
[20201105] INFOFP - Functioneel programmeren -
1 - UITHOF
Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

Tijdsduur: 3 uur

Aantal vragen: 6

22994-41605
Voorpagina - Pagina 1 van 1

[20201105] INFOFP - Functioneel programmeren -
1 - UITHOF
Cursus: Functioneel programmeren (INFOFP)

Aantal vragen: 6

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 1 van 11

Lists allow efficient access to the front of the list, but not to the back of the list. A "Deque" (double
ended queue) allows fast access to both the front and the back. The following data type models such
a Deque:

data Deque a = Empty
| Single a
| Multiple (Access a) (Deque (a,a)) (Access a)
deriving (Show,Eq)

where

data Access a = One a | Two a a deriving (Show,Eq)

So, for example a 'Single 1' corresponds to a Deque containing a single element (the Int '1'), and a

mySmallDeque :: Deque Int
mySmallDeque = Multiple (One 1)

(Single (2,3))
(Two 4 5)

is a Deque containing the elements '1', '2', '3', '4', '5' in that order. As a slightly larger example

myDeque :: Deque Int
myDeque = Multiple (Two 1 2)

(Multiple (One (3,4))
(Single ((5,6),(7,8)))
(One (9,10)))

(One 11)

contains all elements '1', ..., '11' (in that order).

a. [5pt] Write a function 'dequeToList' that converts a Deque into a list (containing the same elements
in the same order). In particular, we have

dequeToList mySmallDeque == [1,2,3,4,5]
dequeToList myDeque == [1,2,3,4,5,6,7,8,9,10,11]

Hint: you may want to write a helper function 'flatten :: [(a,a)] -> [a]' first.

b. [4pt] Write a total function 'safeLast' that gets the last (rightmost) element in the Deque (if the
Deque is non-empty). For example, we have that

safeLast myDeque == Just 11

Your implementation should use constant (O(1)) time (so you cannot convert the Deque into a list
first).

a.

b.

1

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 2 van 11

c. [4pt] Implement a function 'cons' that takes an 'x :: a' and a 'dq :: Deque a' and adds the 'x' to the
front of 'dq' (analogous to how
the '(:) :: a -> [a] -> [a]' function/constructor adds an element to the front of a list. For example,

cons 1 Empty == Single 1
cons 0 mySmallDeque == Multiple (Two 0 1) (Single (2,3)) (Two 4 5)

Your implementation should run in O(log n) time. You do not have to prove/argue that your
implementation achieves this O(log n) time bound; the most natural implementation will achieve this.

Hint: the function 'cons' will be a recursive function

d. [4pt] Make the 'Deque' data type an instance of the 'Functor' typeclass. You may assume that
'Access' has already been made an instance of 'Functor'.

c.

d.

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 3 van 11

In this question, we will ask you to perform some proofs about program equivalence.

Here, you may make use of the following definitions:

foldl :: (b -> a -> b) -> b -> [a] -> b

foldr :: (a -> c -> c) -> c -> [a] -> c

id :: d -> d

foldl2 :: (b -> a -> b) -> b -> [a] -> b

const :: a -> r -> a

bind :: (r -> a) -> (a -> r -> b) -> r -> b

flip :: (a -> b -> c) -> b -> a -> c

help :: (b -> a -> b) -> a -> (b -> b) -> (b -> b)

(a) foldl op e [] = e

(b) foldl op e (x : xs) = foldl op (op e x) xs

(c) foldr op e [] = e

(d) foldr op e (x : xs) = op x (foldr op e xs)

(e) id x = x

(f) foldl2 op e bs = foldr (help op) id bs e

(g) const a _ = a

(h) bind f g r = g (f r) r

(i) flip f a b = f b a

(j) help op a g b = g (op b a)

Please mark every reasoning step in your proof either with the name of a definition (like (b)) or as the
use of an induction hypothesis (I.H.). In case of a proof by induction, please explicitly state the
induction hypothesis and mark it as such. In case you use extensional reasoning, please explain.

a. [6pt] Prove that

'flip bind const' = 'id'

Hint: note that this is an equation of expressions of type '(r -> b) -> r -> b' (or, equivalently, '(r
-> b) -> (r -> b)')

a.

