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Goal of typed purely functional programming: programs that are easy to reason about

So far:

• data-flow only through function arguments and return values

• no hidden data-flow through mutable variables/state

• instead: tuples!

• function call and return as only control-flow primitive

• no loops, break, continue, goto
• instead: higher-order functions!
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Goal of typed purely functional programming: programs that are easy to reason about

Today:

• (almost) unique types

• no inheritance hell

• instead of classes + inheritance: variant types!

• (almost): type classes

• high-level declarative data structures

• no explicit reference-based data structures

• instead: (immutable) algebraic data types!
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Goals for today

• Define your own algebraic data types:

• tuples (recap), variants, and recursive

• Define your own type classes and instances

• Understand the difference between parametric and ad-hoc polymorphism

• Understand the value and limitations of algebraic data types

Chapter 8 (until 8.6) from Hutton’s book
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Data types

5



Types and logic – Curry-Howard

Observe

• Tuples are like AND

• (A, B) holds pairs of an expression of type A AND one of type B

• Functions are like IMPLIES

• A -> B holds expressions which produce one of type B, IF we supply one of type A

• New today: variants/sum types are like OR – to hold expressions that are either of type A OR

of type B
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In the previous lectures…

… we have only used built-in types!

• Basic data types

• Int, Bool, Char…

• Compound types parametrized by others

• Some with a definite number of elements, like tuples

• Some with an indefinite number of them, like lists

It’s about time to define our own!
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Direction

data Direction = North
| South
| East
| West

• data declares a new data type

• The name of the type must start with Uppercase

• Then we have a number of constructors separated by |
• Each of them also starting by uppercase

• The same constructor cannot be used for different types

• Such a simple data type is called an enumeration
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Building a list of directions

Each constructor defines a value of the data type

> :t North
North :: Direction

You can use Direction in the same way as Bool or Int

> :t [North, West]
[North, West] :: [Direction]
> :t (North, True)
(North, True) :: (Direction, Bool)
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Pattern matching over directions

To define a function, you proceed as usual:

1. Define the type

directionName :: Direction -> String

2. Enumerate the cases

• The cases are each of the constructors

directionName North = _
directionName South = _
directionName East = _
directionName West = _
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Pattern matching over directions

3. Define each of the cases

directionName North = "N"
directionName South = "S"
directionName East = "E"
directionName West = "W"

> map directionName [North, West]
["N","W"]
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Built-in types are just data types

• Bool is a simple enumeration

data Bool = False | True

• Int and Char can be thought as very long enumerations

data Int = ... | -1 | 0 | 1 | 2 | ...
data Char = ... | 'A' | 'B' | ...

• The compiler treats these in a special way
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Points

Data types may store information within them

data Point = Pt Float Float

• The name of the constructor is followed by the list of types of each argument

• Constructor and type names may overlap

data Point = Point Float Float
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Using points

• To create a point, we use the name of the constructor followed by the value of each

argument

> :t Pt 2.0 3.0
Pt 2.0 3.0 :: Point

• To pattern match, we use the name of the constructor and further matchs over the

arguments

norm :: Point -> Float
norm (Pt x y) = sqrt (x*x + y*y)

• Do not forget the parentheses!

> norm Pt x y = x * x + y * y
<interactive>:2:6: error:
• The constructor ‘Pt’ should have 2 arguments,
but has been given none

14



Constructors are functions

Each constructor in a data type is a function which build a value of that type given enough

arguments

> :t North
North :: Direction -- No arguments
> :t Pt
Pt :: Float -> Float -> Point -- 2 arguments

They can be arguments or results of higher-order functions

zipPoint :: [Float] -> [Float] -> [Point]
zipPoint xs ys = map (uncurry Pt) (zip xs ys)

-- = [Pt x y | (x, y) <- zip xs ys]
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Try it yourself!

Define the uncurry function:

uncurry :: (a -> b -> c) -> (a, b) -> c

-- Choose your own style
uncurry f (x, y) = f x y
uncurry f = \(x, y) -> f x y
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Shapes

A data type may have zero or more constructors, each of them holding zero or more arguments

data Shape = Rectangle Point Float Float
| Circle Point Float
| Triangle Point Point Point
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Pattern matching over shapes

The function perimeter returns the length of the boundary of a shape

perimeter :: Shape -> Float

Gentle basic geometry reminder

Prect = 2w + 2h

Pcircle = 2πr

Ptriang = dist(a, b) + dist(b, c) + dist(c, a)

Try it yourself!
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Pattern matching over shapes

Each case starts with a constructor – in uppercase – and matches the arguments

area :: Shape -> Float
area (Rectangle _ w h) = w * h
area (Circle _ r) = pi * r ^ 2
area (Triangle x y z) = sqrt (s*(s-a)*(s-b)*(s-c))

