[20221006] INFOFP - Functioneel programmeren -

1-USP
Course: BETA-INFOFP Functioneel programmeren (INFOFP)

Duration: 2 hours

Number of questions: 4

Front page - Page 1 of 1
52003-86943 Pag 9

[20221006] INFOFP - Functioneel programmeren -
1-USP

Course: Functioneel programmeren (INFOFP)

Number of questions: 4

[20221006] INFOFP - Functioneel programmeren - 1 -

Questions - Page 1 of 7
52003-86943 uspP

2 pt.

3 pt.

Let us define a type synonym

type Point = Float

whose elements we think of as points on a line (the number line).

We define a datatype

data Interval = MkInterval Point -- starting point
Point -- end point

deriving (Show)

whose elements we think of as intervals in the number line demarked by a starting point and
an endpoint. We use the convention that Intervals are closed in the sense that they contain
both endpoints. You may assume that for "MkInterval start end’, we always have that “start
<=end'.

a. [2pt] Write a function

contains :: Interval -> Point -> Bool

that checks if an interval contains a given point
a.

b. [3pt] Write, using direct recursion, a function

stabs :: Point -> [Interval] -> [Interval]

that, given a Point and a list of Intervals returns all Intervals that are "stabbed" by the Point,
that is, all Intervals that contain that Point.
b.

c. [2pt] Now, rewrite "stabs" using higher order functions, without using direct recursion.

g Stabs INLS = C. i it e e e e et e e e (2 pt.)

d. [2pt] Write, using a list comprehension, a function

containments :: [Interval] -- list of intervals
-> [Point] -- list of points
-> [(Point, [Interval]l)] -- for every point, the

intervals that contain it.

That given a list of intervals, and a list of points, returns for each point the intervals it stabs.

containments ints points = d. ...l it e e e e (2 pt.)

[20221006] INFOFP - Functioneel programmeren - 1 -
USP

Questions - Page 2 of 7

5 pt.

6 pt.

e. [3pt] Complete the definition below of a function

countContainments :: [(Point, [Interval])] -> Int

such that

totalIntersections :: [Interval] -> [Point] -> Int
totalIntersections ints points = countContainments $ containments

ints points

computes the total number of intersections between a list of intervals and a list of points.

countContainments foldr f e where
LS~ Y (1 pt.)

e (2 pt.)

Here, by an intersection between a list “ints’ of intervals and a list “pts’ of points, we mean a
pair of a point "pt’ of 'pts” and an interval “int’ of “ints” such that “int’ contains "pt’. For
example, we have that

totalIntersections [MkInterval (-1) 4, MkInterval 6 9, MkInterval
0 2, MkInterval 2 3, MkInterval 1 4] [1, 9] ==

Please determine the types of the following expressions or show that they are ill-typed.
Please write down all reasoning steps, as they are at least as important as the final
answers.

a. [5pt]

flip foldr

a.
b. [6pt]

(.) . map

[20221006] INFOFP - Functioneel programmeren - 1 -

Questions - Page 3 of 7
UsP

3 Consider the following data type modeling binary trees (that store elements in both the
leaves and the internal nodes.)

data Tree a = Leaf a
| Node (Tree a) a (Tree a)

deriving (Show)
a. [4pt] Complete the following definition

longestPath :: Tree a -> [a]
longestPath = snd . longestPath'

longestPath' :: Tree a -> (Int, [a])

by defining “longestPath" such that “longestPath® computes the longest root to leaf path in
the tree. We use the convention that the length of the longest root to leaf path in a "Leaf
has length 1.

4 pt. a.
b. [1pt] Please modify the "Tree a’ data type to let us store/read out the length of the longest
root-to leaf path of a subtree in the data type.

1 pt. b.

[20221006] INFOFP - Functioneel programmeren - 1 -

Questions - Page 4 of 7
UsP

Consider the following type modelling non-empty circular lists.

data Circularlist a = MkCircularlList [a] —-- consecutive subset of
the elements left of the focus
-— 1in CCW (counter
clockwise) order
a -- current focus
[a] —-- consecutive subset of
the elements right of the focus
-— 1in CW (clockwise) order
deriving (Eq, Show)

Observe that the same circular list can have multiple different representations, depending
on where we "cut the circle".
For example,

clockb MkCircularList [4, 3, 2, 1] 5 [6, 7, 8, 9, 10, 11, 12]
clockb' = MkCircularlList [] 5 [6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]
clock5'' = MkCircularList [4,3,2,1,12,11,10,9,8,7,6]1 5 []

are three different representations of a clock that reads five o'clock (5 is the focus). And

triangle = MkCircularList [1] 2 [3]
notAClock MkCircularlList [4, 3, 2, 1] 5 [7, 6, 8, 9, 10, 11, 12]

are circular lists that represent a triangle with vertices 1, 2, 3 and a clock with the numerals
in the wrong order.
a. [2pt] Complete the definition below of a function

cwElements :: CircularList a -> [a]

that returns all elements in CW order, starting from the focus.
So, for example,

cwElements clockb == [5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]
cwElements clock5' == [5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]
cwElements clockb5'' == [5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 4]
cwElements (MkCircularList 1S X TS) = @. @ttt ueeneeneeneens (2 pt.)

b. [3pt] Write a function

goCw :: CircularList a -> CircularlList a

that moves the focus in clockwise direction.

[20221006] INFOFP - Functioneel programmeren - 1 -
USP

Questions - Page 5 of 7

3 pt.

3 pt.

2 pt.

2 pt.

So, for example,

goCw clockb == MkCircularList [5, 4, 3, 2, 11 o [7, 8, 9, 10, 11,
12]

goCw clock5' == MkCircularlList [5] 6 [7, 8, 9, 10, 11, 12, 1, 2,
3, 4]

goCw clock5'' == MkCircularList [5] © [7, 8, 9, 10, 11, 12, 1, 2,
3, 4]

b.
c. [3pt] Write a function

isShiftOf :: Eg a => Circularlist a -> CircularlList a -> Bool

to test if the first circular list is a shift of the second. For example,

clock5 “isShiftOf" clock5' == True

clock5 "isShiftOf" clock5''! == True
clock5 "isShiftOf" triangle == False
clock5 "isShiftOf" notAClock == False

You may assume that you have a function

allRotations :: Circularlist a -> [CircularlList a]

that computes all different shifts/rotations of a circular list (containing each rotation exactly
once). Don't worry about efficiency.

C.

d. [2pt] Please make “CircularList a’ an instance of the "Eq" typeclass that tests if two
“CircularList’s are the same up to rotations. (This is often a more useful "Eq" instance than
the automatically derived one that merely tests structural equality.)

d.

e. [2pt] Please complete the following definition of the function “allRotations™ that you used
in subquestion c. above.

allRotations ¢ = take (size c¢) $ cwRotations c
size :: CircularList a -> Int
size (MkCircularList 1 x r) = length 1 + 1 + length r

by defining an appropriate function

cwRotations :: Circularlist a -> [CircularlList a]

[20221006] INFOFP - Functioneel programmeren - 1 -

Questions - Page 6 of 7
UsP

[20221006] INFOFP - Functioneel programmeren - 1 -

Questions - Page 7 of 7
52003-86943 USP

	[20221006] INFOFP - Functioneel programmeren - 1 - USP
	Course: BETA-INFOFP Functioneel programmeren (INFOFP)

	[20221006] INFOFP - Functioneel programmeren - 1 - USP
	Course: Functioneel programmeren (INFOFP)

