
Functional Programming – Final exam – Thursday 7/11/2019

Name:

Student number:

Q: 1 2 3 4 5 Total

P: 20 18 18 20 14 90

S:

Before you begin:

• Do not forget to write down your name and student number above.

• If necessary, explain your answers in English or Dutch.

• Use only the empty boxes under the questions to write your answer and explanations in.

• The exam consists of five (5) questions.

• At the end of the exam, only hand in the filled-in exam paper. Use the blank paper provided with this
exam only as scratch paper (kladpapier).

• Answers will not only be judged for correctness, but also for clarity and conciseness.

In any of the answers below you may (but do not have to) use the following well-known Haskell functions
and operators, unless stated otherwise: id, (.), const, flip, head, tail, (++), concat, foldr (and its
variants), map, filter, sum, all, any, elem, not, (&&), (||), zip, reverse, curry, uncurry, and all the
members of the type classes Show, Eq, Ord, Enum, Num, Monoid, Functor, Applicative, and Monad.

1. Functors and Monoids

(a) (4 points) Consider the following data type First a, somewhat similar to the type Maybe a

data First a = TheFirst a | Never deriving (Show,Eq,Ord)

Make First an instance of Functor

(b) (4 points) Recall the Monoid typeclass
class Monoid m where

mempty :: m

(<>) :: m -> m -> m

which models a type m with an associative binary operation <> which combines two elements into
one, and a unit element mempty.
Make First a an instance of Monoid in which the associative operation returns its left argument
as long as it is a TheFirst a and its right argument otherwise: such that for example
foldr (<>) Never [Never, TheFirst 6, TheFirst 1, TheFirst 10] == TheFirst 6



(c) (4 points) Consider the following data type These, which has two type parameters l and r:
data These l r = Neither

| This l

| That r

| Both l r

By making These l an instance of functor we can apply functions to the r value in a These l r.
However, we would also like to be able to map over the l value. That is, we would like a function
bimapThese :: (l -> l’) -> (r -> r’) -> These l r -> These l’ r’

Implement this function.

(d) (4 points) There are also other types that have two type parameters, for example a pair (l,r). So,
we could similarly define a function bimapPair that takes two functions f and g and applies them
on the left and right values in a pair, respectively. This is a good opportunity to introduce a new
typeclass Bifunctor which expresses that for some type t, parameterized by two types l and r,
we can map functions f and g over the l and r values using the function bimap. We can then make
These and pairs ((,)) an instance of this typeclass:
instance Bifunctor These where

bimap = bimapThese

instance Bifunctor (,) where

bimap = bimapPair

Define the typeclass Bifunctor.
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(e) (4 points) Write a function foo :: Bifunctor t => t Int Float -> t String String which,
when specialized to t equal to (,) converts a pair of an Int and a Float into a pair of Strings. For
example, foo (42, 66.6) = ("42", "66.6").

2. Testing

Consider the function (++) which concatenates two lists. We will develop a function concatSpec that
can be used to test if an implementation of (++) correctly concatenates the input lists.

(a) (4 points) Write a function isPrefixOf :: Eq a => [a] -> [a] -> Bool such that
isPrefixOf xs ys tests if a list xs is a prefix of ys, that is, if ys == xs ++ bs, for some list bs.

(b) (6 points) Recall the data type First a as defined in the first exercise. Consider a function findFirst

:: [a] -> [a] -> First Int that, given arguments xs and ys returns TheFirst i if and only
if xs is a contiguous (in Dutch: ”aaneengesloten”) sublist of ys starting at index i. The function
returns Never if and only if xs does not occur as a contiguous sublist of ys.
Using findFirst, write a function before :: Eq a => [a] -> [a] -> [a] -> Bool for which
before xs ys zs returns True if and only if xs and ys are contiguous sublists of zs and (the first
occurrence of) xs starts no later than (the first occurrence of) ys in the list zs.
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(c) (4 points) Using the above functions, we can now give the following specification concatSpec that
tests if an implementation concatImpl correctly concatenates two lists:
concatSpec :: Eq a => ([a] -> [a] -> [a]) -> [a] -> [a] -> Bool

concatSpec concatImpl xs ys = before xs ys (xs ‘concatImpl‘ ys)

This specification is incomplete, since there may be an implementation, say myConcat, that satisfies
the above specification, but for which the result is different than for the real implementation of
(++). That is, we may have concatSpec myConcat xs ys == True while xs ‘myConcat‘ ys /=

xs ++ ys. Please explain why this specification is incomplete.