-- Heron's formula
where a = distance x y

b = distance y z
c = distance x z
s = (a + b + c) / 2

distance (Pt u1 u2) (Pt v1 v2)
= sqrt ((u1-v1)^2+(u2-v2)^2)
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ADTs versus object-oriented classes

abstract class Shape {
abstract float area();

}
class Rectangle : Shape {
public Point corner;
public float width, height;
public float area() { return width * height; }

}
// More for Circle and Triangle

• There is no inheritance involved in ADTs

• Constructors in an ADT are closed, but you can always add new subclasses in a OO setting

• Classes bundle methods, functions for ADTs are defined outside the data type
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Nominal versus structural typing

data Point = Pt Float Float
data Vector = Vec Float Float

• These types are structurally equal

• They have the same number of constructors with the same number and type of arguments

• But for the Haskell compiler, they are unrelated

• You cannot use one in place of the other

• This is called nominal typing

> :t norm
norm :: Point -> Float
> norm (Vec 2.0 3.0)
Couldn't match ‘Point’ with ‘Vector’
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Lists and trees of numbers

Data types may refer to themselves

• They are called recursive data types; for example

data IntList
= EmptyList | Cons Int IntList

data IntTree
= EmptyTree | Node Int IntTree IntTree

• Let’s visualize an example!
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Cooking elemList

1. Define the type

elemList :: Int -> IntList -> Bool

2. Enumerate the cases

• One equation per constructor

elemList x EmptyList = _
elemList x (Cons y ys) = _

3. Define the cases

elemList x EmptyList = False
elemList x (Cons y ys)
| x == y = True
| otherwise = elemList x ys
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Cooking elemTree

Try it yourself!

elemTree :: Int -> IntTree -> Bool
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Cooking elemTree

1. Define the type

elemTree :: Int -> IntTree -> Bool

2. Enumerate the cases

• Each constructor needs to come with as many variables as arguments in its definition

elemTree x EmptyTree = _
elemTree x (Node y rs ls) = _

3. Define the simple (base) cases

elemTree x EmptyTree = False
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Cooking elemTree

4. Define the other (recursive) cases

• Each recursive appearance of the data type as an argument usually leads to a recursive call in

the function

elemTree x (Node y rs ls)
| x == y = True
| otherwise = elemTree x rs || elemTree x ls

-- Or simpler
elemTree x (Node y rs ls)
= x == y || elemTree x rs || elemTree x ls
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Cooking treeHeight

The function treeHeight computes the height of a tree, that is, the length of the maximum path

from the root to an EmptyTree.

> treeHeight (Node 42 (Node 1 EmptyTree EmptyTree)
EmptyTree)

2
> treeHeight EmptyTree
0

Try it yourself!
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Tree height and size

• The tree height is the length of the maximum path from the root to an EmptyTree.
• The tree size is the number of nodes it has.

Question
Can you write a single higher-order function which can be instantiated to both?
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Cooking treeToList

1. Define the type

treeToList :: IntTree -> IntList

2. Enumerate the cases

treeToList EmptyTree = _
treeToList (Node x ls rs) = _

3. Define the simple (base) cases

treeToList EmptyTree = EmptyList

How do we proceed now?
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Cooking treeToList

4. Define the other (recursive) cases

treeToList (Node x ls rs)
= Cons x (concatList ls' rs')
where ls' = treeToList ls

rs' = treeToList rs

-- Left as an exercise to the audience
concatList :: IntList -> IntList

-> IntList
concatList xs = _
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Polymorphic data types

We have seen examples of types which are parametric

• Lists like [Int], [Bool], [IntTree]…
• Tuples (A, B), (A, B, C) and so on

Functions over these data types can be polymorphic

• They work regardless of the parameter of the type

(++) :: [a] -> [a] -> [a]
zip :: [a] -> [b] -> [(a, b)]
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Optional values

Maybe T represents a value of type T which might be absent

data Maybe a = Nothing
| Just a

• In the declaration of a polymorphic data type, the name Maybe is followed by one or more

type variables

• Type variables start with a lowercase letter

• The constructors may refer to the type variables in their arguments

• In this case, Just holds a value of type a
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Optional values

> :t Just True
Maybe Bool
> :t Nothing
Maybe a

Note that Nothing has a polymorphic type, since there is no information to fix what a is
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Cooking find

find p xs finds the first element in xs which satisfies p
• Such an element may not exist

• Think of find even [1,3], or find even []

• Other languages resort to null or magic -1 values

• Haskell always marks a possible absence using Maybe

1. Define the type

find :: (a -> Bool) -> [a] -> Maybe a

2. Enumerate the cases

find p [] = _
find p (x:xs) = _
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Cooking find

