
Functional Programming
Assignment 4: Type classes

Ruud Koot

In this assignment we’ll present a few type classes and ask you to implement some in-
stances of them.

1 Containers

1.1 Functors

Recall the rose tree data structure from the previous assignment:

data Rose a = MkRose a [Rose a]

Similarly to how we might want to apply a function uniformly to all elements in a list, we might
also want to apply a function uniformly to all the elements in a rose tree, or any other container-like
data structure for that matter. For this purpose Haskell has a Functor type class, exposing a single
function fmap that generalizes the map function:

class Functor f where
fmap :: (a→ b)→ f a→ f b

We see that fmap generalizes map by giving a Functor instance for lists:

instance Functor [] where
fmap = map

Verify that fmap and map have the same type if we instantiate f to [].

Exercise 1. Write a Functor instance for the Rose data type.

1.2 Monoids

A monoid is an algebraic structure over a type m with a single associative binary operation (�) :: m →
m→ m and an identity element mempty :: m.

class Monoid m where
mempty :: m
(�) :: m→ m→ m

1

Lists are monoids:

instance Monoid [] where
mempty = []
(�) = (++)

Verify that (++) is an associative operation (i.e., that ∀xs ys zs.(xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)) and
that the empty list [] is indeed an identity element with respect to list concatenation (++) (i.e., that
∀ls.[] ++ ls ≡ ls and ∀ls.ls ++ [] ≡ ls).

Numbers also form a monoid, both under addition with 0 as the identity element, and under
multiplication with 1 as the identity element (verify this). However, we are only allowed to give one
instance per combination of type and type class. To overcome this limitation we create some newtype
wrappers:

newtype Sum a = Sum {unSum :: a}
newtype Product a = Product {unProduct :: a}

Now we can give two instances:

instance Num a⇒ Monoid (Sum a) where
mempty = Sum 0
Sum n1 � Sum n2 = Sum (n1 + n2)

Exercise 2. Complete the second instance by writing a Monoid instance for numbers under multiplication.

1.3 Foldable

If f is some container-like data structure storing elements of type m that form a monoid, then there is
a way of folding all the elements in the data structure into a single element of the monoid m.

class Functor f ⇒ Foldable f where
fold :: Monoid m⇒ f m→ m

In the case of lists:

instance Foldable [] where
fold = foldr (�) mempty

Exercise 3. Write a Foldable instance for Rose.

It might be the case that we have a container-like data structure storing elements of type a that do
not yet form a monoid, but where we do have a function of type a → m that makes them into one. In
such situation it would be convenient to have a function foldMap :: Monoid m ⇒ (a → m) → f a → m
that first injects all the elements of the container into a monoid and then folds them into a single
monoidal value.

Exercise 4. Add a default implementation of foldMap to the Foldable type class, expressed in terms of fold and
fmap.

Exercise 5. Write functions fsum, fproduct :: (Foldable f , Num a) ⇒ f a → a that compute the sum, respec-
tively product, of all numbers in a container-like data structure.

2 Poker

If we want to implement a poker game, we need to represent playing cards, hands and have way of
ranking hands:

2

data Rank = R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | J | Q | K | A
deriving (Bounded, Enum, Eq, Ord)

data Suit = S | H | D | C
deriving (Bounded, Enum, Eq, Ord, Show)

data Card = Card {rank :: Rank, suit :: Suit}
type Deck = [Card]

2.1 Show

Exercise 6. Define a Show instance for Rank that shows the ranks as "2", "3", "4", "5", "6", "7", "8", "9",
"10", "J", "Q", "K", "A" respectively.

Exercise 7. Give a Show instance for Card showing Card {rank = R2, suit = H} as "2H".

Exercise 8. Define constants fullDeck, piquetDeck :: Deck that give a full 52-card deck and a 32-card Piquet
deck (with cards of ranks from 7 up to and including the Ace).

