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Goals

• Know the difference between persistent (purely functional) and ephemeral data structures,

• Be able to use persistent data structures,

• Define and work with custom data types
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Data Structures in Memory

• What does x:xs look like in memory?

• Suppose that xs = b:c:d:[] for some b,c and d
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Data Structures in Memory

• What does drop 2 xs look like in memory?
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Data Structures in Memory

• What does drop 2 xs look like in memory?

x

[]

b

c

d

:

:

:

:
xs

drop 2 xs

6



Data Structures in Memory

• What does l ++ xs look like in memory?
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Persistent vs Ephemeral

• Data structures in which old versions are available are persistent data structures.

• Traditional data structures are ephemeral.
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Persistent vs Ephemeral

• Advantages of persistent data structures:

• Convenient to have both old and new:

• Separation of concerns;

• Compute subexpressions independently

• Output may contain old versions (i.e. tails)
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Can we get this for other data structures?

Yes*!

[*] for a lot of them
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Successor Data Structure

• Store an set S of ordered elements s.t. we can efficiently find successor of a query q.

• The successor of q is the smallest element in S larger or equal to q.

• Example: S = {1, 4, 5, 8, 9, 20}, successor of q = 7 is 8.
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Implementing a Successor DS: Try 1, Lists

• Idea: Use an (unordered) list

type SuccDS a = [a]

• What should the type of our succOf function be?

succOf :: Ord a => a -> SuccDS a -> Maybe a
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Implementing a Successor DS: Try 1, Lists

succOf :: Ord a => a -> SuccDS a -> Maybe a
succOf q s = minimum' [ x | x <- s, x >= q]

where
minimum' [] = Nothing
minimum' xs = Just (minimum xs)

• Running time: O(n)
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Implementing a Successor DS: Try 2, Ordered Lists

• Idea: Use an ordered list.

succOf q [] = Nothing
succOf q (x:s) | x < q = succOf q s

| otherwise = Just x

• Does not really help: running time is still O(n).

• We need a better data structure.
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Implementing a Successor DS: Try 3, BSTs

• Idea: Use a binary search tree (BST).

data Tree a = Leaf
| Node (Tree a) a (Tree a)
deriving (Show,Eq)

type SuccDS a = Tree a

• Can we list all elements in a Tree a?
• Can we test if a t :: Tree a is a BST?
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Warmup: Listing The elements of a Tree

elems :: Tree a -> [a]
elems Leaf = []
elems (Node l x r) = elems l ++ [x] ++ elems r
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Warmup: Testing if a Tree is a BST?

isBST :: Ord a => Tree a -> Bool
isBST Leaf = True
isBST (Node l x r) = all (<= x) (elems l)

&& all (>= x) (elems r)
&& isBST l && isBST r

• This implementation uses O(n2) time.

• Exercise: write an implementation that runs in O(n) time.
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Implementing a Successor DS: Queries

succOf q Leaf = Nothing
succOf q (Node l x r) | x < q = succOf q r

| otherwise =
case succOf q l of
Nothing -> Just x
Just sq -> Just sq

Nice if the input tree happens to be balanced, i.e. of height O(log n)
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Making Balanced Trees

• Suppose that the input is a sorted list, how to build a balanced tree?

buildBalanced :: [a] -> Tree a
buildBalanced [] = Leaf
buildBalanced xs = Node l x r

where
m = length xs `div` 2
(ls,x:rs) = splitAt m xs

l = buildBalanced ls
r = buildBalanced rs

• Running time: O(n log n).
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Dynamic Successor: Insert

• Can we add new elements to the set S?

insert :: Ord a => a -> Tree a -> Tree a
insert x Leaf = Node Leaf x Leaf
insert x t@(Node l y r)

| x < y = Node (insert x l) y r
| x == y = t
| otherwise = Node l y (insert x r)

• Not just insert x l!

• Note that we are building new trees!
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May unbalance the tree

• Repeatedly inserting elements unbalances the tree

> foldr insert Leaf [1..5]
Node (Node (Node (Node (Node Leaf 1 Leaf) 2 Leaf) 3 Leaf) 4 Leaf) 5 Leaf

2

3

4

5

1
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Self balancing trees: Red Black Trees
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• Properties:

1) leaves are black

2) root is black

3) red nodes have black children

4) for any node, all paths to leaves have the same number of black children.
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Self balancing trees: Red Black Trees
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• Properties:

1) leaves are black

2) root is black

3) red nodes have black children

4) for any node, both children have the same blackheight

• blackHeight of a node = number of black children on any path from that node to its leaves.
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Self balancing trees: Red Black Trees
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• Properties:

1) leaves are black

2) root is black

3) red nodes have black children

4) for any node, both children have the same blackheight

• Support queries and updates in O(log n) time.
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Red Black Trees in Haskell

data Color = Red | Black deriving (Show,Eq)

data RBTree a = Leaf
| Node Color (RBTree a) a (RBTree a)
deriving (Show,Eq)

• Enforces property 1. Other properties are more difficult to enforce in the type.
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Implementing Queries and Inserts

• succOfmore or less the same as before.