2

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 4 van 11

b. [14pt] Prove that

'foldl2' = 'foldl'

b.

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 5 van 11

Recall that a 'Map.Map k a' is a data structure that maps keys of type k to their associated values of
type 'a', and that we can retrieve the value corresponding to a key (if it exists) using the 'Map.lookup ::
k -> Map.Map k a -> Maybe a' function.

Consider the following type

type Graph v = Map.Map v [v]

which models directed graphs whose vertices are of type 'v'. In particular, the graph is stored using an
adjacency-list representation where each vertex stores its (outgoing) neighbours.

This means we can report all vertices of the graph by retrieving all keys in the Map like:

vertices :: Graph v -> [v]
vertices = Map.keys

a. [2pt] Write the function edges, which returns a list of all edges in the graph. Each pair (u,v) in the
output should be a directed edge from u to v. Your function should have type:

edges :: Graph v -> [(v,v)]

Hint: the function 'Map.assocs :: Map k v -> [(k,v)]' produces a list with all key,value pairs in a
'Map.Map'.

b. [2pt] Write a function 'neighbours' that gives all neighbours of 'v', meaning those 'w' such that there
is a directed edge from 'v' to 'w'. Your function should have type:

neighbours :: Ord v => Graph v -> v -> [v]

Given a graph 'g', and a vertex 'v', we may want to compute all vertices reachable from 'v' by following
directed edges. Here is a possible implementation of such a function:

reachablePure :: Ord v => Graph v -> v -> [v]
reachablePure g v = let ws = neighbours g v

in v : concatMap (reachablePure g) ws

c. [2pt] Is this implementation correct? If yes: argue why; if no: explain why not.

We will implement 'reachable' once more, this time using a 'State' monad.

Recall that:

1) 'State s a'

a.

b.

c.

3

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 6 van 11

is a type of computations that maintain some state of type 's' and return an 'a'

2) 'runState :: State s a -> s -> (a,s)'
is a function that given a computation and an initial state performs that computation and returns the

resulting 'a' and the final state.

3) 'get :: State s s'
is a stateful computation that returns the current state

4) 'put :: s -> State s ()'
is a function that takes an 's', and produces (a computation that) sets the state to the given 's', and

5) 'modify :: (s -> s) -> State s ()'
is a function that, given a function f produces (a computation that) modifies the current state by

applying the function 'f' to it.

We can then implement reachable as follows:

reachable :: Ord v => Graph v -> v -> [v]
reachable g v = snd $ runState (markVisited g v) []

where 'markVisited g v' is a stateful computation that traverses 'g', starting at vertex 'v', while keeping
track of a list of already visited vertices.

d. [4pt] Complete the following implementation of this function 'markVisited':

markVisited :: Ord v => Graph v -> v -> State [v] ()
markVisited g v = do visited <- d. ()

if v `elem` visited then
e. ()

else do
f. ()
mapM_ g. () $ neighbours g v

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 7 van 11

Let 'extract :: Int -> [a] -> ([a],a,[a])' be a function that given an index 'i' and a list 'xs' extracts the ith

element from a list. More precisely, it can be implemented as

extract i xs = let pref = take i xs
(x:suf) = drop i xs

in (pref,x,suf)

Given this function 'extract' we can implement the following function, which shuffles a list:

shuffle :: [a] -> IO [a]
shuffle [] = return []
shuffle xs = do i <- randomRIO (0,length xs - 1)

let (pref,x,suf) = (extract i xs)
xs' <- shuffle (pref ++ suf)
return (x:xs')

a. [4pt] Rewrite the non-empty list case of 'shuffle' using 'return' and '>>=' (i.e. without using
do-notation).

b. [4pt] Write a function 'foo :: IO Int' that asks the user to input one or more Ints separated by spaces,
and prints a random permutation of this list and returns its sum.

Hint: the function 'getLine :: IO String' reads a line from the standard input

a.

b.

4

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 8 van 11

Consider the function words which "breaks a string up into a list of words, which were delimited by
spaces".