(d) (4 points) Extend the above specification of concatSpec to correctly test if a given implementation
correctly concatenates two lists.
Note that you are not allowed to refer to the ”real” function (++) in your answer.
concatSpec :: Eq a => ([a] -> [a] -> [a]) -> [a] -> [a] -> Bool

concatSpec concatImpl xs ys = let zs = xs ‘concatImpl‘ ys

in before xs ys zs && ....

3. Monads

(a) (4 points) Recall that

1. a Map k v is a data structure that associates keys of type k with values of type v, and allows us
to efficiently retrieve the value associated with a key, if it exists, using the function
lookup :: Ord k => k -> Map k v -> Maybe v.
If the key does not occur in the Map, lookup returns a Nothing.

2. Maybe is an instance of Monad.

Consider a function combineLookup :: Ord k => (v -> v -> Maybe b) -> k -> k -> Map k

v -> Maybe b that looks up two keys in a Map k v (using the lookup function), and combines their
values using a user supplied function.
Here are some example uses of combineLookup, in which m = Map.fromList [(1,"foo"), (2,

"bar"), (6,""), (8,"baz")] is a Map that maps the key 1 to ”foo”, 2 to ”bar” etc.
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> combineLookup (\v1 v2 -> Just (v1 ++ v2)) 1 2 m

Just "foobar"

> combineLookup (\v1 v2 -> if null v1 then Just v2 else Nothing) 1 2 m

Nothing

> combineLookup (\v1 v2 -> if null v1 then Just v2 else Nothing) 6 2 m

Just "bar"

> combineLookup (\v1 v2 -> if null v1 then Just v2 else Nothing) 3 2 m

Nothing

Using do-notation, please implement combineLookup.

(b) (4 points) Translate the following piece of code using do-notation to using return and >>= directly.
main = do (fp:h:_) <- getArgs

putStrLn h

s <- readFile fp

return (length s)

(c) (3 points) Consider the following data type Log a, which annotates a value of type a with a list of
log messages, and the function withLogging that prints these messages to the terminal and then
returns the a:
data Log a = MkLog [String] a

withLogging :: Log a -> IO a

withLogging (MkLog l a) = do mapM_ putStrLn l

return a

Write a function log :: String -> Log () which logs a single message and returns a value of
type ().
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(d) (5 points) We can make Log an instance of Monad so that we can write nice logging code. For
example:
readInput :: Log Int

readInput = do log "about to read some input"

return 5

computeSomething :: Log String

computeSomething = do i <- readInput

log "read some input"

let out = i * i

log "computed something"

return (show out)

computeIO :: IO String

computeIO = withLogging computeSomething

So that evaluating computeIO prints
about to read some input

read some input

computed something

to standard output and returns the string "25". Complete the Monad instance for Log, i.e. give the
implementation of

1. return :: a -> Log a

which does not log any messages
2. (>>=) :: Log a -> (a -> Log b) -> Log b

which collects all messages

(e) (2 points) Write a function withoutLogging :: Log a -> IO a that returns the a in Log a, but
does not actually print any log messages.

4. Equational reasoning

Given the definitions

data Tree a = Leaf | Node (Tree a) a (Tree a)
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a) foldr f e [] = e b) foldr f e (x:xs) = f x (foldr f e xs)

c) map f [] = [] d) map f (x:xs) = f x : map f xs

e) size Leaf = 0 f) size (Node l x r) = size l + 1 + size r

g) toList Leaf = [] h) toList (Node l x r) = toList l ++ [x] ++ toList r

i) (.) f g x = f (g x)

and the lemma

j) for all lists xs, ys, and zs: length xs + length ys + length zs = length (xs ++ ys ++ zs)

prove that the following two equations hold:

(a) (12 points) for all lists xs: map f (foldr (\x r -> g x : r) [] xs) = map (f . g) xs

(b) (8 points) size = length . toList
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5. Lazy evaluation

(a) (10 points) For each of these expressions, indicate if they are in WHNF or not. For the ones that
are in WHNF, state in one sentence why. For the ones not in WHNF, evaluate them to WHNF or,
in case they crash upon evaluation, indicate this.

A. (1 + 5) : succ 4 : map (+1) [1,2]

B. isNothing (Just 4)

C. \a b c -> and b

D. foldr undefined e []

E. seq fmap

(b) (4 points) Consider the following two statements:
1. the expression (\x f -> f x) undefined crashes when it is evaluated
2. the expression seq (undefined,undefined) (const 5 undefined) crashes when it is evalu-

ated
Which of these statements are true? Choose one answer.

A. Both statements are false
B. Only statement 1 is true
C. Only statement 2 is true
D. Both statements are true
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