3. Define the simple (base) cases

find _ [] = Nothing

4. Define the other (recursive) cases

find p (x:xs) | p x = Just x
| otherwise = find p xs
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elem in terms of find

Let’s define a small utility function

isJust :: Maybe a -> Bool
isJust Nothing = False
isJust (Just _) = True

Then we can define elem as a composition of other functions

elem :: Eq a => a -> [a] -> Bool
elem x = isJust . find (== x)
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Trees for any type

We can generalize our IntTree data type

• This is a polymorphic and recursive data type

• Mind the parentheses around the arguments

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)
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More recipes with trees

Next lecture
Many more operations over trees!

• Including search trees
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Benefits and downsides of ADTs

+ Immutable and persistent

+ Pattern matching and recursion

− Limited to directed, acyclic data types

− Incur complexity cost for persistence
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Type classes
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Polymorphism: definitions across many types

Parametric polymorphism - Generics

• Define once, not inspecting type

• Works at every instance of parametric data type (infinitely many)

reverse :: [a] -> [a]
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Polymorphism: definitions across many types

Parametric polymorphism - Generics

• Define once, not inspecting type

• Works at every instance of parametric data type (infinitely many)

reverse :: [a] -> [a]

Ad-hoc polymorphism - Overloading

• Define many times, inspecting types

• Works at finitely many types, called instances of type class, e.g. Num, Eq

(+) :: Num a => a -> a -> a

• Warning! Terminology conflict with other languages
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Polymorphism

Mixing polymorphism

• Mixing 2 type classes

\x -> x == 7 :: ???
\f -> f 0 == f 1 :: ???

• Mixing ad-hoc and parametric polymorphism

\f x -> f (x + 1) :: ???
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Polymorphism

Mixing polymorphism

• Mixing 2 type classes

\x -> x == 7 :: (Eq a, Num a) => a -> Bool
\f -> f 0 == f 1 :: ???

• Mixing ad-hoc and parametric polymorphism

\f x -> f (x + 1) :: ???

44



Polymorphism

Mixing polymorphism

• Mixing 2 type classes

\x -> x == 7 :: (Eq a, Num a) => a -> Bool
\f -> f 0 == f 1 :: (Eq b, Num a) => (a -> b) -> Bool

• Mixing ad-hoc and parametric polymorphism

\f x -> f (x + 1) :: ???
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Polymorphism

Mixing polymorphism

• Mixing 2 type classes

\x -> x == 7 :: (Eq a, Num a) => a -> Bool
\f -> f 0 == f 1 :: (Eq b, Num a) => (a -> b) -> Bool

• Mixing ad-hoc and parametric polymorphism

\f x -> f (x + 1) :: Num a => (a -> b) -> a -> b
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Class definition

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

• The name of the type class starts with Uppercase

• We declare a type variable – a in this case – to stand for the overloaded type in the rest of the

declaration

• Each type class defines one or moremethods which must be implemented for each instance

• We do not write the constraint in the methods
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Missing instances

> Pt 2.0 3.0 == Pt 2.0 3.0
<interactive>:2:1: error:

• No instance for (Eq Point)
arising from a use of ‘==’

• You have to give the instance declaration for your own data types, even for built-in type

classes

• In some cases, the compiler can write them for you
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Instance declarations

instance Eq Point where
Pt x y == Pt u v = x == u && y == v
Pt x y /= Pt u v = x /= u || y /= v

• Almost like the class declaration, except that

• The type variable is substituted by a real type

• Instead of method types, you give the implementation

> Pt 2.0 3.0 == Pt 2.0 3.0
True
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Conditional and recursive instances

Type class instances for polymorphic types may depend on their parameters

• For example, equality of lists, tuples, and trees

• These requisites are listed in front of the declaration

instance (Eq a, Eq b) => Eq (a, b) where
(x, y) == (u, v) = x == u && y == v

instance Eq a => Eq [a] where
[] == [] = True
[] == _ = False
_ == [] = False
(x:xs) == (y:ys) = x == y && xs == ys
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Overlapping instances

Imagine that I want tuples of Ints to work slightly different

instance Eq (Int, Int) where
(x, y) == (u, v) = x * v == y * u

You cannot do this! This instance overlaps with the other one given for generic tuples

51



Recursive instances

Write the Eq instance for the Tree data type:

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
EmptyTree == EmptyTree

= True
(Node x1 l1 r1) == (Node x2 l2 r2)

= x1 == x2 && l1 == l2 && r1 == r2
_ == _
= False
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Recursive instances

