
[20201001] INFOFP - Functioneel programmeren -
1 - UITHOF
Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

Tijdsduur: 2 uur

Aantal vragen: 6

21867-37934
Voorpagina - Pagina 1 van 1

[20201001] INFOFP - Functioneel programmeren -
1 - UITHOF
Cursus: Functioneel programmeren (INFOFP)

Aantal vragen: 6

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 1 van 8

In this question, we will ask you to write, in several different ways, a function to remove multiples of 5
and 7 from a list.

a. [4pt] Write a predicate multipleFS on Int, such that multipleFS n equals True iff n is a
multiple of 5 or 7 (or both), put differently, iff n is divisible by 5 or divisible by 7 (or divisible by
both 5 and 7).

a.

b. [5pt] Write a function named em1 that takes a list of Int's as its only parameter. Your function
should return a new list of Int's where all of the Int's that are multiples of 5 or 7 have been
removed. Implement your solution using recursion. You may not use list-- comprehensions or
higher order functions in your solution.

Test cases that you may want to consider include:

em1 [] should return []
em1 [11, 13, 17, 19] should return [11, 13, 17, 19]
em1 [3, 5, 6] should return []
em1 [1..20] should return [1,2,4,7,8,11,13,14,16,17,19]

b.

c. [2pt] Write a function named em2 that performs the same task as em1 using list
comprehensions. You may not use recursion or higher order functions in your solution.

c.

d. [2pt] Write a function named em3 that performs the same task as em1 and em2 by calling
one or more higher order functions built into Haskell’s prelude module. You may not use
recursion or list comprehensions in your solution.

d.

1

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 2 van 8

In this question, we study the following puzzle: given a list of integer numbers, find a correct way of
inserting arithmetic operators and parentheses such that the result is a correct equation. Example:
With the list of numbers [2,3,5,7,11] we can form the equations (((2 - 3) + 5) + 7) = 11 or 2 = (((3 * 5) +
7) / 11) (and ten others!).
Division should be interpreted as operating on rationals, and division by zero should be avoided.

d. [6pt] We define a type synonym

type Value = Rational

Next, we define a function apply that tries to evaluate a binary operator on two values and fails in case
of division by zero:

apply :: Op -> Value -> Value -> Maybe Value
apply Plus x y = Just (x + y)
apply Minus x y = Just (x - y)
apply Multiply x y = Just (x * y)
apply Divide x 0 = Nothing
apply Divide x y = Just (x / y)

Given a list of numbers, we wish to generate all expressions we can build from this list by inserting
operators and parentheses, paired with the value they evaluate to. We exclude ill-formed expressions
which contain a division by zero.

exprs :: [Integer] -> [(Expr Integer, Value)]
exprs [n] = [(Const n, fromInteger n)]
exprs ns = [(Binary op e1 e2, v) | (ns1, ns2) <- splits ns,

(e1, v1) <- d. () ,
(e2, v2) <- e. () ,

op <- [Plus, Minus, Multiply, Divide],

a. [3pt] We define a type of binary operators:

data Op = Plus | Minus | Multiply | Divide deriving Enum

Using Op, define a parameterized data type Expr a of a-expressions, which are either
constants of type a, labelled Const, or a binary operator applied to two existing a-expressions,
labelled Binary.
(The reason one might define such a type is to be able to uniformly represent expressions with
various sorts of constants like Integers, Floats or Strings.)

a.

b. [4pt] Define a Show instance for Expr a that can correctly print expressions of type Expr
Integer and Expr String, for example, using parentheses where appropriate. You do not need
to worry about redundant parentheses and associativity of operators. You may assume that Op
has already been made an instance of Show, where Plus, Minus, Multiply, and Divide are,
respectively, shown as "+", "-", "*", and "/".

b.

c. [5pt] Write a function splits that generates all possible splittings of a list of length at least 2
into a pair of non-empty lists, while retaining the order of elements.
splits has the specification that, for zs of length greater than or equal to 2, (x:xs, y:ys) = splits
zs if and only if (x:xs) ++ (y:ys) = zs.

c.

2

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 3 van 8

f. () <-
g. ... ()]

Please complete the gaps in the code above.

e. [4pt] Without using a list comprehension, write a function equalsFive :: [Integer] -> [Expr
Integer] that generates all expressions using integers from some list that evaluate to 5.

h.

In this question, we will implement a so-called "multimap", that is, an associative array data structure
which can store for each key not one value, but any number of multiple values. Further, the same
value can be associated multiple times with a given key and the values associated with a key can be
associated in many different orders which we distinguish. For example, when we lookup a key, we
retrieve the most recently inserted value (if it exists), and when we delete a key, we only remove the
most recently inserted value.
You may make use of the Map k v data type which is a type of associate arrays which associate keys
of type k with values of type v.