2.2 Ord

A poker hand can be represented as:

newtype Hand = Hand {unHand :: [Card]}

and the various hand categories as:

data HandCategory
= HighCard [Rank]
| OnePair Rank [Rank]
| TwoPair Rank Rank Rank
| ThreeOfAKind Rank Rank Rank
| Straight Rank
| Flush [Rank]
| FullHouse Rank Rank
| FourOfAKind Rank Rank
| StraightFlush Rank

deriving (Eq, Ord, Show)

If you are not familiar with the ranking of poker hands then https://en.wikipedia.org/w/index.

php?title=List_of_poker_hands&oldid=574969062 would be a good place to refer to.
The fields stored together with each category are used to distinguish between hands of the same

category. For example, for a HighCard the field of type [Rank] contains all five cards in the hand, sorted
from high to low. In the case of a TwoPair the first Rank is that of the high pair, the second Rank that of
the low pair, and the third Rank that of the kicker (the card that isn’t part of any of the two pairs).

Convince yourself that the derived Ord instance correctly ranks poker hands represented as a
HandCategory.

We are now going to write a function that converts hands of type Hand into hands of type
HandCategory. First we’ll need a few helper functions:

Exercise 9. Write a function sameSuits :: Hand→ Bool that returns True if all cards in a Hand are of the same
suit.

Exercise 10. Write a function isStraight :: [Rank] → Maybe Rank that return a Just with the highest ranked
card, if the Hand is a straight (or a straight flush). Note that the Ace can count both as the highest and as the
lowest ranked card in a straight!

Exercise 11. Write a function ranks :: Hand→ [Rank] that converts a Hand into a list of Ranks, ordered from
high to low.

3

https://en.wikipedia.org/w/index.php?title=List_of_poker_hands&oldid=574969062
https://en.wikipedia.org/w/index.php?title=List_of_poker_hands&oldid=574969062

Exercise 12. Write a function order :: Hand → [(Int, Rank)] that converts a Hand into a list of Ranks
paired with their multiplicity, order from high to low using a lexicographical ordering. For example, the hand
["7H", "7D", "QS", "7S", "QH"] should be ordered as [(3, R7), (2, Q)].

Exercise 13. Finally, write a function handCategory :: Hand → HandCategory that converts a Hand into a
HandCategory.

Exercise 14. Using handCategory, write an Ord instance for Hand.

2.3 Combinatorics

Exercise 15. Write a function combs :: Int→ [a]→ [[a]] that returns all the combinations that can be formed
by taking n elements from a list.

Exercise 16. Write a function allHands :: Deck → [Hand] that returns all combinations of 5-card hands than
can be taken from a given deck of cards

2.4 Data.Set

The Ord class on Hand induces an equivalence relation on poker hands. This can be useful when using
functions or data structures that require an Ord instance on the data they are working with.

One example of such a data structure is Data.Set: a data structure that can only store unique
elements. Uniqueness is determined by the equivalence relation induced by an Ord instance.

Exercise 17. Write a function distinctHands :: Deck → Set Hand that constructs a maximal set of distinct
hands from deck. (Hints: You will need the empty and insert functions from Data.Set. Use foldl′ instead of foldr
to avoid a stack overflow when applying this function to large decks.)

3 Questions

You do not need to send the answer to these questions. However, it is useful for you to reflect about
these topics in order to prepare better for the exam.

Question 1. Do numbers1 form a monoid under subtraction? If so, give the identity element. Do numbers form
a monoid under division?

Does Bool form a monoid under conjunction (∧)? Does Bool form a monoid under the biconditional (≡)?

Question 2. Sheldon wants to implement Rock-paper-scissors-lizard-Spock in Haskell. He defined a data type:

data Gesture = Rock | Paper | Scissors | Lizard | Spock

and now wants to define an Ord instance for this data type that specifies which of two gestures beats the other.
Explain why this is not a good idea. The answer can be found by carefully reading the documentation of

Data.Ord or imagining what happens if you sort a list of gestures using such an ordering.

1If you’re now asking yourself: “But what kind of numbers do you mean exactly, Sir?” then please consider both various
Haskell types having a Num instance (Integer, Rational, Float, ...) as well as various mathematical classes of numbers (N, Z, Q,
R, C, R\{0}, ...).

4

https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Combination
http://hackage.haskell.org/package/containers-0.5.3.1/docs/Data-Set.html
https://en.wikipedia.org/wiki/Stack_overflow
https://en.wikipedia.org/wiki/Rock-paper-scissors-lizard-Spock
http://hackage.haskell.org/packages/archive/base/latest/doc/html/Data-Ord.html

	Containers
	Functors
	Monoids
	Foldable

	Poker
	Show
	Ord
	Combinatorics
	Data.Set

	Questions

