
Functional Programming
Assignment 2: Data structures

Ruud Koot

In this exercise we will implement a simple game called Butter, Cheese and Eggs (also known
as Tic-Tac-Toe or Noughts-and-Crosses on the other side of the sea). You may have played
this game before, but if you’re a little foggy on the rules then you can have a look at
https://en.wikipedia.org/wiki/Tic-tac-toe.

1 Rose trees

A rose tree or multi-way tree is a tree data structure in which each node can store one value and each
node can have an arbitrary number of children. Rose trees can be represented by the algebraic data
type:

data Rose α = MkRose α [Rose α]

Exercise 1. Write functions root :: Rose α → α and children :: Rose α → [Rose α] that return the value stored
at the root of a rose tree, respectively the children of the root of a rose tree.

Exercise 2. Write functions size :: Rose α → Int and leaves :: Rose α → Int that count the number of nodes in
a rose tree, respectively the number of leaves (nodes without any children).

2 Game state

The state of a (turn-based board) game will generally consist of the player whose turn it is and what is
currently on the board. The current player in a two-person game can be represented by the data type:

data Player = P1 | P2

Exercise 3. Write a function nextPlayer :: Player → Player that given the player whose move it is currently,
will return the player who will make a move during the next turn.

The board in Butter, Cheese and Eggs consists of nine fields, each either containing a cross or a circle,
or being blank:

data Field = X | O | B

Exercise 4. Write a function symbol :: Player → Field that gives the symbol a particular player uses. (By
centuries-old tradition the first player always uses a cross.)

A row consists of three horizontally, vertically or diagonally adjacent fields:

type Row = (Field, Field, Field)

We can then compose the board from three horizontal rows:

type Board = (Row, Row, Row)

1

https://en.wikipedia.org/wiki/Tic-tac-toe

Exercise 5. This representation gives us easy access to the horizontal rows, but not to the vertical and diagonal
ones. Write two functions verticals :: Board → (Row, Row, Row) and diagonals :: Board → (Row, Row) that do.
Your implementation of diagonals should report the ”topleft-to-bottomright” diagonal as the first element of the
output tuple.

Exercise 6. Define a constant emptyBoard :: Board that represents the empty board.

Exercise 7. Write a function printBoard :: Board → String that nicely formats a board as a string. For example,
printBoard someBoard should return the string "O| | \n-+-+-\n |X| \n-+-+-\n | | \n".

3 Game trees

A game tree is a rose tree where all the nodes represent game states and all the children of a node
represent the valid moves than can be made from the state in the parent node.

Exercise 8. Write a function moves :: Player → Board → [Board] that, given the current player and the current
state of the board, returns all possible moves that player can make expressed as a list of resulting boards. (For
now, you should continue making moves, even if one of the players has already won.). Here are some hints on
how to write this function in a convenient and concise way:

1. Write a helper function traverseFst :: (α → [d]) → (α, b, c) → [(d, b, c)]. There should only be one
“reasonable” non-trivial implementation of a function that has this type. Write analogous functions
traverseSnd and traverseThd (think about their types first).

2. Write a function traverseAll :: (α → [α]) → (α, α, α) → [(α, α, α)] that combines the above three
functions.

3. Implement a function movesRow :: Player → Row → [Row] that, given a player and a row, returns all
possible moves that the player can make in that row, using the function traverseAll.

Exercise 9. Write a function hasWinner :: Board → Maybe Player that, given a board, returns which player
has won or Nothing if none of the players has won (either because the game is still in progress, or because it is a
draw).

Exercise 10. Write a function gameTree :: Player → Board → Rose Board that computes the game tree. (Here
you should make sure that you stop making moves once one of the players has won.)

4 Game complexity

Game theorists have defined various measures of how hard a particular game is, called the complexity
of a game. One of those measures is the game tree complexity, which is the number of leaves in the
game tree.

Exercise 11. Define a constant gameTreeComplexity :: Int that computes the game tree complexity of Butter,
Cheese and Eggs.