• Insert:

• Make sure black heights remain ok by replacing a black leaf by a red node.

• The only issue is red,red violations.

• Allow red,red violations with the root, but not below that.

• Recolor the root black at the end.
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Implementing Insert

insert :: Ord a => a -> RBTree a -> RBTree a
insert x = blackenRoot . insert' x

insert' :: Ord a => a -> RBTree a -> RBTree a

blackenRoot :: RBTree a -> RBTree a
blackenRoot Leaf = Leaf
blackenRoot (Node _ l y r) = Node Black l y r
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Implementing Insert’

insert' :: Ord a => a -> RBTree a -> RBTree a
insert' x Leaf = Node Red Leaf x Leaf

insert' x t@(Node c l y r)
| x < y = Node c (insert' x l) y r
| x == y = t
| otherwise = Node c l y (insert' x r)

As before, this creates an unbalanced tree. So, what’s left is to rebalance the newly created trees.
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Implementing Insert’
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Rebalancing

• The only potential issue is two red nodes near the root.

• There are only four configurations:

y

x

z

c
d

a b

x
y

z

d

b c
a

y

z

x

b

a

dc

z
y

x

a

cb
d

30



Rebalancing

• Make the root red, and its children black:

y

x z

a b c d

y

x

z

c
d

a b

=⇒

balance Black (Node Red (Node Red a x b) y c) z d =
Node Red (Node Black a x b) y (Node Black c z d)
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Rebalancing
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Rebalancing code

• Other cases are symmetric:

balance Black (Node Red (Node Red a x b) y c) z d =
Node Red (Node Black a x b) y (Node Black c z d)

balance Black (Node Red a x (Node Red b y c)) z d =
Node Red (Node Black a x b) y (Node Black c z d)

balance Black a x (Node Red (Node Red b y c) z d) =
Node Red (Node Black a x b) y (Node Black c z d)

balance Black a x (Node Red b y (Node Red c z d)) =
Node Red (Node Black a x b) y (Node Black c z d)

balance c l x r =
Node c l x r
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Rebalancing code

• Other cases are symmetric:

balance Black (Node Red (Node Red a x b) y c) z d =
Node Red (Node Black a x b) y (Node Black c z d)

balance Black (Node Red a x (Node Red b y c)) z d =
Node Red (Node Black a x b) y (Node Black c z d)

balance Black a x (Node Red (Node Red b y c) z d) =
Node Red (Node Black a x b) y (Node Black c z d)

balance Black a x (Node Red b y (Node Red c z d)) =
Node Red (Node Black a x b) y (Node Black c z d)

balance c l x r =
Node c l x r
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Deleting

• What if we also want to remove elements from S?

• Possible in O(log n) time with Red-Black trees, but a bit more messy.
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Data structures in the Haskell Standard Library

• Self balancing BST Implementation available in Data.Set

• Often useful to store additional information: Data.Map.

lookup :: Ord k => k -> Map k v -> Maybe v

• Finite Sequences: Data.Sequence, allow fast access to front and back.

• All these data structures are persistent.
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Example Application: Point Location

• Can we quickly find the platform directly below Mario at (x, y)?

(x, y)
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Example Application: Point Location

• Can we quickly find the platform directly below Mario at (x, y)?

(x, y)

• Easy if we had the platforms intersecting the vertical line at x in top-to-bottom order in a

Set or Map: find successor of y.
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Example Application: Point Location

• Can we quickly find the platform directly below Mario at (x, y)?

(x, y)

• What happens when vertical line starts/stops to intersect a platform?
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Example Application: Point Location

• Can we quickly find the platform directly below Mario at (x, y)?
• What happens when vertical line starts/stops to intersect a platform?

• Add or remove a platform from the Set

• Since Set is persistent, old versions remain in tact. Store them in a Map.

• To answer a query: go to the version at time x using a successor query, and find successor

of y.
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Homework: Verifying Red-Black Tree Properties

• Write a function validRBTree :: RBTree a -> Bool that checks if a given RBTree a
satisfies all red-black tree properties.

41


