[20221110] INFOFP - Functioneel programmeren -

1 - Online
Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

Tijdsduur: 2 uur

Aantal vragen: 5

Voorpagina - Pagina 1 van 1
52608-91392

[20221110] INFOFP - Functioneel programmeren -

1 - Online
Cursus: Functioneel programmeren (INFOFP)

Aantal vragen: 5

[20221110] INFOFP - Functioneel programmeren - 1 -

Vragen - Pagina 1 van 10
52608-91392 Online

6 pt.

Consider the datatypes

type Guest = String
data Room = Room { roomNumber :: Int
, members :: [Guest]

}
deriving (Show,Eqg,Ord)

newtype Floor = Floor { rooms :: [Room] } deriving (Show)
a. [6pt] Write a function
consecutive :: (Enum a, Eq a) => [a] -> Bool

that tests if all values in a list are consecutive, i.e. every next element is the successor of the
predecessor.

Hint: recall that the Enum typeclass implements a function

succ :: Enum a => a -> a

a.
b. [4pt] Using function composition, write a property

noMissing :: Floor -> Bool

that tests if there are any missing rooms; i.e. if a floor has 'n' and 'm' as room numbers with
'n > m', then there is a room with number 'k' for any 'k' between 'n' and 'm'. You may use the
function

sort :: Ord a => [a] -> [a]
NOMIiSsSing = DB L e e e e e e et et e (4 pt.)

c. [4pt] We call a floor valid, if no two rooms have the same number; please define a
function

isvValidFloor :: Floor -> Bool

that checks whether a floor is valid.
Hint: you may want to use the function

group :: Eg a => [a] -> [[a]]

that takes a list and returns a list of lists such that the concatenation of the result is equal to
the argument and, moreover, each element list in the result contains only equal elements
and consecutive element lists in the result do not contain equal elements. For example,

[20221110] INFOFP - Functioneel programmeren - 1 -
Vragen - Pagina 2 van 10
Online

>>> group "Mississippi"

["M"’ "j_"["SS", "i", "SS", "j_"["pp", "i"]
isvalidFloor = c.

d. [8pt] Given an infinite list 'rms' of Rooms and an Int 'n', generate a valid floor that has 'n'
rooms taken from the list 'rms'

genValidFloor rms n = Floor $ take n (validRms d. (2 pt.))
validRms acc (rm:rms) | elem (roomNumber rm) acc = e. cee. (2 pt.)
| otherwise = £. (4 pt.)

[20221110] INFOFP - Functioneel programmeren - 1 -

Vragen - Pagina 3 van 10
52608-91392 Online

20 pt.

Using the following definitions

data Tree a = Leaf | Node (Tree a) a (Tree a) deriving Show

size :: Tree a -> Int

size Leaf =0 -—
(a)

size (Node 1 v r) size 1 +

(1 + size 1) -—

(b)

combineTree :: Tree a -> Tree a -> Tree a

combineTree Leaf r' = r' -—
(c)

combineTree (Node 1 v r) r' = Node 1 v (combineTree r r') -—

(d)

and the laws

0 + 1 =1

(e)

(1 +3) + k=1 + (3 + k)
(f)

please prove the following claim, where you justify every reasoning step by marking it with
the letter (a - f) of some definition or law or by marking it as I.H. to refer to an induction
hypothesis. Please clearly state any induction hypotheses you use.

[20pt] Claim: for all Trees I'and r'

size (combineTree 1' r') = size 1'

+ size r'

[20221110] INFOFP - Functioneel programmeren - 1 -

Online

Vragen - Pagina 4 van 10

[8pt] In this question, we test your knowledge of laziness.

Indicate, for each of the following expressions what their WHNF is. If the expression is
already in WHNF, please copy the original expression. If the expression crashes in its
evaluation to WHNF, please write "undefined".

foldr (\xs (a,as) -> (length xs + a, xs ++ as)) (0,[]) [I[1]]

(\x -> Node Leaf (x + 1) Leaf) undefined

[20221110] INFOFP - Functioneel programmeren - 1 -
Vragen - Pagina 5 van 10
Online

4 a. [6pt] Write a function

countLinesAndWords :: FilePath -> IO Int

that takes a FilePath to some text file, prints the number of lines in the file, and returns the
total number of words in the file. Remember that

readFile :: FilePath -> IO String

reads the given file, and
print :: Show a => a -> IO ()

prints a value to standard output.
Hint: remember that the functions

words :: String -> [String]
lines :: String -> [String]

split a String into words and lines, respectively.

6 pt. a.
The following funtion longestFile reads a directory name, and uses countLinesAndWords to
compute the file with the most words (and lets the user know that it is working, by printing
some console output).

longestFile :: FilePath -> IO Int

longestFile fp = do files <- listDirectory fp
ls <- mapM countLinesAndWords files
print "Working..."
let 1 = maximum 1s

return 1

b. [6pt] Rewrite 'longestFile' to use >>= directly rather than using do-notation.
6 pt. b.

[20221110] INFOFP - Functioneel programmeren - 1 -
Vragen - Pagina 6 van 10
Online

4 pt.