Recall that such Map k v types can be accessed using the following API:
insertMap :: Ord k => k -> v -> Map k v -> Map k v
deleteMap :: Ord k => k -> Map k a -> Map k a
lookupMap :: Ord k => k -> Map k a -> Maybe a
emptyMap :: Map k a

a. [6pt] Complete the holes in the following implementation.

type MultiMap k v = Map k [v]

insert :: Ord k => k -> v -> MultiMap k v -> MultiMap k v
insert k v m = case lookupMap k m of Just vs ->
a. ... ()

Nothing -> insertMap k [v] m

delete :: Ord k => k -> MultiMap k a -> MultiMap k a
delete k m = case lookupMap k m of b. () -> insertMap k vs m

_ -> deleteMap k m

lookup :: Ord k => k -> MultiMap k a -> Maybe a
lookup k m = case lookupMap k m of Just (v : vs) -> c. ()

_ -> Nothing

empty :: MultiMap k a
empty = emptyMap

3

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 4 van 8

We consider a type of natural numbers

data Nat = Zero | Succ Nat

We think of Zero as the number 0 and Succ n as the number n + 1. On this type, we can define a
function

foldN :: (a -> a) -> a -> Nat -> a
foldN f e Zero = e
foldN f e (Succ n) = f (foldN f e n)

analogous to foldr on [a].

Define the type

data Dummy = D

Observe that Nat is essentially the type [Dummy] "in disguise", in the sense that we have functions

listToNat :: [Dummy] -> Nat
natToList :: Nat -> [Dummy]

such that

listToNat . natToList equals id and natToList . listToNat equals id .

e. [4pt] Consider the following definition

mystery i = snd (foldN (\(x, _) -> (Succ x, x)) (Zero, Zero) i)

a. [3pt] Using direct recursion, implement a function

plus :: Nat -> Nat -> Nat

that adds two natural numbers.

a.

b. [4pt] Using foldN and without using direct recursion, write a function

mult :: Nat -> Nat -> Nat

that multiplies two natural numbers.

b.

c. [3pt] Using a fold and without using direct recursion, implement

listToNat :: [Dummy] -> Nat

c.

d. [3pt] Please implement

natToList :: Nat -> [Dummy]

For 2 points: implement it using direct recursion

OR

For 3 points: implement it using foldN and without using direct recursion.

d.

4

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 5 van 8

The type of mystery is e. ... () .
Let us use the shorthand notation 0 for Zero, 1 for Succ Zero, 2 for Succ (Succ Zero), etc. .
If we evaluate mystery on 7, we obtain the answer f. () and if we evaluate it on 0,
it returns g. () .
Please write your answers using numerals.

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 6 van 8

Please answer the questions below. You will receive 1pt for each question correctly answered, -1pt
for each wrong answer, and 0pt for each question answered with "Don't know".

a. [7pt] For each of the following expressions, please indicate whether it is correct that they
evaluate to the list [1,2,3,4,5].

Correct Incorrect Don't
know

A B C

[a | a <- [1..10], a < 5] 1

[f | f <- [1..10], g <- [1..10], f <= 5] 2

map (2+) (filter (>= -1) [-5 .. 3]) 3

map (+1) [b `div` 2 | b <- [1..10], b `mod` 2 == 1] 4

[d `div` 2 | d <- [1..10], (d + 1) `div` 2 == d `div`
2]

5

[c + 1 | c <- [1..10], c < 4] 6

filter (\x -> 5 > x) [1..21] 7

a.

Please motivate each of your answers above in one or two sentences.b.

b. [5pt] Please mark all well-typed definitions.

Well-typed Ill-typed Don't
know

A B C

moo f x = let y = f x in if x == y then y else
moo f y

1

friet = let f g = (g [], g 0) in f (\x->x + 1) 2

bar f = f (bar f) 3

foo = (\y -> y) (\y -> y) 4

baz g = g g 5

c.

Please motivate each of your answers above in one or two sentences.d.

5

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 7 van 8

c. [6pt] The function intersperse :: a −> [a] −> [a] puts its first argument between all the
elements of a non-empty list. Thus intersperse ’,’ "xyz" results in "x,y,z". Which definitions
are correct, assuming the argument as is not empty?

Correct Incorrect Don't
know

A B C

intersperse a = foldr (\x ys -> x : if null ys then
[] else a : ys) []

1

intersperse _ [a'] = [a']
intersperse a (a' : as) = a' : a : intersperse a as

2

intersperse a = tail . concat . map (\ x −> [a, x
])

3

intersperse a as = tail [(a : e) | e <− as] 4

intersperse a as = foldr (\ e r −> (e : a : r)) []
as

5

intersperse a as = foldl (\ r e −> (a : e : r)) []
as

6

e.

Please motivate each of your answers above in one or two sentences.f.

Determine the type of the following expressions or demonstrate that they are not well-typed. You may
assume that foldr simply folds over lists (rather than over an arbitrary instance of the Foldable
typeclass).
Hint: const x _ = x

a. [7pt] foldr const ida.

b. [9pt] flip foldr True (&&)b.

6

21867-37934

[20201001] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 8 van 8

	[20201001] INFOFP - Functioneel programmeren - 1 - UITHOF
	Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

	[20201001] INFOFP - Functioneel programmeren - 1 - UITHOF
	Cursus: Functioneel programmeren (INFOFP)

