate to the left

+ Initial value still in the innermost position

48

* The case for empty lists is the same as foldr

foldl f v [] =V

49

* The case for empty lists is the same as foldr
foldl f v [] =V

+ For the general case, notice this fact:

foldl (+) () [x,y,z]
= foldl (+) (@ + x) ly.z]
= foldl (+) ((0 + x) +y) [z]

foldl (+) (((@ + x) +y) + z) []
+ The second argument works as an accumulator

foldl f v (x:xs) = foldl f (f v x) xs

49

foldr (+) @0 [1, 2, ..., n]
=1 + foldr (+) @ [2, ..., n]
= ...=1+(2+ (... +(n+0)))
1+ (2+ (... +n)) = ...

foldl (+) @ [1, 2, ..., n]
foldl (+) (@0 + 1) [2, ..., n]
.= foldl (+) (((@ + 1) + ...) + n) []
(((6+1) + ...) +n)
((L+ ...) +n) = ...

+ With foldr and foldl you wait until the end to start combining

50

foldl' (+) @ [1, 2, ..., n]
= foldl' (+) (@ + 1) [2, ..., n]
= foldl' (+) 1 [2, ..., n] -- (!)
= foldl' (+) (1 + 2) [..., n]
= foldl' (+) 3 [..., n] -- ()

+ With foldr and foldl you wait until the end to start combining
+ With foldl' you compute the value “on the go”

« foldl' is usually more efficient

51

In the case of (+), the result is the same
> foldr (+) 0 [1,2,3]

6

> foldl (+) @ [1,2,3]

6

This is not the case for every function
> foldr (-) 0 [1,2,3]

2

> foldl (-) @ [1,2,3]

-6

52

One possible set of properties which ensure that the direction of folding does not matter

53]

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome
fvx=x="Ffvx 0 +x=x=x+20

« We say that v is an identity for f

53]

One possible set of properties which ensure that the direction of folding does not matter

1. The initial value does not affect the outcome
fvx=x="Ffvx 0 +x=x=x+20

+ We say that v is an identity for £

2. The way we parenthesize does not affect the outcome

f(fxy)z

fx (fy z)
(x +y) +z=x+(y+ 2z)
+ We say that the operation f is associative

A data type with such an operation is called a monoid

53]

+ map, filter, foldr and foldl abstract common recursion patterns over lists

* Most functions can be written as a combination of those

+ Good style: prefer using those functions over recursion

Why?

54

* map, filter, foldr and foldl abstract common recursion patterns over lists
+ Most functions can be written as a combination of those

+ Good style: prefer using those functions over recursion
+ The intention of the code is clearer
+ Less code written means less code to debug

+ Complex recursion suggest that you might be doing too much in one function
+ Primitive rather than general recursion: always terminates!

55)

count p xs counts how many elements in xs satisfy p

count :: (a -> Bool) -> [a] -> Int
count _ [] =0

count p (x:xs) | p x 1 + count p xs

| otherwise = count p xs

Try it yourself!

56

count p xs counts how many elements in xs satisfy p

count :: (a -> Bool) -> [a] -> Int

count _ [] =0

count p (x:xs) | p x 1 + count p xs

| otherwise count p xs

count p xs = length (filter p xs)

count length . filter p

o
L}

57

applyAll [] X = X
applyAll (f : fs) x = applyAll fs (f x)

Is applyAll as a right or a left fold?

58

applyAll [] X = X
applyAll (f : fs) x = applyAll fs (f x)

Is applyAll as a right or a left fold?

> applyAll [f1,f2,f3] x
f3 (f2 (f1 x)) -- start from the left value

58

applyAll [] X = X
applyAll (f : fs) x = applyAll fs (f x)

Is applyAll as a right or a left fold?

> applyAll [f1,f2,f3] x
f3 (f2 (f1 x)) -- start from the left value

-- Solution 1
applyAll fs x = foldl (\y f -> f y) x fs

58

id
applyAll fs . f

applyAll []
applyAll (f : fs)

We can also see it as a series of compositions

> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))

59

id
applyAll fs . f

applyAll []
applyAll (f : fs)

We can also see it as a series of compositions

> applyAll [f1,f2,f3]
id . (f3 . (f2 . f1))

-- Solution 2
applyAll fs = foldr (\r f -> f . r) id fs

Can we make it look better?

59

applyAll fs = foldr (\r f -> f . r) id fs
-- Drop the argument in both sides

applyAll = foldr (\r f -> f . 1) id

-- Use "normal" application order for (.)
applyAll = foldr (\x f -> (.) f r) id

-- Use the flip combinator

applyAll = foldr (flip (.)) id

-- "flip (.)" has a name for itself
applyAll = foldr (>>>) id

60

+ Higher-order functions use functions
+ Curried functions return functions

61

+ Higher-order functions use functions
+ Curried functions return functions

* Anonymous functions are introduced by \x ->
+ All multi-argument functions in Haskell are curried
+ They take one parameter at a time
f::A->(B->(C->D))

+ Functions can be partially applied

61

+ Higher-order functions use functions

» Curried functions return functions

* Anonymous functions are introduced by \x ->
+ All multi-argument functions in Haskell are curried
+ They take one parameter at a time
f::A->(B->(C->D))

+ Functions can be partially applied

+ map, filter, foldr and foldl describe common recursion patterns over lists

61

Function composition image taken from

adit.io/posts/2013-07-22-1lenses-in-pictures.html

62

adit.io/posts/2013-07-22-lenses-in-pictures.html

Given a list of numbers, let's create a list of “adders”, each of them adding this number to another

given one

adders map (\n -> \x -> n + X)
= -- eta reducation

map (\n -> (n +))
= -- eta reduction

map (+)

> [a 5 | a <- adders [1,2,3]]
[6,7,8]

63

Let us look at the types of the functions involved

(+) :: Int -> (Int -> Int)

-- Generalized type
map :: (a -> b) -> [a] -> [b]

-- In our case a = Int
-- a ->b =1Int -> (Int -> Int)
-- Thus, b = Int -> Int
map :: (Int -> Int -> Int)

-> [Int] -> [Int -> Int]

64

	Why learn (typed) functional programming?
	Why Haskell?
	Folds