Consider the following data types:

data Office = Office { building :: String
, floor :: Int
, _room :: Int

}
deriving (Show, Eq)

data Employee = Employee { name :: String
, _age :: Int
, office :: Office

}
deriving (Show, Eq)

with some example values

wrongFrank = Employee "Frank" 34 (Office "BBG" 4 9)
matthijs = Employee "Matthijs" 32 (Office "BBG" 5 65)
frank = moveToRoom 11 wrongFrank

a. [4pt] Write a function

moveToRoom :: Int -> Employee -> Employee

that takes a room number, and an employee, and updates the '_room' field of the office of
that employee. Your function should use pattern matching to access the appropriate fields.
So for example:

>>> moveToRoom 11 wrongFrank
Employee { name = "Frank", age = 34, office = Office { building =
"BBG", floor = 4, room = 11}}

Let us define a type level equivalent of the 'Const' function, which takes two type
arguments, and only remembers the first one.

newtype Const ¢ a = MkConst c
deriving (Show,Eq)

For example, the value 'reallyJustAnint' only stores an 'Int'; the 'String' in the type signature
is not stored at all/there is no string at all:

[20221110] INFOFP - Functioneel programmeren - 1 -
Vragen - Pagina 7 van 10
Online

reallyJdustAnInt :: Const Int String
reallyJustAnInt = MkConst 5

>>> reallyJustAnInt
MkConst 5

b. [4pt] Let c be some type. Give the Functor instance for the type 'Const c' i.e. we should
have that:

stillNoString = fmap (++ "and some extra string") reallyJustAnInt

>>> stillNoString
MkConst 5

instance b. .. i e e e e (2 pt.) where c¢. . (2 pt.)

While the solution to question a. is hopefully not too difficult, it is not very convenient to write
the above code, (in particular if Employee and Office would both have many more fields). In
this subquestion, we investigate an alternative, more composable, solution to the problem
called Lenses.

Consider the following type 'LensF' which we can use as accessors of a particular field in a
haskell data type. See also the example accessors below.
Note that technically, a 'LensF' is just a function with two parameters.

type LensF f pa= (a ->fa) ->p ->fp

name :: Functor f => LensF f Employee String

name f (Employee n a o) = fmap (\n' -> Employee n' a o) $ f n
age :: Functor f => LensF f Employee Int

age f (Employee n a o) = fmap (\a' -> Employee n a' o) $ f a
office :: Functor f => LensF f Employee Office

office f (Employee n a o) = fmap (\o' -> Employee n a o') $ f o
room :: Functor f => LensF f Office Int

room g (Office b f r) = fmap (\r' -> Office b £ r') $ g r

c. [4pt] Write the function

view :: LensF (Const a) pa -> p -> a

[20221110] INFOFP - Functioneel programmeren - 1 -
Vragen - Pagina 8 van 10
Online

so that we can use a

myLens :: LensF (Const a)

as a "getter" of a record. That is, so that 'view myLens p' to view/read/get the field 'myLens'
of a record 'p"

>>> view name frank
"Frank"

>>> view office matthijs
Office { building = "BBG", floor = 5, room = 65}

View lens P = d. Lttt e ettt e e e e e e e (4 pt.)

Using the following 'ldentity’ type, we can also write a "setter" function 'set":

newtype Identity a = Identity a

instance Functor Identity where

fmap f (Identity x) = Identity (f x)
set :: LensF Identity pa ->p ->a ->p
set lens p a' = let Identity p' = lens (_-> Identity a') p
in p'

So for example, we can write:

>>> set name frank "FRANK"
Employee { name = "FRANK", age = 34, office = Office { building =
"BBG", floor = 4, room = 11}}

The nice thing about these Lenses is that they compose! To access the room number of a
particular employee, we can now write:

(Note: Don't worry why this actually works the way it does/why we can write the lens this
way.)

officeNumber :: Functor f => LensF f Employee Int
officeNumber = office . room

d. [4pt] Write a function
moveToRoom2 :: Int -> Employee -> Employee

that uses the 'officeNumber' lens to update the room of a particular employee:

[20221110] INFOFP - Functioneel programmeren - 1 -
Vragen - Pagina 9 van 10
Online

52608-91392

>>> moveToRoom2 110 frank
Employee { name = "Frank", age = 34, office = Office { building =
"BBG", floor = 4, room = 110}}

MOVETOROOMZ 1N P = €. i it ittt et eeeeeeeeeeeeeeeeeeaeeeeeeeens (4 pt.)
e. [4pt, bonus] Please show how 'ldentity’ can be made an instance of 'Monad'.

Instance £, L e e e e e e e e e e e e e e e e e, (1 pt.) where
L (1 pt.) ——- no identation necessary
O (2 pt.) —- no identation necessary

[20221110] INFOFP - Functioneel programmeren - 1 -

Vragen - Pagina 10 van 10
Online

	[20221110] INFOFP - Functioneel programmeren - 1 - Online
	Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

	[20221110] INFOFP - Functioneel programmeren - 1 - Online
	Cursus: Functioneel programmeren (INFOFP)