Write the Eq instance for the Tree data type:

data Tree a = EmptyTree
| Node a (Tree a) (Tree a)

instance Eq a => Eq (Tree a) where
EmptyTree == EmptyTree

= True
(Node x1 l1 r1) == (Node x2 l2 r2)

= x1 == x2 && l1 == l2 && r1 == r2
_ == _
= False
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Superclasses

A class might demand that other class is implemented

• We say that such a class has a superclass

• For example, any class with an ordering – Ord – has to implement equality – Eq

class Eq a => Ord a where
(<), (>), (<=), (>=) :: a -> a -> Bool
min, max :: a -> a -> a

instance (Ord a, Ord b) => Ord (a, b) where
(x, y) < (u, v) | x == u = y < v

| otherwise = x < u
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The meanings of =>

• In a type, it constrains a polymorphic function

elem :: Eq a => a -> [a] -> Bool

• In a class declaration, it introduces a superclass

class Eq a => Ord a where ...

• All instances of Ordmust be instances of Eq

• In an instance declaration, it defines a requisite

instance Eq a => Eq [a] where ...

• A list [T] supports equality only if T supports it

Before => you write an assumption or precondition
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Default definitions

We could also write the following instance Eq Point

instance Eq Pt where
Pt ... == Pt ... = _ -- as before
p /= q = not (p == q)

In fact, this definition of (/=) works for any type

• You can include a default definition in Eq
• If an instance does not have a explicit definition for that method, the default one is used

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x == y)
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Default definitions

• You could have also defined (/=) outside of the class

(/=) :: Eq a => a -> a -> Bool
x /= y = not (x == y)

• This definition cannot be overriden in each instance

• Why do we prefer (/=) to live in the class?

• Performance! For some data types it is cheaper to check for disequality than for equality

56



Automatic derivation

• Writing equality checks is boring

• Go around all constructors and arguments

• Writing order checks is even more boring

• Turning something into a string is also boring

Let the compiler work for you!

data Point = Pt Float Float
deriving (Eq, Ord, Show)

Historical note: many of the advances in automatic derivation of type classes where done here at

UU
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Example: scalable things

Both shapes and vector have a notion of scaling

• Scale the size or scale the norm

class Scalable s where
scale :: Float -> s -> s

instance Scalable Vector where
scale s (Vec x y) = Vec (s*x) (s*y)

instance Scalable Shape where
scale s (Rectangle p w h) = Rectangle p (s*w) (s*h)
scale s (Circle p r) = Circle p (s*r)
scale s (Triangle x y z) = ... -- This is hard
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Generic functions for scalable things

• Some functions now work over any scalable thing

double :: Scalable s => s -> s
double = scale 2.0

• We may generic instances for composed scalables

instance Scalable s => Scalable [s] where
scale s = map (scale s)
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Exercise

1. Think about a generic notion (like scaling)

2. Define a type class with the least primitive operations

3. Think of instances for that type class

4. Think of derived operations using the type class
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Summary
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Define your own data types!

Data types in Haskell are simple and cheap to define

• Introduce one per concept in your program

-- the following definition
data Status = Stopped | Running
data Process = Process ... Status ...
-- is better than
data Process = Process ... Bool ...
-- what does 'True' represent here?

• Use type classes to share commonalities
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Important concepts

• Algebraic data types: tuples, variants, recursive (e.g., trees!)

• how to write functions on them using pattern matching

• Parameterized data types:

• parametric polymorphism

• Type classes and their instances:

• ad-hoc polymorphism
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Overloaded syntax
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Numeric constants’ weird type

What is going on?

> :t 3
3 :: Num t => t

Numeric constants can be turned into any Num type

> 3 :: Integer
3
> 3 :: Float
3.0
> 3 :: Rational -- Type of fractions
3 % 1 -- Numerator % Denominator
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Range syntax

The range syntax [n .. m] is a shorthand for

enumFromTo n m

enumFromTo lives in the class Enum

• Bool and Char are instances, among others

> ['a' .. 'z']
"abcdefghijklmnopqrstuvwxyz"
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More range syntax

enumFrom :: a -> [a]
enumFromThenTo :: a -> a -> a -> [a]

• enumFrom does not specify a bound for the range

• The list is possibly infinite

> take 5 [1 ..]
[1,2,3,4,5]

• enumFromThenTo generates a list where each pair of adjacent elements has the same

distance

> [1.0, 1.2 .. 2.0]
[1.0,1.2,1.4,1.5999999999999999,
1.7999999999999998,1.9999999999999998]
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Deriving Enum

enumFromTo can be automatically derived for enumerations

• Data types without data in their constructors

data Direction = North | South | East | West
deriving (Eq, Ord, Show, Enum)

> [South .. West]
[South, East, West]
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