
Functional Programming
Assignment 0: Introduction

Ruud Koot, Alejandro Serrano Mena, Frank Staals

In this exercise we will guide you through the basics of writing, compiling and running a
Haskell program, as well as introduce the DOMjudge system you that will use to submit
your weekly programming assignments. Some basic familiarity with using a computer and
the command line is assumed.

1 Installation and set-up

In order to follow this course you need to install “Haskell” first. In particular, you will need GHC
(the compiler). The easiest way to install GHC is using a tool called ’ghcup’, refer to https://www.

haskell.org/ghcup/ for the detailed instructions.
After the installation is complete, open a terminal or command line,

• Windows: you need to open the Command Prompt. You can find it in the Start Menu (use the
Search functionality).

• Mac OS X: in this operating system you need to open the Terminal, which you can find in the
Applications folder.

• Linux: once again, this changes depending on the distribution. Usually, anything which includes
Terminal or Term in the name is a safe choice.

Now write the following line of text and press Enter:

ghc --version

You should receive a message like the following (the version number may change):

The Glorious Glasgow Haskell Compilation System, version 8.6.5

If you get an error message about the program or command not being found, restart your computer
and try again. If the problem persists, ask one of the lab assistants.

Code editors. Since you are going to spend a great part of this course (and of the rest of your life?)
dealing with code, it is good to use a text editor geared towards this purpose. Choosing a code
editor is like choosing a car — people discuss endlessly about which is the best and makes you more
productive. But the minimum bar is to provide syntax highlighting, that is, to colour your code in a way
that helps you to identify the structure and makes it easier to notice simple errors like a parenthesis
which is not closed.

1

https://www.haskell.org/ghcup/
https://www.haskell.org/ghcup/


• Graphical: arguably simpler to use if you already know Visual Studio or a similar IDE.

– Visual Studio Code https://code.visualstudio.com/.

– Atom https://atom.io/, with the language-haskell package.

– Notepad++ https://notepad-plus-plus.org/download.

• Keyboard-oriented: harder to grasp at first, but an amazing tool once you learn them

– Emacs: the official website at https://www.gnu.org/software/emacs/ provides installers
for Windows, for Mac OS X the version at https://emacsformacosx.com/ is recommended.
You can find Emacs on any Linux distribution as the emacs package.
After installing Emacs, you still need to download and configure a Haskell mode. There
are as many ways to do so as stars in the sky, contact one of the TAs to help you on this
adventure.

– Vim: the official website at https://www.vim.org/ provides links for Windows and Mac
OS X. Once again, any Linux distribution comes with a vim package, most of them even
have them installed by default.

2 Hello, world!

Use your favourite editor to create a source file containing the following program:

module Main where
main = putStrLn "Hello, world!"

You can give the file any name ending in .hs, such as HelloWorld.hs, but for the rest of the exercise
we will assume that you named the file Main.hs. Note that, like in Java and C♯, it is always a good
idea to make sure the name of your file and the name of your module are identical, otherwise the
compiler will complain when you try to import this module from another one.

In Haskell the Main module—the one containing your main function, the function that will be
invoked when you execute your compiled program—is a bit of an exceptional case in this respect, in
that the module name must always be Main, but so long as you do not try import it from another
module—which you generally won’t—you can give it another file name. If there is no good reason to
do so, however, you probably shouldn’t and just name your program Main.hs.

Step 1: Compilation. The first step is to open the terminal. Then, you need to move to the folder in
which your files live, by running:

cd path/to/your/folder

Then you can compile your program by invoking the following command from the command line.

ghc Main.hs

This command will compile both the Main module, as well as any other modules it depends on.

Step 2: Execution. The compilation has produced an executable. In Linux and Mac OS X you run it
by typing:

./Main

whereas in Windows you need to run:

Main.exe

For the rest of the assignment we’ll write Main for the name of the executable. You should choose
which variant of the name you need to use depending on your operating system. Running your
program will give the output:

2

https://code.visualstudio.com/
https://atom.io/
https://notepad-plus-plus.org/download
https://www.gnu.org/software/emacs/
https://emacsformacosx.com/
https://www.vim.org/


Hello, world!

Apart from compiling and then running a program, we can also run the program interactively from
an interpreter:

ghci Main.hs

You will now be presented with the prompt

*Main>

Type in main and press enter to start the program, again resulting in the output:

Hello, world!

Using the interpreter is more convenient when you are developing your program, as you can invoke
any function defined in your program and pass it any arguments you desire. When you compile your
program it will always be the function main that gets called.

3 Interaction with the outside world

Shouting a message to the outside world without bothering to listen to its response is somewhat
boring. What we are really interested in is interaction with the outside world.

This can be achieved using the interact function from Haskell’s standard library (also called the
Prelude). The function interact is an IO action (IO stands for “input/output”) that takes another func-
tion as its argument. This concept—passing a function as an argument to another function—may be
unfamiliar if you have only programmed in imperative programming languages, such Java or C♯, before,
but is one of the cornerstones of the functional programming paradigm, as is reflected in its name. The
function interact is thus an example of a so-called higher-order function and we shall become intimately
familiar with them during this course.

