
[20221006] INFOFP - Functioneel programmeren -
1 - USP
Course: BETA-INFOFP Functioneel programmeren (INFOFP)

Duration: 2 hours

Number of questions: 4

52003-86943
Front page - Page 1 of 1

[20221006] INFOFP - Functioneel programmeren -
1 - USP
Course: Functioneel programmeren (INFOFP)

Number of questions: 4

52003-86943

[20221006] INFOFP - Functioneel programmeren - 1 -

USP
Questions - Page 1 of 7

Let us define a type synonym

type Point = Float

whose elements we think of as points on a line (the number line).

We define a datatype

data Interval = MkInterval Point -- starting point
Point -- end point

deriving (Show)

whose elements we think of as intervals in the number line demarked by a starting point and
an endpoint. We use the convention that Intervals are closed in the sense that they contain
both endpoints. You may assume that for `MkInterval start end`, we always have that `start
<= end`.
a. [2pt] Write a function

contains :: Interval -> Point -> Bool

that checks if an interval contains a given point

b. [3pt] Write, using direct recursion, a function

stabs :: Point -> [Interval] -> [Interval]

that, given a Point and a list of Intervals returns all Intervals that are "stabbed" by the Point,
that is, all Intervals that contain that Point.

c. [2pt] Now, rewrite "stabs" using higher order functions, without using direct recursion.

q `stabs` ints = c. (2 pt.)

d. [2pt] Write, using a list comprehension, a function

containments :: [Interval] -- list of intervals
-> [Point] -- list of points
-> [(Point,[Interval])] -- for every point, the

intervals that contain it.

That given a list of intervals, and a list of points, returns for each point the intervals it stabs.

containments ints points = d. (2 pt.)

a.2 pt.

b.3 pt.

1

52003-86943

[20221006] INFOFP - Functioneel programmeren - 1 -

USP
Questions - Page 2 of 7

e. [3pt] Complete the definition below of a function

countContainments :: [(Point, [Interval])] -> Int

such that

totalIntersections :: [Interval] -> [Point] -> Int
totalIntersections ints points = countContainments $ containments
ints points

computes the total number of intersections between a list of intervals and a list of points.

countContainments = foldr f e where
e = e. .. (1 pt.)
f = f. ... (2 pt.)

Here, by an intersection between a list `ints` of intervals and a list `pts` of points, we mean a
pair of a point `pt` of `pts` and an interval `int` of `ints` such that `ìnt` contains `pt`. For
example, we have that

totalIntersections [MkInterval (-1) 4, MkInterval 6 9, MkInterval
0 2, MkInterval 2 3, MkInterval 1 4] [1, 9] == 4

Please determine the types of the following expressions or show that they are ill-typed.
Please write down all reasoning steps, as they are at least as important as the final
answers.
a. [5pt]

flip foldr

b. [6pt]

(.) . map

a.5 pt.

b.6 pt.

2

52003-86943

[20221006] INFOFP - Functioneel programmeren - 1 -

USP
Questions - Page 3 of 7

Consider the following data type modeling binary trees (that store elements in both the
leaves and the internal nodes.)

data Tree a = Leaf a
| Node (Tree a) a (Tree a)

deriving (Show)

a. [4pt] Complete the following definition

longestPath :: Tree a -> [a]
longestPath = snd . longestPath'

longestPath' :: Tree a -> (Int,[a])

by defining `longestPath'` such that `longestPath` computes the longest root to leaf path in
the tree. We use the convention that the length of the longest root to leaf path in a `Leaf`
has length 1.

b. [1pt] Please modify the `Tree a` data type to let us store/read out the length of the longest
root-to leaf path of a subtree in the data type.

a.4 pt.

b.1 pt.

3

52003-86943

[20221006] INFOFP - Functioneel programmeren - 1 -

USP
Questions - Page 4 of 7

Consider the following type modelling non-empty circular lists.

data CircularList a = MkCircularList [a] -- consecutive subset of
the elements left of the focus

-- in CCW (counter
clockwise) order

a -- current focus
[a] -- consecutive subset of

the elements right of the focus
-- in CW (clockwise) order

deriving (Eq, Show)

Observe that the same circular list can have multiple different representations, depending
on where we "cut the circle".
For example,

clock5 = MkCircularList [4, 3, 2, 1] 5 [6, 7, 8, 9, 10, 11, 12]
clock5' = MkCircularList [] 5 [6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]
clock5'' = MkCircularList [4,3,2,1,12,11,10,9,8,7,6] 5 []

are three different representations of a clock that reads five o'clock (5 is the focus). And

triangle = MkCircularList [1] 2 [3]
notAClock = MkCircularList [4, 3, 2, 1] 5 [7, 6, 8, 9, 10, 11, 12]

are circular lists that represent a triangle with vertices 1, 2, 3 and a clock with the numerals
in the wrong order.
a. [2pt] Complete the definition below of a function

cwElements :: CircularList a -> [a]

that returns all elements in CW order, starting from the focus.
So, for example,

cwElements clock5 == [5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]
cwElements clock5' == [5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]
cwElements clock5'' == [5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]

cwElements (MkCircularList ls x rs) = a. (2 pt.)

b. [3pt] Write a function

goCw :: CircularList a -> CircularList a

that moves the focus in clockwise direction.

4

52003-86943

[20221006] INFOFP - Functioneel programmeren - 1 -

USP
Questions - Page 5 of 7

So, for example,

goCw clock5 == MkCircularList [5, 4, 3, 2, 1] 6 [7, 8, 9, 10, 11,
12]
goCw clock5' == MkCircularList [5] 6 [7, 8, 9, 10, 11, 12, 1, 2,
3, 4]
goCw clock5'' == MkCircularList [5] 6 [7, 8, 9, 10, 11, 12, 1, 2,
3, 4]

c. [3pt] Write a function

isShiftOf :: Eq a => CircularList a -> CircularList a -> Bool

to test if the first circular list is a shift of the second. For example,

clock5 `isShiftOf` clock5' == True
clock5 `isShiftOf` clock5'' == True
clock5 `isShiftOf` triangle == False
clock5 `isShiftOf` notAClock == False

You may assume that you have a function

allRotations :: CircularList a -> [CircularList a]

that computes all different shifts/rotations of a circular list (containing each rotation exactly
once). Don't worry about efficiency.

d. [2pt] Please make `CircularList a` an instance of the `Eq` typeclass that tests if two
`CircularList`s are the same up to rotations. (This is often a more useful `Eq` instance than
the automatically derived one that merely tests structural equality.)

e. [2pt] Please complete the following definition of the function `allRotations` that you used
in subquestion c. above.

allRotations c = take (size c) $ cwRotations c
size :: CircularList a -> Int
size (MkCircularList l x r) = length l + 1 + length r

by defining an appropriate function

cwRotations :: CircularList a -> [CircularList a]

b.3 pt.

c.3 pt.

d.2 pt.

e.2 pt.

52003-86943

[20221006] INFOFP - Functioneel programmeren - 1 -

USP
Questions - Page 6 of 7

52003-86943

[20221006] INFOFP - Functioneel programmeren - 1 -

USP
Questions - Page 7 of 7

	[20221006] INFOFP - Functioneel programmeren - 1 - USP
	Course: BETA-INFOFP Functioneel programmeren (INFOFP)

	[20221006] INFOFP - Functioneel programmeren - 1 - USP
	Course: Functioneel programmeren (INFOFP)