5 Minimax

We can use a game tree to implement an intelligent computer opponent (AI) for us to play against.
This can be done using the minimax algorithm. The name of this algorithm stems from the fact that if
we would assign a score to each leaf of the game tree (1 if we win, 0 if it’s a draw, and −1 if we lose)
then for each internal node where we make a move, we always make a move that maximizes our score
(and take this as the score for the internal node), while for internal nodes where the opponent makes
a move, we can assume they make a move that minimizes our score (and take this as the score for the
internal node).

2

= max

×
= min

× ◦
= max

...

× ◦
× ◦
×

= 1

...

×
= min

◦ ×
= max

...

◦ × ×
◦

× ◦
= −1

...

... ×
= min

◦

×
= max

...

◦ × ◦
× ◦ ×
× ◦ ×

= 0

...

Exercise 12. Write a function minimax :: Player → Rose Board → Rose Int that computes the minimax tree
for a given player and game tree. Here are some hints:

1. You must treat leaves of the tree (nodes that do not have any children) differently from the internal nodes
of the tree (nodes that do have children).

2. The first argument of minimax is the Player you are calculating the minimax tree for. This argument is
kept constant throughout the whole computation. It is useful to introduce a helper function minimax′ that
takes another Player argument. This is the player that is allowed to make a move, and alternates at every
level of tree as you recurse through it.

If you correctly and elegantly implemented the minimax function then its implementation should
use the minimum and maximum functions. These functions find the minimum and maximum of arbi-
trary lists of numbers and will thus always have to look at every element in the lists. However, we
know that the lists we encounter will only contain the numbers 1, 0 or −1. Thus if minimum (respec-
tively maximum) encounters the element −1 (respectively 1) we already know what the optimum is
going to be and do not have to continue looking any further.

Exercise 13. Write lazier versions of minimum and maximum (and name them minimum′ and maximum′) that
stop looking for a smaller, respectively larger, number in their input list once they encounter the optimum of −1,
respectively 1.

If you replace the calls to minimum and maximum with minimum′ and maximum′ in the minimax
function, then the function will stop looking for an optimum once it has already found one. By
“magic” of lazy evaluation the program will not only stop looking for a more optimal optimum that
can never exist, it will also not bother generating whole parts of the minimax and game trees. This
will make the program run several times faster.

Exercise 14. Write a function makeMove :: Player → Board → Maybe Board that makes an optimal move (if it
is still possible to make a move).

6 Wrapping up

The starting framework contains a main function that—assuming you have implemented all of the
above exercise correctly—allows you to play the game against a human or computer opponent. Of
course—again assuming you have implemented all exercises correctly—you will never be able to beat
the computer opponent.

Important note: When handing in the assignment make sure you name your module Assignment2,
otherwise DOMjudge will not be able to compile your code. If you want to compile your program
yourself, you will have to name the module Main, though. If you want to run you program from the
interpreter, then the module name does not matter. Like most Haskell programs, the game will run
much faster if compiled (with the -O flag) instead of interpreted.

3

http://www.haskell.org/ghc/docs/7.6.3/html/users_guide/flag-reference.html#idp40201376

7 Further research

Here are some suggestion for “further research”, if you are finished early with the assignment and are
feeling bored. You do not have to hand them in.

1. Generalize the game to kn (i.e., n-dimensional Butter, Cheese and Eggs on a k × · · · × k board).
It will be inconvenient to represent your board as nested tuples in this case. Instead, consider
using an Array.

2. Use the same techniques to play other games such as Connect Four, Othello, Checkers, Chess,
or Go; to solve 15 Puzzles or Rubik’s Cubes; or to optimize Starcraft build orderings. For these
games you are unlikely to be able to fully traverse the whole game tree to determine who wins,
so you will probably want to use alpha–beta pruning and an evaluation function on a partial
game tree instead of minimax on a complete game tree.

3. You can use the various rotational and reflective symmetries of the game board to reduce the size
of the of the game tree by two orders of magnitude. Additionally, some sequences of moves will
eventually result in the same game board, so it can be advantageous to represent the game as a
directed acyclic graph instead of a tree. Use these techniques to speed up the AI even further.

4

http://hackage.haskell.org/packages/archive/array/latest/doc/html/Data-Array.html
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning

	Rose trees
	Game state
	Game trees
	Game complexity
	Minimax
	Wrapping up
	Further research