But what does the function interact do? First, it reads a string from the standard input—by default
your keyboard, but below we shall see how we can redirect the standard input to read from a file
instead. Next, it applies the function you passed as an argument to interact to the string it just read
from the standard input, to transform it into another string. Finally, it prints the transformed string to
the standard output—by default your screen, but below we shall see how we can redirect the standard
output to write to a file instead.

Note that this does put some restrictions on the kinds of functions you can pass to interact: they
should take exactly one string as their argument, and also return a string as their result. Formally, we
write that the argument of interact should be of the type String → String.

Time for an example:

module Main where
main = interact reverse

Additionally, create a file called in.txt, containing the text:

eb ot

eb ot ton ro

noitseuq eht si taht

If you use a Windows machine, do not use Notepad to copy this text, as it will not correctly interact
with the Haskell program. The solution is simple: just use another editor.

Compile the program (running it from the interpreter is not going to work correctly!), and run it,
while redirecting the standard input to read from the file in.txt. On Windows machines this can be
achieved using the command:

Main < in.txt

In recent versions of Windows, the command prompt has been replaced by PowerShell. In that case,
you should use:

3



Get-Content in.txt | ./Main

On Mac and Linux machines you need to use the command:

./Main < in.txt

This will give the output:

that is the question

or not to be

to be

Almost, but not quite right. We reversed the complete file, instead of reversing the lines one at a
time. Let us try again:

module Main where
main = interact work

where work text = unlines (map reverse (lines text))

Now instead of a function from the Prelude, we introduce our own work function. This function takes
a text and applies three consecutive operations:

1. The first function, lines, will split a string into a list of strings (denoted [String ]). Its type is thus
String → [String ].

2. The second function, map reverse, will reverse all of the strings contained inside a list. Its type is
thus [String ] → [String ]. Note that this function is actually another instance of a higher-order
function (in this case map) applied to a second function (reverse).

3. The third function, unlines, takes a list of strings and concatenates them together with a newline
character in between.

Tabs versus spaces. You have sure noticed that the where keyword is indented with respect to main.
This is required by the rules of the language. In this course, every time you need to indent further, you
should use two spaces. In most editors, if you press the Tab key, you insert those characters instead.
Check it, because you should not use tabs for indentation.

Running the program will give us the desired output:

to be

or not to be

that is the question

As we have discussed above, one of the main features of functional programming is treating func-
tions as elements which can be manipulated. In this case, we can rewrite our program into a nicer
form by using the the function composition operator ◦.1 Note that, just like in mathematics, composed
functions should be read from right-to-left.

main = interact work
where work = unlines ◦ map reverse ◦ lines

Note that we have dropped the argument text from the definition of work. We are no longer stating
how work acts on an argument, but just defining a new function as the combination of others.

We can even go one step further and replace the work function by its definition:

main = interact (unlines ◦ map reverse ◦ lines)

1Altough it looks fancy on the text, the ◦ operator is written in code as a simple dot.

4



4 The exercise

Modify the program given above to have it—instead of printing each line of the input on a separate
line—print the lines with slashes in between. Thus for the input:

eb ot

eb ot ton ro

noitseuq eht si taht

the program should give as output:

to be / or not to be / that is the question

Hint: you can use the function intercalate from the library Data.List (which you will have to import).
See http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-List.html#v:intercalate.

5 Handing it in

In this course we use DOMjudge. Consult the course website (under Assignments) for the precise URL.
You can log in using your Solis ID; if this does not work, you have probably not registered on time

for this course, and will now have to notify the lecturer about this. You should always submit your
source file, not a compiled executable. Your solution should be graded promptly, giving you one of
the following results:

PENDING Your solution is still being graded. You will need to have a bit of patience. If this takes
more than a few minutes, something is probably wrong. Either try again later and/or bug the
teaching assistants.

CORRECT You solution is correct. Note that the system only checks for functional correctness.

WRONG-ANSWER Your program did not produce the expected output. Something is wrong with
your program: you need to fix this and try again.

NO-OUTPUT Sort of like WRONG-ANSWER, except that your program did not seem to produce
any output at all.

COMPILE-ERROR You program contains a mistake that did not even allow it to be compiled cor-
rectly. Fix the mistake and try again. Note that if you click on you submission in the webform,
you will be taken to another screen which contains the full output of the compiler. This may
help you to diagnose the problem.

RUN-ERROR Your program caused an exception at run-time. Perhaps you tried to take the head of
an empty list, forgot a pattern in a case-statement, or divided by zero.

TIMELIMIT Your program took an extraordinary long time to finish or did not finish at all. You
might have introduced an infinite loop somewhere in your program.

5.1 Style checks

A CORRECT output from DOMjudge only means your program gives the right output for our tests.
In order to help you getting a good style, we use a tool called HLint which tells you when something
can be improved.

In order to see these suggestions, you have to go to your latest submission, which appears in the
initial DOMjudge page. Once the submissions moves from PENDING to another status, click on
Compiler output. The first block there corresponds to HLint. Take those suggestions into account and
submit your assignment again.

You are not required to follow every single suggestion from HLint. However, if you decide not to
follow it, consider writing a small comment in the code explaining your decision.

5

http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-List.html#v:intercalate

	Installation and set-up
	Hello, world!
	Interaction with the outside world
	The exercise
	Handing it in
	Style checks