We will write some some tests to verify whether a given implementation 'wordsImpl' of the words
function is correct.

Note that throughout this exercise we will use a slightly simplified version of the 'words' function
(compared to the one in Data.List) in that we will break the input string only at spaces (not at newlines
and tabs). We will simply ignore newlines and tabs throughout the exercise.

a. [2pt] Write a quickcheck property 'noMoreSpaces' that checks that a given implementation does not
"forget" any spaces; that is, if all Strings in the output list are free of spaces. Your function should
have type signature:

noMoreSpaces :: (String -> [String]) -> String -> Bool

b. [2pt] Given a function

removeInitialSpaces :: String -> String
removeInitialSpaces = dropWhile (== ' ')

that removes all spaces from the start of a 'String', please implement a function

removeFinalSpaces :: String -> String

that removes all spaces from the end of a 'String'.

So, for example,

removeFinalSpaces " Rick Astley " == " Rick Astley"

c. [4pt] Please implement a function

removeDuplicateSpaces :: String -> String

that replaces any number of consecutive spaces in a string by a single space, so, for example,

removeDuplicateSpaces " Never gonna give you up " == " Never
gonna give you up "

Consider the property below.

recombines :: (String -> [String]) -> String -> Bool
recombines words' s = let removeRedundantSpaces = removeFinalSpaces .

removeInitialSpaces .
removeDuplicateSpaces

in (removeRedundantSpaces . unwords . words') s ==
removeRedundantSpaces s

Here, 'unwords' is the following Prelude function that creates a single String from a list of Strings by

a.

b.

c.

5

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 9 van 11

concatenating them while inserting spaces between them.

unwords [] = ""
unwords (w : ws) = w ++ go ws where

go [] = []
go (w : ws) = ' ' : w ++ go ws

d. [2pt] Is it true that 'recombines' complements 'noMoreSpaces' to give a correct specification of
'words' in the sense that any function 'wordsImpl' that satisfies both 'noMoreSpaces wordsImpl s' and
'recombines wordsImpl s' for all Strings 's' has the property that 'words s = wordsImpl s' for all Strings
's' ? If yes, please explain why; if no, please explain why and correct the definition of 'recombines' to
make it true.

d.

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 10 van 11

a. [2pt] For each expression 'e' below, choose the expression 'f' that we obtain after evaluating it to
WHNF.

More precisely, select the expression 'f' such that

1) by performing some finite number 'k' evaluation steps 'e' evaluates to 'f'
2) 'f' is in WHNF
3) there is no expression 'g' in WHNF such that 'e' evaluates to 'g' in fewer than 'k' steps.

A correct answer gives you 1 point. A wrong answer -1. Selecting I don't know gives you 0 points.

Clearly, the use of force makes our code less lazy. For example, we can no longer safely write:

foo xs = length . force $ xs

when 'xs' is some list containing elements that would diverge (e.g. for 'xs = [1,2,3,4,undefined]')

c. [3pt, bonus] Write a pair of functions, such that together they can undo the effect of force. In
particular, so that for finite lists 'xs' we have:

(unprotect . force . protect) xs == id xs

and thus we can safely write:

foo xs = length . unprotect . force . protect $ xs

map (:[]) [1,2]

a. [[1],[2]]

b. [1] : map (:[]) [2]

c. ((:[]) 1) : map (:[]) [2]

d. map (:[]) [1,2]

e. I don't know

a.

fmap (+1) $ Just (3+2)

a. Just 6

b. Just ((3+2)+1)

c. fmap (+1) $ Just (3+2)

d. Just (fmap (+1) (3+2))

e. I don't know

b.

b. [3pt, bonus] Write a function 'force :: [a] -> [a]' that evaluates all the elements in the input list
to WHNF.

c.

d.

6

22994-41605

[20201105] INFOFP - Functioneel programmeren - 1 -

UITHOF
Vragen - Pagina 11 van 11

	[20201105] INFOFP - Functioneel programmeren - 1 - UITHOF
	Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

	[20201105] INFOFP - Functioneel programmeren - 1 - UITHOF
	Cursus: Functioneel programmeren (INFOFP)

